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We derive generalizations of the Weingarten-Witten QCD mass inequalities for particular multihadron
systems. For systems of any number of identical pseudoscalar mesons of maximal isospin, these
inequalities prove that near threshold interactions between the constituent mesons must be repulsive
and that no bound states can form in these channels. Similar constraints in less symmetric systems are
also extracted. These results are compatible with experimental results (where known) and recent lattice
QCD calculations, and also lead to a more stringent bound on the nucleon mass than previously
derived, mN ≥ 3

2
mπ .
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Analytic relationships between low-energy hadronic
quantities are difficult to obtain in quantum chromody-
namics (QCD) because it is a strongly interacting field
theory, and only a few such relationships are known.
Consequently, the various inequalities between hadron
masses that have been derived by Weingarten [1], Witten
[2], and (under some assumptions) by Nussinov [3] have an
important place in our understanding of QCD. The rigorous
relations can be summarized by stating that the pion is the
lightest colorless state of nonzero isospin [1] (mX ≥ mπ for
X being any I ≥ 1 isospin-charged meson), that the pion
electromagnetic mass difference mπþ −mπ0 is positive [2]
and that baryons are heavier than pions, mB ≥ mπ [1,4].
The status of QCD inequalities is reviewed in Ref. [5]. The
known results concern a relatively small number of static
quantities, and it is important to consider whether further
relations exist. In this direction, Nussinov and Sathiapalan
[6] found that in QCD motivated models there are relation-
ships between scattering lengths in various two-particle
channels, and Gupta et al. [7,8] showed that an unphysical
combination of ππ interactions is attractive. Finally, Alfaro
et al. [9] showed that relationships existed between K → π
matrix elements of various four-quark operators. In this
Letter, we demonstrate that there are additional rigorous
QCD inequalities that pertain to the spectrum of particular
physical, multihadron systems and thereby to the nature of
the corresponding hadronic interactions. As simple exam-
ples, we prove that there are no bound states in the
I ¼ 2πþπþ or I ¼ 3=2πþKþ channels and also improve
on a previous baryon-meson mass inequality, showing that
mN ≥ 3

2
mπ . As with the original inequalities, an experi-

mental demonstration that these inequalities are violated
would strongly suggests that QCD does not describe the
strong interaction (modulo possible effects of electroweak
interactions).
A central observation of Vafa and Witten [4] is that the

measure of the QCD functional integrals that define QCD
correlation functions is positive definite in the absence of a

θ term or baryon chemical potential (we will ignore these
cases throughout this work). After integrating over the
quark degrees of freedom, the functional integration mea-
sure can be expressed as

dμ ¼
Y
x;μ;a

dAa
μðxÞe−SYM ½A�Y

f

det ½Dþ ~mf�; ð1Þ

where Aμ represents the gauge field, D ¼ D½A� is the
fermion Dirac operator, ~mf is the bare quark mass of flavor
f, and SYM ¼ 1

2

R
d4xTr½FμνFμν� is the Yang-Mills action

with Fμν ¼ ½Dμ; Dν�. Throughout our discussion, we use
a Euclidean metric; for the correlators that we consider,
analytic continuation to Minkowski space is straightfor-
ward. Correlation functions involving field operators at n
spacetime points are defined as

hOðx1;…; xnÞi ¼
1

Z

Z
dμÔðx1;…; xnÞ; ð2Þ

where Z ¼ R
dμ, and the operator Ô results from the

operator O after integration over quark fields. These
functional integrals are only defined after the imposition
of a regulator, and we assume the use of a regulator that
does not spoil positivity [1,4]. As a consequence of the
positivity of the measure, field independent relations that
are shown to hold for any particular gauge field configu-
ration also hold for the integrated quantity, the correspond-
ing correlation function. Vafa and Witten used measure
positivity to derive the celebrated result that vector sym-
metries do not break spontaneously.
In related work, Weingarten [1] considered correlation

functions from which meson and baryon masses can be
determined, and made use of measure positivity and the
Cauchy-Schwarz and Hölder inequalities to show that
relationships exist between the corresponding functional
integrals. The inequalities show that mπ ≤ mX, and mN ≥
½ðNf − 2Þ=ðNf − 3Þ�mπ for a theory with Nf ≥ 6 flavors.
Using a further constraint on the spectrum of the inverse
of the Dirac operator, shown to hold in Ref. [4], this latter
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constraint was extended to mN ≥ mπ , independent of the
number of flavors.
Our analysis shares similarities with the approaches

discussed above, but it also makes use of a novel eigenvalue
decomposition of correlation functions. We begin by
considering an I ¼ Iz ¼ n many-πþ correlator of the form�

