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A multifidelity approach to design and analysis for complex systems seeks to exploit optimally all available models and

data. Existing multifidelity approaches generally attempt to calibrate low-fidelity models or replace low-fidelity analysis

results using data from higher fidelity analyses. This paper proposes a fundamentally different approach that uses

the tools of estimation theory to fuse together information from multifidelity analyses, resulting in a Bayesian-based

approach to mitigating risk in complex system design and analysis. This approach is combined with maximum entropy

characterizations of model discrepancy to represent epistemic uncertainties due to modeling limitations and model

assumptions. Mathematical interrogation of the uncertainty in system output quantities of interest is achieved via a

variance-based global sensitivity analysis, which identifies the primary contributors to output uncertainty and thus

provides guidance for adaptation of model fidelity. The methodology is applied to multidisciplinary design optimization

and demonstrated on a wing-sizing problem for a high altitude, long endurance vehicle.

KEY WORDS: multifidelity, information fusion, sensitivity analysis, multidisciplinary design optimiza-

tion

1

1. INTRODUCTION2

Numerical simulation tools provide essential support to all aspects of discovery and decision processes for complex3

systems, with applications ranging from characterization of system properties via inference, to prediction of system4

performance, to decision in the form of design, planning, optimization and control. For a particular application, it5

is often the case that engineers, scientists and decision-makers have available to them several different numerical6
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models, in addition to experimental data. These numerical models may vary in “fidelity” or “skill” with respect1

to different quantities of interest. The models may encompass different resolutions, different physics, and different2

modeling assumptions. A multifidelity approach to modeling complex systems seeks to exploit optimally all available3

models and data. Such an approach requires systematic methods to select models with the appropriate skill for the4

prediction/decision task at hand. It also requires ways to synthesize information and data from different models5

and experiments. This paper proposes a mathematical and computational framework that lays the foundation for a6

multifidelity approach to modeling complex systems for design and analysis.7

We propose a mathematical and computational multifidelity framework based on estimation theory. Building on8

the work of Ref. [1], we view the analysis or design task as a problem of Bayesian estimation, where models and9

experiments are used in concert to conduct a series of observations of the key parameters. If for example, the goal is10

optimal system design, then our task is to estimate the (unknown) optimal values of design parameters. Each model or11

experiment is viewed as providing a measurement that feeds into the estimation process. A Bayesian characterization12

of design parameters represents the level of uncertainty in each parameter at any point during the design process.13

Filtering methods are employed to synthesize multifidelity estimates and to evolve our estimate of the system state.14

Global sensitivity analysis provides a rigorous means to identify key component or subsystem contributors to uncer-15

tainty in quantities of interest for informing resource allocation decisions. The result is a multifidelity methodology16

that determines, with confidence, when high, medium, and low fidelity analyses are appropriate to support an analysis17

or design task. Further, rather than discard information as higher fidelity results become available, our approach fuses18

information gained from each analysis step throughout the decision process, resulting in more confident estimates of19

output metrics of interest.20

Our approach is applicable in many different settings. For example, in modeling subsurface flows through karst21

aquifers, models can range from simple continuum pipe flow models [2, 3] to high-fidelity models that couple Stokes22

and Darcy systems [4, 5]. Climate modeling to estimate global mean temperature change in response to an emission23

scenario is another example where a host of different modeling options exist, such as simple climate models [6]24

that may consider only atmospheric effects averaged over one or more dimensions to three-dimensional atmospheric-25

ocean general circulation models [7]. In both cases, a rigorous approach to managing model options, their differing26

estimates, and their uncertainties, would better inform the decision-making process. In this paper, we demonstrate how27

our approach applies to the case of multifidelity modeling in the conceptual design of multidisciplinary engineering28

systems. Decisions made in this design phase have tremendous implications for downstream programmatic cost and29

schedule, as well as for the ultimate system capabilities that can be realized. Challenges arise in the conceptual design30
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phase because of the common use of simplified disciplinary analysis models. Indeed, according to Ref. [8], “No model1

is perfect. Even if there is no parameter uncertainty, so that we know the true values of all the inputs required to make2

a particular prediction of the process being modeled, the predicted value will not equal the true value of the process.3

The discrepancy is model inadequacy.” It is critical that decision processes for complex systems start accounting for4

model inadequacy, which in this work, following Refs. [9] and [10], we refer to as model discrepancy.5

Recent work related to the quantification of model discrepancy in engineering applications has focused on model6

uncertainty—uncertainty involved in selecting the best model from a set of possibilities [11]. In that body of work,7

model uncertainty is quantified in terms of model probabilities, which are defined as the degree of belief that a model is8

true, given that the true model is in the set of models considered [12]. There are many techniques for assigning model9

probabilities, such as expert opinion, which was incorporated in the work of Refs. [13] and [14] for nuclear safety10

problems; the Akaike information criterion and Bayesian information criterion discussed in Refs. [12] and [15]; and a11

Bayesian statistical framework proposed in Ref. [11] based on comparing experimental data to model outcomes. Once12

model probabilities have been assigned, it is common to fuse estimates from the various models through techniques13

of the adjustment factors approach [14], and Bayesian model averaging [16].14

This previous work on quantification of model uncertainty assigns a model probability to each model in the15

selection set, to encompass the degree of belief of each model relative to the other models. Our approach differs in16

that we assign a probability distribution to the output of each individual model, on the basis of the model discrepancy17

associated with that particular model. Our approach also differs in that we fuse information from various modeling18

sources with the tools of Bayesian inference, where it is implied that each model yields some quantity of information19

that, regardless of fidelity level, leads to better estimates in terms of diminished variance. This is not the case for20

the methods of Bayesian model averaging and the adjustment factors approach, where it is common for the estimate21

arrived at through fusing information from several models to have a larger variance than the estimates from the22

individual models alone.23

Model discrepancy present in decision-making processes leads to risk in the form of variance in estimates of24

quantities of interest (e.g., quantities related to system performance, cost or schedule). Our goal is to mitigate this risk25

by providing a systematic means of managing and fusing information from different available modeling options. There26

is a wide body of work related to quantification of risk in probabilistic terms, particularly in the nuclear engineering27

community, where considerable efforts are put into the probabilistic risk assessment of complex nuclear facilities28

that began with the work of Ref. [17]. Probabilistic risk assessment generally defines risk on the basis of severity29

of a failure event and how likely that event is to occur. Our view of risk, particularly in the context of conceptual30

