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Genome-wide association studies (GWASs), also called common
variant association studies (CVASs), have uncovered thousands of
genetic variants associated with hundreds of diseases. However,
the variants that reach statistical significance typically explain only
a small fraction of the heritability. One explanation for the “miss-
ing heritability” is that there are many additional disease-associ-
ated common variants whose effects are too small to detect with
current sample sizes. It therefore is useful to have methods to
quantify the heritability due to common variation, without having
to identify all causal variants. Recent studies applied restricted
maximum likelihood (REML) estimation to case–control studies
for diseases. Here, we show that REML considerably underesti-
mates the fraction of heritability due to common variation in this
setting. The degree of underestimation increases with the rarity of
disease, the heritability of the disease, and the size of the sample.
Instead, we develop a general framework for heritability estima-
tion, called phenotype correlation–genotype correlation (PCGC)
regression, which generalizes the well-known Haseman–Elston
regression method. We show that PCGC regression yields unbiased
estimates. Applying PCGC regression to six diseases, we estimate
the proportion of the phenotypic variance due to common variants
to range from 25% to 56% and the proportion of heritability due to
common variants from 41% to 68% (mean 60%). These results sug-
gest that common variants may explain at least half the heritability
for many diseases. PCGC regression also is readily applicable to
other settings, including analyzing extreme-phenotype studies and
adjusting for covariates such as sex, age, and population structure.
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Comprehensive genomic studies have begun to uncover the
genetic basis of common polygenic inherited diseases and

traits, identifying thousands of loci and pointing to key biological
pathways. However, the genetic variants implicated so far ac-
count for less than half the estimated heritability of most diseases
and traits (1). Explaining the remainder of the heritability—
often termed “missing heritability”—is of considerable biological
interest and medical importance. This is our third article on
exploring the mystery of missing heritability.
In our first paper (2), we noted that some of the apparently

missing heritability may arise from a methodological issue. Spe-
cifically, we showed that the presence of genetic interactions
among loci might substantially inflate estimates of the total (nar-
row-sense) heritability and thus overstate the extent of missing
heritability. However, this likely is only a partial explanation.
In our second paper (3), we explored the design of association

studies to discover genetic variants associated with the risk of
a disease or trait. Specifically, our paper focused on rare variant
association studies (RVASs), for which large-scale comprehen-
sive efforts are just becoming feasible with advances in se-
quencing technology. The approach involves sequencing every
human gene in a large case–control study to see whether the
aggregate frequency (or “burden”) of a set of rare variants differs
between cases and controls. (Rare variants may be defined op-

erationally as having frequency ≤0.5%.) We studied how the
power of RVASs depends on various factors, such as the selec-
tion coefficient against null alleles, the type of rare variants to be
aggregated (based, for example, on allele frequency and muta-
tional type), and the population studied. We concluded that
RVASs with adequate power to detect genetic effects of interest
should involve at least 25,000 cases.
In this third paper, we turn our focus to common variant as-

sociation studies (CVASs). (Such studies typically are referred to
simply as genome-wide association studies, or GWASs, but we
prefer the term CVAS to highlight the complementarity with
RVAS.) CVAS involves testing millions of common genetic
variants for correlation with disease in case–control studies.
CVAS has the advantages that one can enumerate the complete
set of common variants in a population; each variant is frequent
enough to be tested individually; and variants may provide in-
formation about a nearby region (as the result of linkage dis-
equilibrium). Whereas RVAS only now is becoming feasible,
CVAS became practical with the advent of inexpensive large-
scale genotyping arrays roughly a decade ago. CVASs have been
performed for hundreds of diseases, involving a total of ap-
proximately 2 million samples. The fruits of these studies include
the discovery of hundreds of loci for inflammatory bowel disease,
schizophrenia, early heart disease, and type 2 diabetes (4).
Whereas early association studies in the 1990s used loose