Ω
����
Yn
i

uγ5d̄ðxiÞ
Yn
j

dγ5ūðyjÞ
����Ω

�
; ð3Þ

where jΩi is the vacuum state and the clusters of points
fxig (sources) and fyjg (sinks) are taken to be well
separated in Euclidean space. The combination dγ5ūðyÞ
is an interpolating operator that creates the quantum
numbers of a πþ meson. We specify to vanishing total
momentum by separately summing over the spatial com-
ponents of the yi coordinates and for simplicity set the
temporal components x4i ¼ 0 ∀ i and y4j ¼ t ∀ j and
allow for some of the source locations to be the same
(nonzero correlators result provided that 4Nc or less quark
fields are placed at the same spacetime point). This leads to

Cn ≡ Cnðx1;…xn; t;P ¼ 0Þ

¼
�
Ω
����
Yn
i

uγ5d̄ðxi; 0Þ
�X

y
dγ5ūðy; tÞ

�
n
����Ω

�
: ð4Þ

As shown in Refs. [10,11], these correlation functions can
be written in terms of products of traces of powers of the
matrix

ΠA ¼

0
BBBBBB@

P1;1 P1;2 � � � P1;Ns

P2;1
. .
. . .

.
P2;Ns

..

. . .
. . .

. ..
.

PNs;1 � � � � � � PNs;Ns

1
CCCCCCA
; ð5Þ

where Ns is the number of source locations being consid-
ered, the 4Nc × 4Nc blocks are given by

Pi;jðtÞ ¼
X
y

Suðxi; 0; y; tÞγ5Sdðy; t; ;xj; 0Þγ5; ð6Þ

and Su and Sd are propagators for the up and down quarks,
respectively. The subscript A indicates that the matrix
depends on the background gauge field and ΠA is a matrix
of dimension N ¼ 4NcNs and by increasing Ns, this can
be taken to infinity.
This can be further simplified in the isospin limit where

the up and down quark propagators are the same, Su ¼ Sd,
and by using the γ5 the roots of theHermiticity of the
Dirac operator that implies that γ5Sdðy; xÞγ5 ¼ S†dðx; yÞ so
that the Pi;j take the form

Pi;jðtÞ ¼
X
y

Suðxi; 0; y; tÞS†uðxj; 0; y; tÞ: ð7Þ

Consequently, we see that ΠA is a non-negative definite
Hermitian matrix, as are all its diagonal subblocks.
In Ref. [10], it was shown that the contributions to the
correlation functions Cj for j ≤ N determined on a given
gauge configuration arise as coefficients of the character-
istic polynomial

PAðαÞ ¼ detð1þ αΠAÞ ¼
XN
j¼0

cj½A�αj ð8Þ

of the matrix ΠA. (There are normalization differences
between the cj and Cj, and for multiple source locations,
the cj are linear combinations of the Cj with different
numbers of interpolators at each source. The spectrum is
common to each term in this linear combination.) Since the
roots of the characteristic polynomial are determined by the
eigenvalues πi of ΠA, it follows that

cn½A� ¼
XN

i1≠i2≠…≠in¼1

πi1πi2…πin : ð9Þ

Thus c1½A�¼
P

N
i¼1πi¼tr½ΠA�, c2½A�¼

P
N
i¼1

P
N
j≠i¼1πiπj;…;

cN ½A�¼π1…πN¼det½ΠA�. Since these eigenvalues are non-
negative, we can bound these expressions by products of
the single pion expression by relaxing the restrictions on
the summation above. That is,

cn½A� ≤
XN

i1;i2;…;in¼1

πi1πi2…πin ¼
�XN
i¼1

πi

�n
¼ cn1½A�: ð10Þ

From this eigenvalue relation, valid on a fixed background
gauge configuration, we can construct the field independent
bound, cn½A� − cn1½A� ≤ 0, that holds for all Aa