Volume X, Number X, 2013



4 Allaire & Willcox

design where we may be more concerned about performance estimates than the occurrence of rare failure events,1

is more inline with the views of the financial engineering community, where risk has been viewed as being directly2

proportional to the variance of a quantity of interest outcome, such as in mean-variance optimization of modern3

portfolio theory [18]. Quantifying and subsequently mitigating this type of risk is critical in conceptual design, where4

the goal is to minimize risk in the selection of a particular system architecture or architectures with which to proceed5

to the preliminary design phase.6

Our approach begins with defining a design or analysis case of interest, followed by the analysis of that case by7

a model whose model discrepancy has been quantified. This then allows us to assess risk in terms of the variance of8

an output quantity of interest. We employ methods of Bayesian inference and global sensitivity analysis to reduce9

this variance by systematically incorporating higher fidelity models in the design process. We set up this problem in10

Section 2. Our approach and background material on each component of it is developed in Section 3. A discussion of11

the application of our methodology to multidisciplinary design optimization and the results of applying our approach12

to a wing-sizing problem for an aerospace vehicle are presented in Section 4. Conclusions and future work are13

discussed in Section 5.14

2. PROBLEM SETUP15

Throughout this work, for clarity of the exposition, we will consider a system consisting of two subsystems. However,16

the methods developed here can be extended to any number of subsystems. We denote the two subsystems as A and17

B. For each subsystem, we have a set of modeling options available, which we denote as A and B for subsystems18

A and B respectively. Each modeling choice for each subsystem is responsible for estimating a vector of quantities19

denoted as qA ∈ RoA , where oA is the number of outputs of subsystem A, and qB ∈ RoB , where oB is the number of20

outputs of subsystem B. The ith modeling choice employed for each subsystem during a design or analysis process21

is written as Ai and Bi, where i ∈ {1, 2, . . . ,K} and K ≥ 1. For modeling choice Ai for subsystem A, we estimate22

qAi as QAi(dAi) = gAi(dAi) + ϵAi(dAi), where dAi are the inputs to modeling choice Ai, dAi ∈ RkAi , where23

kAi is the number of inputs to subsystem model Ai, ϵAi(dAi) is a stochastic process representing the discrepancy24

in source Ai, and gAi : RkAi → RoA . Similarly for modeling choice Bi for subsystem B we estimate qBi as25

QBi(dBi) = gBi(dBi) + ϵBi(dBi), where dBi are the inputs to modeling choice Bi, kBi is the number of inputs to26

subsystem model Bi, dBi ∈ RkBi , ϵBi(dBi) is a stochastic process representing the discrepancy in source Bi, and27

gBi : RkBi → RoB .28

We define the vector of outputs from the modeling choices of the two subsystems as zi, where zi = (qAi
,qBi

)T .29
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A system level scalar quantity of interest c, is then estimated as C = fMi(Zi) + ϵMi(Zi), where Mi = {Ai,Bi} ⊂1

A × B is the system level modeling choice at the ith iteration comprising a selection of a modeling option for each2

subsystem, ϵMi(Zi) is a stochastic process representing the discrepancy in fMi(Zi), fMi(Zi) : RkAi
kBi → R,3

and Zi = (QAi ,QBi)
T . In this work we do not consider other options for estimating c from z and focus instead4

on the choices to be made at the subsystem level. The result of exercising a modeling choice, Mi, is a conditional5

distribution p(c|dMi ,Mi), where dMi = (dAi ,dBi)
T .6

In general we may have many different subsystems or disciplines in a system of interest, each of which may7

have available many different modeling options. The goal of our multifidelity approach is to find a search algorithm,8

or policy, that optimally chooses when to use a particular modeling option, given some objective function. If we9

denote the modeling option employed at time t (here time indexes each time a model choice is made, e.g., the first10

modeling choice occurs at t = 1, the second at t = 2, etc.) as Mt, then at time t we have a history set Ht =11

{(M1,dM1), . . . , (Mt,dMt)}. A search algorithm can then be defined as a policy, π(Mt+1|Ht), that maps a given12

history set to the next modeling option to be employed.13

The particular objective we consider here focuses on maximizing the expected variance reduction in a given14

quantity of interest at each successive modeling choice stage. Assuming we are at time t, our current quantity of15

interest variance is given as var(C|dMt ,Mt), where C|dMt ,Mt ∼ p(c|dMt ,Mt). Under a particular policy16

π(Mt+1|Ht), the expected variance of our quantity of interest at time t+ 1 is given as E[var(C|dMt+1 ,Mt+1). We17

consider an expectation of the variance here because we may not know in advance the discrepancy associated with18

modeling choice Mt+1 and we may also not know the values of dMt+1 at which the models will be evaluated. The19

expected variance reduction, R, is then given as20

R(π(Mt+1|Ht)) = var(C|dMt ,Mt)− E[var(C|dMt+1 ,Mt+1)]. (1)

Thus, we wish to find a policy π∗(Mt+1|Ht) where21

π∗(Mt+1|Ht) = argmax
π∈Π

R(π(Mt+1|Ht)), (2)

where Π is the set of admissible policies. Here we assume that the policy is initialized by a prescribed first modeling22

choice, M1.23
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3. APPROACH1

To manage multifidelity models by finding an optimal policy according to (2), we must have a means for estimating2

the discrepancy associated with a modeling option. Once we have estimated the discrepancy we must estimate the3

expected variance reduction under a particular policy, as given by (1). For this, we need to be able to apportion the4

variance of a given to quantity among its contributing factors. In the following subsections we discuss our discrep-5

ancy quantification procedure, as well as how we approach variance apportionment. Following that we present our6

optimal policy for selecting the next modeling option. We conclude this section with some considerations of model7

fusion opportunities and a step-by-step procedure for model management and information synthesis in multifidelity8

engineering tasks.9

3.1 Quantification of Model Discrepancy10

Mathematical models of reality implemented in computer codes contain many different sources of uncertainty. Among11

these are parameter uncertainty, residual variability, parametric variability, observation error, code uncertainty, and12

model discrepancy [8]. Following Ref. [8], parameter uncertainty relates to uncertainty associated with the values of13

model inputs; residual variability relates to the variation of a particular process outcome even when the conditions of14

that process are fully specified, parametric variability results when certain inputs require more detail than is desired15

(or possible) and are thus left unspecified in the model; observation error involves the use of actual observations in16

a model calibration process; code uncertainty results when a code is so complex or computationally involved that it17

may not be possible to execute the code at every possible input configuration of interest, thus there is some additional18

uncertainty related to regions of the input space that have not been interrogated; and model discrepancy relates to the19

fact that no model is perfect, and thus some aspects of reality may have been omitted, improperly modeled, or contain20

unrealistic assumptions.21

The work presented here focuses entirely on model discrepancy and how it relates to model fidelity. We propose22

an association between high model discrepancy, quantified in terms of model output variance, with low model fidelity.23