thresholds for statistical significance (e.g., P ≤ 0.05) and were
notoriously irreproducible, CVAS imposes an extremely
stringent threshold for statistical significance (on the order of
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Studies have identified thousands of common genetic variants
associated with hundreds of diseases. Yet, these common
variants typically account for a minority of the heritability, a
problem known as “missing heritability.” Geneticists recently
proposed indirect methods for estimating the total heritability
attributable to common variants, including those whose effects
are too small to allow identification in current studies. Here,
we show that these methods seriously underestimate the true
heritability when applied to case–control studies of disease.
We describe a method that provides unbiased estimates. Ap-
plying it to six diseases, we estimate that common variants
explain an average of 60% of the heritability for these dis-
eases. The framework also may be applied to case–control
studies, extreme-phenotype studies, and other settings.
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P ≤ 5× 10−8) to reduce the number of false discoveries, which
otherwise would be inflated when testing many hypotheses of
which the vast majority are false (corresponding to non-
associated SNPs). As a result, the discoveries have proven to be
highly replicable. Although CVAS has been very effective at
reliably identifying disease-associated loci, the genetic variants
detected tend to have modest effects on disease risk and thus
may be challenging to study biologically or clinically.
An open question has been how much of the heritability of

a trait is attributable to common variants. A straightforward
approach for inferring the heritability due to common variants is
to add up the estimated heritability contributed by each of the
genetic variants that have achieved clear genome-wide statistical
significance. This calculation typically yields a relatively low
proportion—e.g., 5–10% for height (5–8), which has estimated
heritability of 80%. The obvious problem with the approach is
that it provides only a lower bound that likely is a substantial
underestimate because it ignores the many loci that have not yet
reached genome-wide significance. Thus, there has been con-
siderable interest in ways to estimate the total heritability at-
tributable to common variants in an indirect manner that does
not require definitively identifying the loci.
Visccher and coworkers [Yang et al. (9)] made major con-

tributions to this program, focusing on the situation of quanti-
tative phenotypes studied in a random population sample. The
fundamental idea is to estimate the heritability due to common
variants by studying the extent to which the phenotypic similarity
across pairs of individuals in a sample is explained by their ge-
notypic similarity at common variants. Rather than using simple
correlation, they used a family of elegant statistical models,
called linear mixed models (LMMs), and estimated the herita-
bility using a technique called restricted maximum likelihood
(REML) estimation. By applying REML to a study of height,
they estimated that the common variants examined explained
∼50% of the heritability, which was considerably greater than the
5–10% obtained from summing the contributions of variants that
have achieved statistical significance. Following this pioneering
work, the REML approach has been applied to many other
CVASs of quantitative phenotypes, yielding significant increases
in estimated heritability explained by common variants.
Subsequently, the same group [Lee et al. (2011) (10)] sought to

extend this approach to disease traits (or, more generally, any
binary phenotypes) in case–control studies. Modifying the REML
method for this setting, they applied it to three diseases studied by
the Wellcome Trust Case Control Consortium (WTCCC): type 1
diabetes, Crohn’s disease, and bipolar disorder. The estimated
heritability explained by common variants was considerably higher
than that obtained from summing the contributions of individual
loci. Their approach has since been applied to numerous other
disease phenotypes, with similar results (see, e.g., refs. 11–13).
Here, we reexamine the REML approach for disease traits

in case–control studies. We identify a flaw in the underlying
assumptions that creates a serious bias in the REML estimate for
disease traits. Consequently, we show that the REML approach
of Lee et al. (10) underestimates the heritability explained by
common variants. The magnitude of the bias is affected by many
factors, most notably the study size, the prevalence of the disease
in the population, the proportion of cases in the study, the true
underlying heritability, and the number of genotyped SNPs
[some of these factors were noted independently by others (14,
15)]. For example, the simulation studies below show that for
a disease with 0.1% prevalence in which common variants ac-
tually explain 50% of the heritability, the REML approach ap-
plied to a balanced case–control study of 4,000 individuals will
yield, on average, an estimate as low as 30–35% (depending on
the number of SNPs used). Importantly, this bias increases with
study size, suggesting that the inaccuracy of REML estimates will
increase as larger and larger CVASs are conducted.