μ. Measure
positivity then implies that this relation holds at the level of
QCD correlators. (We note that the results hold for lattice
QCD discretizations that preserve measure positivity such
as domain-wall [12] and overlap fermions [13,14], or
Wilson fermions [15] with even Nf.) The large separation
behavior of hcni is governed by the energy of the lowest

energy eigenstates of the system, hcni ∼ expð−Eð0Þ
n tÞ. We

also note that hcn1i ≤ σhc1in for some source-sink separa-

tion independent σ. Together, this implies that Eð0Þ
n ≥

nEð0Þ
1 ¼ nmπ and consequently that there are no bound

states possible in these maximal isospin channels. Further,
is also implies that the two-body interactions in these
systems are repulsive or vanishing at threshold. This second
result follows from the fact that the relations derived above
are valid in a finite volume where the energy eigenvalues of
two particle systems below inelastic thresholds are deter-
mined by the appropriate infinite volume scattering phase
shift [16,17]. Since the scattering phase shift near threshold
is proportional to the negative of the non-negative definite
energy shift, it must correspond to a repulsive or vanishing
interaction.

PRL 114, 222001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
5 JUNE 2015

222001-2



The two-pion results are in accordance with expectations
from chiral perturbation theory (χPT) [18,19] which
predicts at next-to-leading order (NLO) that

mπa
ðI¼2Þ
ππ ¼ −2πχ½1þ χð3 log χ − LðI¼2Þ

ππ Þ�; ð11Þ
where χ ¼ ½mπ=4πfπ�2, fπ is the pion decay constant, and

LðI¼2Þ
ππ is a particular combination of low-energy constants

(LECs) renormalized at scale μ ¼ 4πfπ . At tree level, this
expression is universally negative, and at NLO it remains

negative given the phenomenological constraints on LðI¼2Þ
ππ .

However, the bounds derived above are statements directly
about QCD and do not rely on a chiral expansion, and

in fact provide a fundamental constraint on LðI¼2Þ
ππ (the use

of single particle QCD inequalities to constrain χPT is
discussed in Refs. [20,21]). The ππ scattering phase shifts
can be experimentally extracted from studies of kaon
decays [22–24] and the lifetime of pionium [25], but the
direct constraints of the I ¼ 2 channel are relatively weak.
A chiral and dispersive analysis of experimental data
nevertheless allows for a precise extraction [26], giving

mπa
ðI¼2Þ
ππ ¼ −0.0444ð10Þ and lattice QCD calculations

[27–33] are in agreement. The sign implies that these
results are concordant with the QCD inequalities
derived here.
As a corollary, having shown that the ðπþÞn systems

do not bind, we can follow the discussion of Ref. [5]
and strengthen the nucleon mass bound of Weingarten to
mN ≥ 3

2
mπ . This improves on the bounds of Refs. [1,6,34]

as it applies for arbitrary Nf and Nc and the inequality
directly involves the pion mass. Furthermore, less complete
modifications of the restricted sums in Eq. (9) show also

that Eð0Þ
n ≥ Eð0Þ

n−j þ Eð0Þ
j for all j < n. This then implies that

the I ¼ 3, πþπþπþ interaction is separately repulsive at
threshold, as are the I ¼ n, ðπþÞn interactions. In principle,
the form of these interactions could be computed in the
chiral expansion, and the constraints derived here would
bound the LECs that enter. Lattice calculations show that
the πþπþπþ interaction is indeed repulsive [35,36].
The inequalities above concern identical pseudoscalar

mesons formed from quarks of equal mass, but they can
be generalized in a number of ways. In particular, these
inequalities can be extended to the case of unequal quark
masses; thereby analogous results can be derived for
multiple pion systems away from the isospin limit.
Further, by defining

Ki;jðtÞ ¼
X
y

Suðxi; 0; y; tÞS†sðy; t; ;xj; 0Þ; ð12Þ

where Ssðx; yÞ is the strange quark propagator, in addition
to Pi;j, correlators containing both πþ and Kþ mesons
can be studied. The matrixKA can be constructed from the
Ki;j subblocks analogously to Eq. (5). To see how these
generalizations arise, we need to examine the spectrum of

the relevant matrices. If we denote the eigenvalues and
eigenfunctions of the Dirac operator as λi and vi respec-
tively, that is Dvi ¼ λivi, we can decompose the quark
propagators as