Thus, as model discrepancy is reduced, model fidelity increases. While there are many different ways of viewing24

what is meant by model fidelity, the connection with model discrepancy we propose here provides us with a readily25

quantifiable notion of fidelity that permits us to incorporate probabilistic methods of Bayesian inference and global26

sensitivity analysis for information synthesis and fidelity management.27

To establish a probabilistic representation of model discrepancy requires a means of producing probability distri-28

butions from uncertainty information. This is because characterizations of uncertainty with probability distributions29
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are rarely constructed from complete uncertainty information. Instead, these characterizations are inferred in some1

way from available information. In some cases, a great deal of information regarding the outcome of a particular ex-2

periment (e.g., rolling a fair die or tossing a fair coin) may be had, and thus probability distributions may be assigned3

with confidence. In most cases, however, such complete uncertainty information is not available (e.g., any form of4

epistemic uncertainty, where epistemic uncertainty is uncertainty that derives from imperfect knowledge rather than5

any intrinsic variability). However, it may still be desirable, or even critical, that particular quantities, such as the like-6

lihood of some event’s occurrence, be estimated. According to Ref. [19], information entropy provides a constructive7

criterion for assigning probability distributions on the basis of incomplete uncertainty information, and distributions8

assigned by maximizing information entropy are maximally noncommittal with regard to missing information. Thus,9

in this work we assign to epistemic uncertainties probability distributions that maximize information entropy.10

We create maximum entropy distributions for the model discrepancy of some model Mi that is used to estimate11

some real-world quantity z∗ as follows. Let the estimate of z∗ from the model be zi. First, following Ref. [20], we12

note that qualitatively, |z∗ − zi| should not be too large, otherwise we would not consider using model Mi. Given13

this information, we assign a normalized prior density to estimate the real-world quantity z∗ in the form14

p(z∗) =

√
ωZi

2π
exp

[
−ωZi

2
(z∗ − zi)

2
]
, (3)

where ωZi is a weight parameter for model choice Mi. Qualitatively, (3) states that we believe it is unlikely that15

|z∗−zi| is much greater than 1/
√
ωZi [20]. Quantitatively, (3) states that we believeP(|Z−zi| < 1/

√
ωZi) > 0.68,16

P(|Z − zi| < 2/
√
ωZi) > 0.95, and P(|Z − zi| < 3/

√
ωZi) > 0.99, where Z is a random variable with density17

p(z∗). The assignment of this probability density requires the specification of the weight parameter ωZi . This can18

be done by providing to an expert the model estimate, zi, as well as the conditions under which the model was run to19

arrive at the estimate. The expert can then provide information relating to the uncertainty associated with the estimate.20

This information can be in the form of a percentage of zi, denoted γ, or an absolute quantity, denoted δ, giving the21

range of the true z∗ (according to the expert) as either zi ± γzi or zi ± δ. Based on this expert input, a value can then22

be assigned to ωZi , and the maximum entropy distribution for z∗ given this information is given by Equation 3. For a23

conservative estimate, the weight parameter can be set as 1/
√
ωZi = δ or 1/

√
ωZi = γzi. For an aggressive estimate24

of the uncertainty, the weight parameter can be set according to 1/
√
ωZi = δ/3 or 1/

√
ωZi = γzi/3. We assume25

in this work that our experts provide reasonable estimates for the range of the true quantities being elicited. Forming26

consensus distributions from information elicited from several experts could be employed to relax this assumption as27
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discussed in Ref. [21], where a method for determining both the probabilistic and technical abilities of the experts is1

also developed. The technical abilities of the expert are assessed by comparing their opinions to relevant historical2

data or experiments. This information can be used to calibrate the experts as part of a weight determination process3

in forming a consensus distribution from a weighted average of individual expert elicited distributions. Experts that4

are trusted more on the basis of their probabilistic and technical abilities are assigned larger weights.5

As shown in Equation 3, we are considering only normal distributions in the suggested elicitation process. From6

an information theory perspective, this is the most reasonable distribution given the information we are eliciting. If7

more information were gathered, such as support bounds for model outputs or known bias, then this information could8

be included in the construction of the model discrepancy distributions. However, more formal elicitation processes9

are beyond the scope of this work.10

3.2 Variance Apportionment11

The goal of this work is to determine how to systematically manage levels of model fidelity according to (2). To12

achieve this goal we utilize a method of variance apportionment known as global sensitivity analysis. Global sen-13

sitivity analysis is a rigorous means for apportioning model output variance among model factors. The objective of14

the method is shown in Figure 1, where the pie represents the variance in a model output, which is then decom-15

posed according to factor contributions. To achieve this decomposition, following Ref. [22], we consider a function

FIG. 1: Apportioning Output Variance

16

f(z) = f(z1, z2, . . . , zm) ∈ R defined on the unit hypercube Im = {(z1, z2, . . . , zm) : 0 ≤ zi ≤ 1, i = 1, 2, . . . ,m},17

where f(z) belongs to a vector space Z . Let (Im,B(Im),µ) be a measure space, where B(Im) denotes the Borel18

σ-field on Im and µ is a measure on B(Im), and let Z consist of all integrable functions with respect to µ. Fur-19

ther, let µ be a product measure, dµ(z) = dµ(z1, . . . , zm) =
∏m

i=1 dµi(zi), with unit mass and a density defined as20

p(z) = dµ(z)/dz =
∏m

i=1 pi(zi), where pi(zi) is the marginal density of zi. The inner product ⟨·, ·⟩ : Z × Z → R21

induced by µ is given as22

⟨f, g⟩ =
∫
Im

f(z)g(z)dµ(z), (4)
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where f(z), g(z) ∈ Z .23

We may decompose Z into subspaces defined as1

V0 := {f ∈ Z : f = C, where C ∈ R is a constant},

Vi := {f ∈ Z : f = fi(zi) is a univariate function and
∫
I1

fi(zi)dµi(zi) = 0},

Vij := {f ∈ Z : f = fij(zi, zj) is a bivariate function and
∫
I1

fij(zi, zj)dµk(zk) = 0, k = i, j},

...

Vi1,...,is := {f ∈ Z : f = fi1,...,is(zi1 , . . . , zis) is an s-variate function and∫
I1

fi1,...,is(zi1 , . . . , zis)dµk(zk) = 0, k = i1, . . . , is},

...