Sf ¼
X
i

viv�i
λi þmf

≡X
i

σðfÞi viv�i ; ð13Þ

where mf is the renormalized quark mass (in what follows,
we assume a mass-independent and multiplicatively renor-
malizable regularization and renormalization scheme) and
the matrix ΠA as

ΠA ≡X
i

πiviv�i ¼
X
i;j

viv�i
λi þmu

�
vjv�j

λj þmd

�†

¼
X
i

viv�i ð−λ2i þmumd þ λiðmu −mdÞÞ
ðm2

u − λ2i Þðm2
d − λ2i Þ

; ð14Þ

with a similar expression for KA [in the second equality
for ΠA, we have used (Coulomb-gauge spatial) complete-
ness as we are integrating over the spatial position of the
sink in defining Pi;j]. Because of the spectral properties of
the Dirac operator (λi ∈ I, and fλi; λ�i g both eigenvalues),

the eigenvalues of quark propagators, σðfÞi , fall on circles
[center ½1=ð2mfÞ; 0�, radius 1=ð2mfÞ] in the complex plane.
For the matrix ΠA in the isospin limit, we immediately see
that the eigenvalues are real and non-negative as stated
above, occupying the interval ½0; 1=mf�. Away from the
isospin limit, ΠA and KA have eigenvalues, denoted πi and
κi respectively, that occur in complex conjugate pairs with
non-negative real parts and imaginary parts that are propor-
tional to the mass splitting jm1 −m2j. The locii of these
eigenvalues are shown in Fig. 1 for exemplary masses.
The spectral properties [the overlap Dirac operator

[13,14], which is γ5 Hermitian and has eigenvalues on
the circle ð1þ cos θ; sin θÞ ∈ C for 0 ≤ θ < 2π, is an
explicit regulator for which the argument that follows

FIG. 1 (color online). Eigenvalues of Su, Sd, SuS
†
u and SuS

†
d for

mu ¼ 1 and md ¼ 1.5.
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holds] discussed above are sufficient to show that even in
the less symmetric cases mentioned previously, the gener-
alizations of the eigenvalue inequality used in Eq. (10) still
hold, at least for certain quark mass ratios in systems
containing up to n ¼ 8 particles (for example πþπþπþKþ)
where we have explicitly checked. (We expect that these
results hold for all n and all mass ratios but have been
unable to prove the necessary relations.) To see this, we
reconsider the eigenvalue sums that occur in the expres-
sions for correlators [the correlators for jπþs and kKþs can
be constructed from the expansion of detð1þ αΠA þ βKAÞ
as discussed in Ref. [37]] with the quantum numbers of
ðπþÞjðKþÞn−j, denoted cj;n−j. As the simplest example we
consider

c1;1 ∼
X
i

X
j≠i

πiκj ¼
X
i;j

πiκj −
X
i

πiκi; ð15Þ

and shall show that the last sum is positive. This is most
easily approached in the N → ∞ limit in which the
eigenvalue sums become continuous integrals. To make
our notation simpler, we replace λ → iλR with λR ∈ R and
subsequently drop the subscript. In this case, defining