V12...m := {f ∈ Z : f = f12...m(z1, z2, . . . , zm) is an m-variate function and∫
I1

f12...m(z1, z2, . . . , zm)dµk(zk) = 0, k = 1, 2, . . . ,m}. (5)

Any two functions, fi1,...,is(zi1 , . . . , zis), fj1,...,jp(zj1 , . . . , zjp), with at least one index differing are orthogonal2

⟨
fi1,...,is , fj1,...,jp

⟩
= 0. (6)

As shown by Ref. [22], we may write Z as the direct sum of the subspaces defined above,3

Z = V0 ⊕
∑
i

Vi ⊕
∑
i<j

Vij ⊕ · · · ⊕
∑

i1<i2<···<is

Vi1i2...is ⊕ · · · ⊕ V12...m, (7)

which is often written more compactly as [23]4

Z =
⊕
u⊆I

Vu, (8)

where I := {1, 2, . . . ,m} denotes the set of coordinate indices and V∅ = V0. As a result, we may write f(z) ∈ Z as5

f(z) = f0 +
∑
i

fi(zi) +
∑
i<j

fij(zi, zj) + · · ·+ f12...m(z1, z2, . . . , zm) =
∑
u⊆I

fu(zu), (9)

where f∅(z∅) = f0. The representation of f(z) given in Equation 9 is referred to as the high dimensional model6

representation (HDMR) and is unique up to the choice of the measure µ.7
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For global sensitivity analysis, we specify the measure µ as the ordinary Lebesgue measure and let Z be de-8

fined as the space of square-integrable functions on Im, Z := L2(I
m,B(Im),µ). If zi are assumed to be uniform1

random variables Zi, then we may square and integrate Equation 9 and write the overall variance of f(Z) (where2

Z = [Z1, Z2, . . . , Zm]T ) as3

var(f(Z)) =
∑
i

Vi +
∑
i<j

Vij + · · ·+ V12...m = V, (10)

where individual variances are given by4

Vi1,...,is := var(fi1,...,is(Zi1 , . . . , Zis)) =

∫
Is

(fi1,...,is(Zi1 , . . . , Zis))
2dzi1 . . . dzis . (11)

The variance decomposition given by Equation 10 is precisely the qualitative notion depicted in Figure 1. Main effect5

global sensitivity indices are then defined as6

Si1,...,is :=
Vi1,...,is

V
. (12)

Calculation of these indices may be carried out in many ways, such as a Monte Carlo simulation approach known as7

the Sobol’ method as shown in Ref. [24], a Fourier analysis based approach as shown in Ref. [25], a polynomial chaos8

expansion based approach as shown in Ref. [26], and a sparse grid based approach as shown in Ref. [27].9

3.3 A Model Management Policy10

To construct an optimal policy according to (2), we first must consider what modeling options might be available at11

any given time during a design or analysis task. Consider a system comprised of two subsystems, A and B as before.12

For each subsystem we have a “low-fidelity” modeling option ALO and BLO respectively, and the potential to obtain13

or construct a higher fidelity modeling option AHI and BHI respectively. In this work we do not explicitly include the14

cost of obtaining or constructing a modeling option, or the cost of using that option. Instead, we assume that fidelity15

level can only be incremented one level at a time for one subsystem at a time. The explicit inclusion of cost in the16

problem setup is a topic of future work. The progression from low-fidelity models to higher fidelity models one step17

at a time is a typical practice and our aim here is to identify how to optimally perform that progression.18

Assume that we have run the low-fidelity modeling option M1 = {ALO, BLO}, and that subsystem A again19

estimates the vector of quantities a and subsystem B estimates the vector of quantities b. Our quantity of interest1

is c and is a function of a and b. Our task is to determine which higher fidelity modeling option, AHI or BHI we2
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should incorporate next. According to (2), the optimal selection will be the subsystem for which we obtain the3

largest expected variance reduction in the quantity of interest when the fidelity of that subsystem is incremented. For4

subsystem A, the expected variance reduction is given as5

R(M2 = {AHI, BLO}) = var(C|dM1)− E[var(C|dM2)], (13)

and the current amount of variance of C that subsystem A is contributing is given as6

Savar(C|dM1) =
∑

a⊆DA1

Savar(C|dM1). (14)

We know qualitatively that AHI is of higher fidelity than ALO, and thus, we believe we will have a better estimate of the7

quantities a. Therefore, we will achieve between 0 and Savar(C|dM1) reduction of variance by incorporating choice8

AHI next. We capture this by introducing a parameter αa, where 0 ≤ αa ≤ 1, and writing the expected variance9

reduction as10

R(M2 = {AHI, BLO}) = αaSavar(C|dM1). (15)

Similarly, we may write the expected variance reduction when BHI is incorporated next as11

R(M2 = {ALO, BHI}) = αbSbvar(C|dM1), (16)

where 0 ≤ αb ≤ 1. If αaSa > αbSb, then the expected variance reduction that would result from incorporating AHI
12

is larger than that expected from incorporating BHI. If we have information about the higher fidelity modeling options,13

we can incorporate it by assigning distributions to the αa and αb terms. Assuming in this work that we have no further14

information about the higher fidelity options, we assume that αa = αb. Then at any stage in a multifidelity design or15

analysis task, according to (2) and the restriction to incrementing one fidelity level at a time for one subsystem at a16

time, the optimal policy is to increment the fidelity of the subsystem with the largest sensitivity index.17

3.4 Information Fusion18

In complex system analysis and design processes it is typical to discard information gained from lower fidelity models19

once information from higher fidelity models has been obtained. In the example of the previous subsection, once we1
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run say {AHI, BLO} the results from {ALO, BLO} may be discarded. Here we take a different approach and consider2

fusing the information gained from every source. In the language of estimation theory, we view the outputs (with3

associated model discrepancy) calculated from each modeling choice as measurements that can be used to estimate4

the true output. That is, for each model Mi, we have a measurement Zi|dMi . Here we work with a single quantity5

and note that the process developed here can be applied to all outputs of the models. We denote the true (unknown)6

output as z∗. In order to obtain the best possible estimate of z∗, we wish to use not just the last, but all of the possible7

measurements, Z1|dMt , Z2|dMt , . . . , Zt|dMt , where here we assume the input spaces for each modeling option are8

the same to ensure we are fusing information for the same input configuration. How to deal with the situation where9

the input spaces for the modeling choices differ is a topic of future work.10

The information fusion takes place via a Bayesian updating process. Following Ref. [28], we treat the distribution11

associated with the model outputs as a likelihood function and assume a diffuse uniform prior. Thus, our posterior12

density of z∗ given the t model measurements is13

p(z∗|{Z1|dMt , Z2|dMt , . . . , Zt|dMt}) ∝ L(z∗ − z1|dMt , z
∗ − z2|dMt , . . . , z