fa;bðλÞ ¼
λ2 þmamb þ iλðma −mbÞ

ðλ2 þm2
aÞðλ2 þm2

bÞ
; ð16Þ

and πðλÞ ¼ fu;dðλÞ and κðλÞ ¼ fu;sðλÞ, we can replaceP
iπiκi by

Z
∞

−∞
DλπðλÞκðλÞ; ð17Þ

where the measureDλ≡ dλρðλÞ is weighted by the spectral
density of the Dirac operator, ρðλÞ. Since the spectral
density is non-negative, a non-negative integrand results in
a non-negative integral. However, the integrand above is
only positive definite for some ranges of the ratios md=mu
and ms=mu (we specify to a mass-independent multipli-
cative renormalization scheme for the quark masses in
which these ratios are scale independent; schemes involv-
ing a chiral lattice regularizations such as domain-wall
fermions and overlap fermions are examples) as is shown
for this case in Fig. 2. If the mass ratios are in the
allowed region, then c1;1 ≤ c1;0c0;1 and through the same
logic that we employed for I ¼ 2 ππ systems, we see that
EπþKþ ≥ mπþ þmKþ , so I ¼ 3=2 πþKþ scattering cannot
result in bound states. This result is in agreement with
lattice calculations [37–40]. Outside these parameter
ranges, the integral has negative contributions at inter-
mediate λ but is positive at large λ; given the expectations of
the behavior of the spectral density, ρðλÞ ∼ Vλ3 for large λ,
this suggests that the integral is always positive in Eq, (17),
but this cannot be proven rigorously. For the important
cases of πþπþ at md ≠ mu and πþKþ, the physical mass

ratios [41] are such that the proof is complete, but for
example for I ¼ 1 KþKþ or DþDþ, the mass ratios are
such that the proof fails.
In a more complicated case, such as c3;1, the subtractions

are more involved,

c3;1 ∼
X
i

X
j≠i

X
k≠i;j

X
l≠i;j;k

πiπjπkκl

¼
X
i;j;k;l

πiπjπkκl − 3
X
i

X
j≠i

X
k≠i;j

ðπ2i πjκk þ πiπjπkκiÞ

−
X
i

X
j≠i

ðπ3i κj þ 3π2i πjκi þ 3π2i πjκjÞ −
X
i

π3i κi

¼
X
i;j;k;l

πiπjπkκl −
	
3
X
i;j;k

ðπ2i πjκk þ πiπjπkκiÞ

−
X
i;j

ð2π3i κj þ 6π2i πjκi þ 3π2i πjκjÞ þ 6
X
i

π3i κi



:

ð18Þ

However, by again taking the continuous limit and
writing the eigenvalue sums as (multiple) integrals, the
term in the braces can be proven to be positive for
certain values of md=mu and ms=mu, thereby showing
EπþπþπþKþ ≥ 3mπþ þmKþ . The region of guaranteed pos-
itivity varies with the number of pions and kaons in the
system, but a region exists for all cj;k.
As a further generalization, we may consider modified

correlators where we replace some of the γ5 matrices in
Eq. (4) by other Dirac structures. We can then use the
Cauchy-Schwartz inequality to derive the related results

FIG. 2 (color online). Grey shading indicates the region of
nonpositivity of the integrand in Eq. (17). Also shown are
relevant physical mass ratios for πþπþ at md ≠ mu and πþKþ
and KþKþ.
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that the energies of arbitrary JP states with I ¼ Iz ¼ n are
bounded from below by nmπ in the same manner in which
Weingarten [1] showed that mX ≥ mπ . This does not
prohibit bound state formation if the quantum numbers
prohibit an nπþ state in the given channel (for example
ρþρþρþ with JP ¼ 3−), but limits the amount of binding
that is possible.
In summary, we have shown that the hadron mass

inequalities previously derived in QCD have an infinite
set of analogues for certain multihadron systems that
constrain the nature of the interactions between the con-
stituent hadrons. These results provide important con-
straints on phenomenological and lattice QCD studies of
hadron interactions and serve as fundamental tests of QCD.
The scope of the techniques used to derive the original
hadron mass inequalities and the new techniques intro-
duced here is more general than the two-point correlation
functions considered so far, and there are a number of
extensions that may be pursued productively.

This work was supported by the U.S. Department of
Energy Early Career Research Award DE-SC0010495 and
the Solomon Buchsbaum Fund at MIT. The author is
grateful to Z. Davoudi, M. Endres, M. J. Savage, S. Sharpe,
and B. Tiburzi for discussions and comments.

[1] D. Weingarten, Phys. Rev. Lett. 51, 1830 (1983).
[2] E. Witten, Phys. Rev. Lett. 51, 2351 (1983).
[3] S. Nussinov, Phys. Rev. Lett. 51, 2081 (1983).
[4] C. Vafa and E. Witten, Nucl. Phys. B234, 173 (1984).
[5] S. Nussinov andM. A. Lampert, Phys. Rep. 362, 193 (2002).
[6] S. Nussinov and B. Sathiapalan, Nucl. Phys. B256, 285

(1985).
[7] R. Gupta, A. Patel, and S. R. Sharpe, Phys. Rev. D 48, 388

(1993).
[8] S. R. Sharpe, R. Gupta, and G.W. Kilcup, Nucl. Phys.

B383, 309 (1992).
[9] J. Alfaro, R. C. Brower, and M. B. Gavela Legazpi, Phys.

Lett. 147B, 357 (1984).
[10] W. Detmold and M. J. Savage, Phys. Rev. D 82, 014511

(2010).
[11] W. Detmold, K. Orginos, and Z. Shi, Phys. Rev. D 86,

054507 (2012).
[12] D. B. Kaplan, Phys. Lett. B 288, 342 (1992).
[13] R. Narayanan and H. Neuberger, Phys. Lett. B 302, 62

(1993).
[14] R. Narayanan and H. Neuberger, Nucl. Phys. B443, 305

(1995).

[15] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[16] M. Lüscher, Commun. Math. Phys. 105, 153 (1986).
[17] M. Lüscher, Nucl. Phys. B354, 531 (1991).
[18] S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).
[19] J. Gasser and H. Leutwyler, Phys. Lett. 125B, 325 (1983).
[20] O. Bar, M. Golterman, and Y. Shamir, Phys. Rev. D 83,

054501 (2011).
[21] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 85, 014503

(2012).
[22] S. Pislak et al. (BNL-E865 Collaboration), Phys. Rev. Lett.

87, 221801 (2001).
[23] S. Pislak, R. Appel, G. Atoyan, B. Bassalleck, D. Bergman

et al., Phys. Rev. D 67, 072004 (2003).
[24] J. Batley et al. (NA48/2 Collaboration), Phys. Lett. B 633,

173 (2006).
[25] B. Adeva et al. (DIRAC Collaboration), Phys. Lett. B 619,

50 (2005).
[26] G. Colangelo, J. Gasser, and H. Leutwyler, Nucl. Phys.

B603, 125 (2001).
[27] T. Yamazaki et al. (CP-PACS Collaboration), Phys. Rev. D

70, 074513 (2004).
[28] S. R. Beane, P. R. Bedaque, K. Orginos, and M. J. Savage,

Phys. Rev. D 73, 054503 (2006).
[29] S. R. Beane, T. C. Luu, K. Orginos, A. Parreno, M. J.

Savage, A. Torok, and A. Walker-Loud, Phys. Rev. D 77,
014505 (2008).

[30] X. Feng, K. Jansen, and D. B. Renner, Phys. Lett. B 684,
268 (2010).

[31] T. Yagi, S. Hashimoto, O. Morimatsu, and M. Ohtani,
arXiv:1108.2970.

[32] S. R. Beane, E. Chang, W. Detmold, H. W. Lin, T. C. Luu,
K. Orginos, A. Parreño, M. J. Savage, A. Torok, and A.
Walker-Loud, Phys. Rev. D 85, 034505 (2012).

[33] Z. Fu, Phys. Rev. D 87, 074501 (2013).
[34] T. D. Cohen, Phys. Rev. Lett. 91, 032002 (2003).
[35] S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, M. J.

Savage, and A. Torok, Phys. Rev. Lett. 100, 082004
(2008).

[36] W. Detmold, M. J. Savage, A. Torok, S. R. Beane, T. C. Luu,
K. Orginos, and A. Parreño, Phys. Rev. D 78, 014507
(2008).

[37] W. Detmold and B. Smigielski, Phys. Rev. D 84, 014508
(2011).

[38] S. R. Beane, P. F. Bedaque, T. C. Luu, K. Orginos, E.
Pallante, A. Parreño, and M. J. Savage, Phys. Rev. D 74,
114503 (2006).

[39] Z. Fu, Phys. Rev. D 85, 074501 (2012).
[40] K. Sasaki, N. Ishizuka, M. Oka, and T. Yamazaki (PACS-CS

Collaboration), Phys. Rev. D 89, 054502 (2014).
[41] S. Aoki, Y. Aoki, C. Bernard, T. Blum, G. Colangelo et al.,

Eur. Phys. J. C 74, 2890 (2014).