∗ − zt|dMt), (17)

where L(·, ·, . . . , ·) is the likelihood function. Since our model discrepancy procedure developed in Section 3.1 results14

in normal distributions for each measurement, we may analytically update mean and variance information for z∗ as15

new models are exercised. If our model discrepancy were quantified in a manner that resulted in arbitrary distributions,16

then the posterior density would still be given by Equation 17, however, this could result in the need for expensive17

sampling based procedures such as Markov chain Monte Carlo to obtain samples of the posterior. The specification18

of an arbitrary joint distribution among dependent model discrepancies terms for several models would also be a19

challenging task. Thus, here we assume our model discrepancy terms are always normally distributed. In the following20

two paragraphs we demonstrate how this assumption allows us to update mean and variance information for two cases.21

First, we consider the case of known correlation between models, and second, we consider the case of unknown22

correlation between models.23

Correlations in models of different fidelity levels are expected to exist owing to the fact that the same physics24

may be used to model certain phenomena in different models and similar data sets may have been used to calibrate25

any empirical aspects of the models. The correlation manifests itself in the discrepancy of each model output when26

compared to reality. Given that similar physics and information are employed in some models, it is likely that the1

errors these models make in estimating reality be correlated. If we assume the correlations are known from historical2
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data, then following Ref. [28], we may write the posterior for z∗ as3

p(z∗|{Z1|dMt
, Z2|dMt

, . . . , Zt|dMt
}) = 1√

2π var(Z∗)
exp

(
− (z∗ − E[Z∗])2

2 var(Z∗)

)
, (18)

where4

E[Z∗] =
eTΣ−1z1:t
eTΣ−1e

(19)

var(Z∗) =
1

eTΣ−1e
, (20)

e = (1, . . . , 1)T , z1:t = [z1|dMt , z2|dMt , . . . , zt|dMt ]
T and Σ is the covariance matrix. Letting σ2

i = var(Zi|dMt)5

and ρij be the correlation between modeling options i and j, the covariance matrix is written as6

Σ =



σ2
1 ρ12σ1σ2 · · · ρ1tσ1σt

ρ21σ2σ1 σ2
2 · · · ρ2tσ2σt

...
...

. . .
...

ρt1σtσ1 ρt2σtσ2 · · · σ2
t



To demonstrate this approach, assume we have outputs from two models that we wish to fuse, Z1|dM2 and7

Z2|dM2 . Then the fused estimate, Z∗, is a normally distributed random variable with mean8

E[Z∗] =
(σ2

2 − ρ12σ1σ2)z1|dM2 + (σ2
1 − ρ12σ1σ2)z2|dM2

σ2
1 + σ2

2 − 2ρ12σ1σ2
, (21)

and variance9

var(Z∗) =
(1− ρ212)σ

2
1σ

2
2

σ2
1 + σ2

2 − 2ρ12σ1σ2
. (22)

Fused estimates Z∗ are shown in Figure 2 for several different correlation cases. The figure reveals how the Bayesian10

update combines information and also demonstrates that accounting for correlations is critical. The top three plots11

in the figure demonstrate how information from similar models is fused. On the far left, the models are assumed to12

be uncorrelated and the updated estimate has smaller variance and an averaged mean from the two sources. As we13

move to the right, the correlation between the information sources increases, which increases the variance of the fused14

estimate (as can be seen by the diminished height of the probability density function) and pushes the fused estimate1

in the direction of the information source with the lower model discrepancy. This can be seen clearly on the rightmost2

Volume X, Number X, 2013



14 Allaire & Willcox

FIG. 2: Examples of the resultant fused probability densities given two initial densities to be fused. The top three
plots fuse information from similar models while the bottom three plots fuse information from a high fidelity and low
fidelity model. The correlation between models is increasing from left to right in the figure.

plot, where the fused estimate is actually to the left of either of the two previous estimates. This can be explained3

by considering that highly correlated estimates are more likely to both be on the same side of the true quantity (e.g.,4

either both to the left or both to the right), and therefore the updating procedure pushes the new estimate towards the5

information source in which we have most confidence, since that estimate is more likely to be closer to the true value6

of the quantity being estimated. The bottom three plots in the Figure 2 demonstrate how the higher fidelity model is7

trusted more when one of the models is considerably more inadequate. On the far left, the models are again assumed8

to be uncorrelated and the updated estimate is very nearly the same as the estimate from the higher fidelity information9

source, though again, the variance of the combined estimate is less than either of the two previous estimates. As we10

move to the right, the correlation between the sources of information increases, which again increases the variance of11

the fused estimate and pushes the fused estimate in the direction of the higher fidelity model estimate. However, for12

this case, as we move to the far right plot and high correlation, instead of increasing, the variance of the fused estimate13

actually decreases, as can be seen by the increased height of the probability density function of the fused estimate14

as compared with the middle plot. This can be explained by considering that in this plot we have assumed a high1

correlation between a high fidelity model and a very low fidelity model, which suggests that the adequacy of our low2
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fidelity model has been understated (since it is so highly correlated with a model in which we have great confidence),3

and thus the low fidelity model is providing us with more information than its level of fidelity implies.4

While it is likely that models are correlated, we may not know the covariance matrix Σ. For this situation,5

following Ref. [28], we recommend assuming an inverse Wishart density as a prior for Σ,6

p(Σ) ∝ |Σ−1|(δ+2t)/2 exp(−δtr[Σ−1Σ0]/2), (23)

where Σ0 is a symmetric positive definite matrix constructed by using data from δ sources (e.g., experts) that con-7

tains initial estimates of the entries of the true covariance matrix. Assuming an inverse Wishart distribution for the8

covariance results in a posterior density for z∗ of9

p(z∗|{Z1|dMt , Z2|dMt , . . . , Zt|dMt}) ∝
(
1 + (z∗ − E[Z∗])2

(δ+ t− 3)var(Z∗)

)−(δ+t)/2

, (24)

where10

E[Z∗] =
eTΣ−1

0 z1:t

eTΣ−1
0 e

(25)

var(Z∗) =
δ+ (E[Z∗]− z1:t)

TΣ−1
0 z1:t

(δ+ t− 3)eΣ−1
0 e

. (26)

Under these assumptions, the posterior distribution of z∗ is a Student’s t-distribution with δ+t−1 degrees of freedom.11

3.5 Algorithm12

We now establish an algorithm for fidelity management and information synthesis that incorporates the tools of global13

sensitivity analysis and model fusion. First, we select a modeling choice and design or analysis case to analyze. Next14

we quantify the uncertainty in system outputs caused by model discrepancy of the component models employed in15

the design or analysis process. Once this uncertainty is quantified, we fuse information from previously exercised16

modeling options. We then use the fused estimates of the component outputs to estimate the quantity of interest and17

the variance of the quantity of interest. Finally, we use global sensitivity analysis to identify key sources of variability18

in our quantity of interest, which provides the basis for allocating resources to increase the fidelity levels of the most19

significant contributors to that variability. The full procedure is given below in Algorithm 1, where we also assume1

we have a quantity of interest variance constraint, which is used to stop the procedure when enough confidence is2
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achieved.