PRL 114, 222001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
5 JUNE 2015

222001-5

http://dx.doi.org/10.1103/PhysRevLett.51.1830
http://dx.doi.org/10.1103/PhysRevLett.51.2351
http://dx.doi.org/10.1103/PhysRevLett.51.2081
http://dx.doi.org/10.1016/0550-3213(84)90230-X
http://dx.doi.org/10.1016/S0370-1573(01)00091-6
http://dx.doi.org/10.1016/0550-3213(85)90395-5
http://dx.doi.org/10.1016/0550-3213(85)90395-5
http://dx.doi.org/10.1103/PhysRevD.48.388
http://dx.doi.org/10.1103/PhysRevD.48.388
http://dx.doi.org/10.1016/0550-3213(92)90681-Z
http://dx.doi.org/10.1016/0550-3213(92)90681-Z
http://dx.doi.org/10.1016/0370-2693(84)90133-3
http://dx.doi.org/10.1016/0370-2693(84)90133-3
http://dx.doi.org/10.1103/PhysRevD.82.014511
http://dx.doi.org/10.1103/PhysRevD.82.014511
http://dx.doi.org/10.1103/PhysRevD.86.054507
http://dx.doi.org/10.1103/PhysRevD.86.054507
http://dx.doi.org/10.1016/0370-2693(92)91112-M
http://dx.doi.org/10.1016/0370-2693(93)90636-V
http://dx.doi.org/10.1016/0370-2693(93)90636-V
http://dx.doi.org/10.1016/0550-3213(95)00111-5
http://dx.doi.org/10.1016/0550-3213(95)00111-5
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1007/BF01211097
http://dx.doi.org/10.1016/0550-3213(91)90366-6
http://dx.doi.org/10.1103/PhysRevLett.17.616
http://dx.doi.org/10.1016/0370-2693(83)91294-7
http://dx.doi.org/10.1103/PhysRevD.83.054501
http://dx.doi.org/10.1103/PhysRevD.83.054501
http://dx.doi.org/10.1103/PhysRevD.85.014503
http://dx.doi.org/10.1103/PhysRevD.85.014503
http://dx.doi.org/10.1103/PhysRevLett.87.221801
http://dx.doi.org/10.1103/PhysRevLett.87.221801
http://dx.doi.org/10.1103/PhysRevD.67.072004
http://dx.doi.org/10.1016/j.physletb.2005.11.087
http://dx.doi.org/10.1016/j.physletb.2005.11.087
http://dx.doi.org/10.1016/j.physletb.2005.05.045
http://dx.doi.org/10.1016/j.physletb.2005.05.045
http://dx.doi.org/10.1016/S0550-3213(01)00147-X
http://dx.doi.org/10.1016/S0550-3213(01)00147-X
http://dx.doi.org/10.1103/PhysRevD.70.074513
http://dx.doi.org/10.1103/PhysRevD.70.074513
http://dx.doi.org/10.1103/PhysRevD.73.054503
http://dx.doi.org/10.1103/PhysRevD.77.014505
http://dx.doi.org/10.1103/PhysRevD.77.014505
http://dx.doi.org/10.1016/j.physletb.2010.01.018
http://dx.doi.org/10.1016/j.physletb.2010.01.018
http://arXiv.org/abs/1108.2970
http://dx.doi.org/10.1103/PhysRevD.85.034505
http://dx.doi.org/10.1103/PhysRevD.87.074501
http://dx.doi.org/10.1103/PhysRevLett.91.032002
http://dx.doi.org/10.1103/PhysRevLett.100.082004
http://dx.doi.org/10.1103/PhysRevLett.100.082004
http://dx.doi.org/10.1103/PhysRevD.78.014507
http://dx.doi.org/10.1103/PhysRevD.78.014507
http://dx.doi.org/10.1103/PhysRevD.84.014508
http://dx.doi.org/10.1103/PhysRevD.84.014508
http://dx.doi.org/10.1103/PhysRevD.74.114503
http://dx.doi.org/10.1103/PhysRevD.74.114503
http://dx.doi.org/10.1103/PhysRevD.85.074501
http://dx.doi.org/10.1103/PhysRevD.89.054502
http://dx.doi.org/10.1140/epjc/s10052-014-2890-7