Algorithm 1: Following the selection of the tth modeling choice, Mt

1: Set the input case to analyze dMt (this could include a system analysis or a system optimization).
2: Quantify model discrepancy for Mt.
3: Calculate zi|dMt for i = 1, . . . , t− 1.
4: Fuse output information from modeling choices M1, . . . ,Mt to obtain fused estimate Z∗.
5: Estimate quantity of interest statistics, E[C|Z∗] and var(C|Z∗).
6: Check variance constraint satisfaction: If var(C|Z∗) ≤ κ, STOP.
7: Apportion output variance according to component contributions using global sensitivity analysis.
8: Increase model fidelity of the subsystem with the largest sensitivity index.

3

The variance of a quantity of interest C, results from uncertainty in model outputs. In our methodology, this4

uncertainty is due to model discrepancy, which has been elicited from expert opinion. If untrustworthy information5

is used in quantifying model discrepancy, then it is possible that the algorithm presented here for multifidelity model6

management could lead to inappropriate model choices as a design or analysis process proceeds. This is due to the7

sensitivity of the calculation of the senstivities indices on input uncertainties. How sensitive the sensitivity analysis8

results are to incomplete or untrustworthy information in quantifying input uncertainties is problem specific. For9

example, for some systems, a discipline may employ a model with a small amount of discrepancy but have a large10

impact on a particular quantity of interest’s variance. In this case, small errors in the discrepancy quantification could11

lead to large errors in the senstivity index estimates. It may also be the case that for some systems, a discipline employs12

a model with a large amount of discrepancy but has a negligible impact on the variance of a quantity of interest. In13

this case, errors in the quantification of discrepancy will not have a large impact on the sensitivity index estimates.14

The main situation of concern is the case where two disciplines have similar sensitivity indices. Here one needs to be15

careful because errors in discrepancy estimates could lead to either of the disciplines having the true larger sensitivity16

index. In this case, incrementing the fidelity of both disciplines may be the most reasonable course of action. If only17

one discipline may be incremented at a time, then incrementing the more convenient discipline (in terms of model18

availability, execution time, etc.) is recommended.19

4. APPLICATION TO MULTIDISCIPLINARY DESIGN OPTIMIZATION20

Our approach is applicable in many settings. Here we show how it can be used to manage models and reduce risk21

for engineering design decisions. In particular, we focus on a multidisciplinary design optimization (MDO) problem22

for conceptual (early stage) design. To demonstrate our approach in the MDO context, a wing-sizing problem that23

could be encountered in the early conceptual design phase of a high altitude, long endurance (HALE) unmanned1
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aerial vehicle (UAV) is considered. Section 4.1 provides background on multifidelity MDO. The design problem is2

discussed in Section 4.2 and the results are presented in step-by-step fashion in Section 4.3. For purposes of this3

demonstration, we assume that the outputs of the disciplinary models are all pairwise independent.4

4.1 Multifidelity MDO5

MDO is a tool that has been used successfully throughout design processes to enable improvements in the perfor-6

mance of aerospace vehicles, ground vehicles, electrical circuits, computers, and many other products. For example,7

in the case of an aerospace vehicle, by simultaneously considering the effects of aerodynamics, structures, and con-8

trols, MDO can achieve substantially improved performance in metrics such as minimum weight, maximum range,9

minimum fuel use, etc. It is often the case that the many different disciplines represented in an MDO process will10

each have several different modeling options available for use. Each of these options is likely to have different levels11

of computational cost and model fidelity. Multifidelity optimization methods seek to combine performance estimates12

from the different modeling options, often striving to use inexpensive lower fidelity analyses to accelerate convergence13

towards the optimum of a high-fidelity design problem.14

In existing multifidelity optimization methods, it is common to treat the models as a hierarchy and replace or15

calibrate low-fidelity information with high-fidelity results [29–35]. For example, Refs. [29] and [30], employ a trust-16

region based model-management method by scaling or shifting the gradients of the low-fidelity objective function and17

constraints to match those of a high-fidelity model. In cases where gradients are not available, calibration techniques18

such as efficient global optimization [31] and surrogate management framework [32] are often employed.19

Here we follow our methodology for managing and fusing information from multifidelity models developed in20

Section 3. Our proposed approach to managing and fusing information leads to a new view of multifidelity MDO.21

In our approach, rather than treat the models as a hierarchy, we treat the models as individual information sources.22

By endowing each model with uncertainty in the form of model discrepancy, we are able to maintain confidence23

in estimates from each model and fuse these estimates rather discard information from lower fidelity models. To24

implement our methodology in the MDO context, Step 1 of Algorithm 1 becomes the solution of a deterministic25
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MDO problem,26

min
dMt

c|dMt ,Mt

s.t. h(dMt) = 0,

g(dMt) ≤ 0,

dMt ∈ DMt ,

(27)

where h and g are sets of equality and inequality design constraints respectively, and DMt is the set of allowable27

values of the design variables. The solution of this MDO problem provides us with a design d∗ that minimizes28

the objective function and satisfues the constraints for the current modeling choice Mt. This step can potentially29

be carried out with a number of different MDO techniques, such as all-at-once, individual discipline feasible [36],1

multiple discipline feasible [37], bilevel integrated system synthesis [38], concurrent subspace optimization [39],2

and analytical target cascading [40]. We leave the decision of how to solve the deterministic MDO problem to the3

practitioner.4

4.2 Wing-sizing problem description5

The objective of the conceptual design of the HALE vehicle is to minimize c, the mass of fuel used for a fixed range6

mission in cruise conditions. The design variables d, are the wing span b, and the aspect ratio AR, which impact both7

the aircraft takeoff mass and the lift-to-drag ratio. The component outputs z are the lift and drag coefficients (CL8

and CD respectively) and takeoff mass (mTO). The Breguet range equation calculates the quantity of interest, which9

here is the mass of fuel used for a fixed range mission. The inputs, outputs, and quantity of interest are summarized10

in Table 1. The calculation of the lift and drag coefficients and the takeoff mass involves modeling the aerodynamic

TABLE 1: Inputs, component outputs, and quantity of interest for the wing-sizing problem

Methodology quantity Wing-sizing problem quantity
d [ AR, b]T

zaero [CL, CD]T

zstructures [mTO]
c Mass of fuel used

11

and structural components of the design. For this problem we have two different models for each discipline, which12

represent two levels of fidelity for each. These models are referred to as the low- and medium-fidelity aerodynamics13

and the low- and medium-fidelity structures models.14

Both the low- and medium-fidelity aerodynamics models have the same inputs and are used to compute the lift and15
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drag coefficients of the vehicle; that is, zaero = [CL, CD]. The low-fidelity aerodynamics module assumes a constant16

value for the coefficient of lift of 0.6, which is representative of typical HALE wing profiles. The medium-fidelity17

model uses a more advanced technique to compute the coefficient of lift based on lifting line theory [41]. The drag18

coefficient is calculated in both models as the sum of wing friction, profile, and induced drag multiplied by a factor of19

1.3 to account for fuselage and empennage drag. These drag components are calculated using the methods found in1

Ref. [42].2

Both the low- and medium-fidelity structures models also have the same inputs and are used to compute the3

takeoff mass of the vehicle; that is zstructures = [mTO] The low-fidelity model assumes a rectangular wing, while the4

medium-fidelity model assumes an elliptical wing. For both models, the takeoff mass is the sum of the aircraft body5

mass without the wing (a fixed parameter), the wing mass, and the fuel mass at takeoff. The fuel volume is assumed6

to be 50% of the wing volume. The mass of the wing is calculated by sizing the cap and web of the wing’s structural7

box beam to sustain the shear force and bending moment of the wing, which are both functions of the load factor and8

the aircraft body weight and were calculated using the methods presented in Ref. [43].9

4.3 Results10

Algorithm 1 is applied to the wing-sizing problem defined in the previous subsection. The results are discussed here11

on a step-by-step basis through each iteration of the algorithm. As an example, the design goal is taken to be reducing12

the variance of the quantity of interest estimate to an acceptable level. Here we define an acceptable level to be 50,00013

kg2.14

15

Iteration 1; M1 = {low-fidelity aerodynamics, low-fidelity structures}16

17
18

Step 1. The first step in the algorithm in the context of MDO is solving the optimization problem using the lowest19

fidelity models for both the aerodynamics and structures disciplines. In this work we used an all-at-once formulation20

solved using sequential quadratic programming. Solving this optimization problem provides us with the design case21

(inputs) we wish to analyze. Thus, we minimize the mass of fuel used subject to the low-fidelity aerodynamics and22

structures models, which we denote by M1, over the possible values of the aspect ratio and span of the wing. The23

results of this optimization are given in Table 2.24

25

Step 2. The next step is to quantify model discrepancy for M1 so that we may assess the variance in the quantity of26
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TABLE 2: Results of Step 1 of the algorithm for the low-fidelity aerodynamics and low-fidelity structures models.

Variable Deterministic Estimate
AR 26.98
b 34.99 m

CL 0.600
CD 0.0166

mTO 8,884 kg
Mass of fuel used 3,544 kg

interest estimate. Our expert stated the low-fidelity aerodynamics and low-fidelity structures models could produce27

estimates of their respective disciplinary outputs within ±15% of their true values given the design variables. Here it28

should be noted that multiple outputs from the same discipline (e.g. CL and CD from the aerodynamics model) are29

not required to have the same model discrepancy. The method of mapping this model discrepancy information to a30

probability distribution discussed in Section 3.1 is used to establish conservative maximum entropy distributions for1

each disciplinary output as2

CL ∼ N (0.6, 0.0081), (28)

CD ∼ N (0.0166, 6.22× 10−6), (29)

mTO ∼ N (8884, 1.78× 106), (30)

which are shown graphically in Figure 3.3

4

Step 3 and Step 4. These steps of the process are only necessary if more than one model has been used for a given5

discipline. Since this is the first pass through the algorithm, only one model has been used for both aerodynamics and6

structures, and thus these steps are unnecessary at this point.7

8

Step 5 and Step 6. For this demonstration, Monte Carlo simulation is used to propagate disciplinary output un-9

certainty to the quantity of interest estimate, though other techniques, such as using generalized polynomial chaos10

expansions [44] and quasi-Monte Carlo [45] could also have been used. The Monte Carlo simulation is used to pro-11

vide samples of the quantity of interest given samples of the discrepancy terms, which are added to the disciplinary12

outputs of the modeling choice employed. Thus, only one run of each modeling choice is required. The calculation of13

the quantity of interest for this demonstration requires a negligible amount of time to complete once the disciplinary14

models have been executed, and thus many thousands of samples could be had cheaply. We assumed convergence15
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FIG. 3: Maximum entropy distributions of disciplinary outputs derived from model discrepancy information for M1

and M2. The aerodynamics estimates from M1 and M2 have been fused with the procedure developed in Section 3.4.
The M1 and M2 structures estimates are identical and are thus not fused.

when the variance of the quantity of interest and the global sensitivity indices varied less than one percent when 100016

new samples are added. Given this method, the mean of the mass of fuel used when estimated with the low-fidelity17

aerodynamics and low-fidelity structures models is 3,540 kg. The variance of the mass of fuel used is 325,280 kg2.18

The variance calculated using the low-fidelity models for both aerodynamics and structures disciplines is greater than19

the variance constraint of 50,000 kg2. Thus, we continue the algorithm.1

2

Step 7 and Step 8. Since the variance constraint is not satisfied, it is necessary to apportion the variance between3

the aerodynamics and structures disciplines to determine which discipline is responsible for most of the variation in4

the quantity of interest. This is accomplished using global sensitivity analysis discussed in Section 3.2. The analysis5

reveals that about 66% of the variance is caused by the aerodynamics model, with the remaining 34% being caused6

by the structures model. This is shown in Figure 4.7

Given the results of the variance apportionment, the aerodynamics model is responsible for more of the variance8

of the quantity of interest and thus the fidelity of the model for the aerodynamics discipline should be increased.9

10

Iteration 2; M2 = {medium-fidelity aerodynamics, low-fidelity structures}11

12
13

Step 1. With the medium-fidelity aerodynamics and low-fidelity structures models in place (denoted by M2), the14
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Aerodynamics
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FIG. 4: Quantity of interest variance apportionment between the aerodynamics and structures disciplines for the
low-fidelity aerodynamics and low-fidelity structures models.

optimization problem is solved again. The results of this optimization are given in Table 3.15

TABLE 3: Results of Step 1 of the algorithm for the medium-fidelity aerodynamics and low-fidelity structures models.

Variable Deterministic Estimate
AR 20.90
b 29.18 m

CL 0.502
CD 0.0163

mTO 8,484 kg
Mass of fuel used 3,490 kg

16

Step 2. After the optimization problem is solved, the next step is to quantify model discrepancy for M2 so that17

we may assess the variance in the quantity of interest estimate. Our expert stated the medium-fidelity aerodynamics18

model could produce estimates of CL and CD within ±10% and ±5% respectively of their true values given the1

design variables. The method of mapping this model discrepancy information to a probability distribution discussed2

in Section 3.1 is again used to establish conservative maximum entropy distributions for CL, CD and mTO as3

CL ∼ N (0.502, 0.0025), (31)

CD ∼ N (0.0163, 6.61× 10−7), (32)

mTO ∼ N (8484, 1.62× 106). (33)

Note, the takeoff mass distribution has changed as a result of different optimum design variables. These distributions4

are shown graphically in Figure 3.5

6
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Step 3. The third step of the algorithm involves calculating the disciplinary outputs for previously used models using7

the current optimum values of the design variables. Thus, the lift and drag coefficients must be computed using the8

low-fidelity aerodynamics model with the design variables set to the values given in Table 3. This results in a lift9

coefficient of 0.6 and a drag coefficient of 0.0185.10

1

Step 4. Given there are now two estimates of both the lift and drag coefficients (a low and medium-fidelity estimate2

for each), the next step is to fuse this information together using the procedure developed in Section 3.4 to obtain a3

better estimate of these disciplinary outputs. For this demonstration, we assume that all models are uncorrelated. This4

results in the following new estimates of the distributions of CL and CD:5

CL ∼ N (0.525, 0.0019), (34)

CD ∼ N (0.0165, 6.09× 10−7). (35)

These fused distributions are shown in Figure 3.6

7

Step 5 and Step 6. Using Monte Carlo simulation the mean of the mass of fuel used when estimated with the fused8

aerodynamics and low-fidelity structures models is 3,456 kg. The variance of the mass of fuel used is 138,370 kg2.9

The variance calculated using the fused aerodynamics models and the low-fidelity structures model is greater than the10

variance constraint of 50,000 kg2. Thus, we continue the algorithm.11

12

Step 7 and Step 8. Since the variance constraint is not satisfied, it is once again necessary to apportion the variance13

between the aerodynamics and structures disciplines to determine which discipline is responsible for most of the14

variation in the quantity of interest estimate. The analysis revealed that about 25% of the remaining variance is caused15

by the aerodynamics discipline, while 75% is caused by the structures discipline. This is shown in Figure 5.16

Given the results of the variance apportionment, the structures model is now responsible for more of the variance17

of the quantity of interest estimate and thus the fidelity of the structures model should be increased.18

19

Iteration 3; M3 = {medium-fidelity aerodynamics, medium-fidelity structures}20

21
22

Step 1. With the medium-fidelity aerodynamics and medium-fidelity structures models in place (denoted by M3), the23
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Aerodynamics
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FIG. 5: Quantity of interest estimate variance apportionment between the aerodynamics and structures disciplines for
the fused aerodynamics and low-fidelity structures models.

optimization problem is solved again. The results of this optimization are given in Table 4.

TABLE 4: Results of Step 1 of the algorithm for the medium-fidelity aerodynamics and medium-fidelity structures
models.

Variable Deterministic Estimate
AR 19.34
b 27.99 m

CL 0.497
CD 0.0166

mTO 8,464 kg
Mass of fuel used 3,539 kg

24

25

Step 2. With the optimization problem solved, the next step is to quantify model discrepancy for M3 so that we may26

once again assess the variance in the quantity of interest estimate. Our expert stated the medium-fidelity structures27

model could produce an estimate of takeoff mass within ±5% of its true values given the design variables. The method1

of mapping this model discrepancy information to a probability distribution discussed in Section 3.1 is again used to2

establish conservative maximum entropy distributions for CL, CD and mTO as3

CL ∼ N (0.497, 0.0025), (36)

CD ∼ N (0.0166, 6.87× 10−7), (37)

mTO ∼ N (8464, 1.79× 105). (38)

Note, the lift and drag coefficient distributions have changed as a result of different optimum design variables. These4
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distributions are shown graphically in Figure 6.5

6

Step 3. In order to fuse the low and medium disciplinary output estimates from both the aerodynamics and structures7

disciplines, the disciplinary outputs for the low-fidelity models must be computed using the current optimum values8

of the design variables. The low-fidelity disciplinary outputs of the aerodynamics model using the current optimum1

design variables are CL = 0.6 and CD = 0.0191. The low-fidelity disciplinary output of the structures model using2

the current optimum design variables is mTO = 8,287 kg.3

FIG. 6: Maximum entropy distributions of disciplinary outputs derived from model discrepancy information for M1

and M3. The estimates from M1 and M3 have been fused with the procedure developed in Section 3.4.

4

Step 4. Given there are now two estimates of all of the disciplinary outputs, the next step is to fuse this information5

together using the approach discussed in Section 3.4 to obtain better estimates. This results in the following new6

estimates of the distributions of CL, CD, and mTO:7

CL ∼ N (0.521, 0.0019), (39)

CD ∼ N (0.0168, 6.34× 10−7), (40)

mTO ∼ N (8446, 1.61× 105). (41)

These distributions are shown in Figure 6, along with the previous estimates of the respective distributions.8
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9

Step 5 and Step 6. Using Monte Carlo simulation the mean of the mass of fuel used when estimated with the fused10

aerodynamics and structures models is 3,517 kg. The variance of the mass of fuel used is 39,014 kg2. This variance11

is less than the variance constraint of 50,000 kg2. Thus, we exit the algorithm.12

The MDO problem we have considered here could be encountered in the early conceptual phases of a high altitude,1

long endurance aerospace vehicle. Application of the approach to this design problem results in risk mitigation in the2

form of an 88% reduction in the initial variance of the quantity of interest estimate. This is achieved via a systematic3

means of fusing information from various models and managing model fidelity throughout the design process through4

the application of the powerful tools of Bayesian inference and global sensitivity analysis.5

5. CONCLUSIONS6

Model discrepancy poses a serious risk to the critical decisions made using the outputs of computer models that sup-7

port analysis and design. In many cases, achieving truly high-fidelity simulation capabilities may be unachievable;8

instead, we must accept the inadequacy of our models and invest in strategies to account for it. The methodology pro-9

posed here is a first step in this direction, using a probabilistic approach to endow all analysis models with quantified10

uncertainties. These uncertainties are explicitly maintained and propagated through the design and synthesis process,11

resulting in quantified uncertainties on the output estimates of quantities of interest. These output uncertainties pro-12

vide rigorous guidance to manage multifidelity models, through identification of particular disciplines or subsystems13

that contribute unacceptably high levels of uncertainty, and also provide design/analysis risk assessment, through14

quantified uncertainty bands on simulation outputs. The proposed global sensitivity analysis approach to identifying15

contributors to output variance is broadly applicable, while the proposed approaches to represent model discrepancy16

and to fuse multifidelity information are limited to Gaussian distributions of uncertainty in model component outputs.17

Extending these approaches to handle more general distributions is an important area of future work.18
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