Instead, we propose a general framework for heritability es-
timation, which we term phenotype correlation–genetic corre-
lation (PCGC) regression, which produces unbiased estimates
for case–control studies of disease traits. The approach general-
izes traditional regression-based approaches used in genetics (16,
17). We show that PCGC regression yields substantially higher
estimates of the heritability explained by common variants for
several diseases, including Crohn’s disease, bipolar disorder, type
1 diabetes, early-onset myocardial infarction (MI), schizophrenia,
and multiple sclerosis (MS). The PCGC framework also is suit-
able for other settings involving phenotype-guided sampling, in-
cluding selection of extreme phenotypes for quantitative traits.
Below, we begin by outlining a general model for a quantita-

tive trait, and review methods for heritability estimation in this
situation. We then turn to case–control studies of disease traits
and describe current efforts for estimating heritability. We discuss
the challenges induced by case–control sampling and use simu-
lations to demonstrate that current methods result in serious
downward-biased heritability estimates. To overcome this prob-
lem, we introduce an alternative approach, PCGC regression for
heritability estimation, and demonstrate that it provides unbiased
estimates and improved accuracy. We then use PCGC regression
to estimate the heritability due to common SNPs in several case–
control studies. Our results show that the fraction of heritability
explained by common SNPs is larger than previously thought. We
conclude by describing several extensions of our PCGC frame-
work to other CVAS scenarios, such as accounting correctly for
additional covariates and analyzing extreme-phenotype studies.

Results
General Model of Quantitative Traits. In the general case, a quan-
titative phenotype p depends on genotype g and environment e,
according to a function ψ. For the ith individual, we have pi =
ψ(gi,ei). Here, the genotype gi = (gi1, gi2, . . . gin) is the diploid
genotype at every variant site across the genome, where gik is the
number of copies of a designated allele at the kth variant site,
and fj is the frequency of the designated allele. (We will assume
that the variant sites are in linkage equilibrium and all alleles are
biallelic, although these assumptions may be relaxed.)
This definition is completely general. It may be used with whole-

genome sequence data, with the variant sites corresponding to
every nucleotide in the human genome. Moreover, the function ψ
allows for arbitrary gene–gene (GxG) and gene–environment (GxE)
interactions.
For convenience, we will work below with “normalized” pheno-

types pi and genotypes gik, where the quantities pi and gik have been
centered to have mean 0 and standardized to have variance 1.

Additive Model for Quantitative Traits. Analyses of heritability typ-
ically assume a much simpler additive model. We do so here, as-
suming that our quantitative trait follows a simple additive model
with no GxG or GxE interactions. We also assume there is no
correlation in the environmental effects among individuals. We write

pi = gi + ei

gi =
X
k

ukgik; [1]

where uk denotes the normalized effect of the kth variant. This
model is illustrated in Fig. 1A.

Defining Heritability. Heritability quantifies how much of the
variability of p is the result of variability in g. There are two types
of heritability: broad-sense heritability H2, which measures the
full contribution of genes, and narrow-sense heritability h2, which
is meant to capture the “additive” contribution of genes (see
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ref. 2 for definitions). For our additive model, these definitions
coincide, and we have

H2 = h2 =
X
k

u2k: [2]

Estimating Heritability from Significantly Associated Variants. Sup-
pose a certain subset S of variants has been shown definitively to
be associated with our quantitative trait, based on a large CVAS
with a stringent threshold for statistical significance. The heri-
tability explained by these known loci may be estimated as

ĥ
2
S =

X
k∈S

û2k: [3]

As noted above, h2S provides a lower bound for the heritability.
However, h2S may greatly underestimate the actual heritability
explained by common SNPs if the sum in Eq. 3 fails to include
many additional variants associated with the trait because they
have not reached statistical significance in the sample—for ex-
ample, because of low effect sizes or lower minor allele frequen-
cies. It is clear that most current disease studies have many false
negatives, inasmuch as the number of loci identified has been
continuing to grow with sample size.

Estimating the Aggregate Impact of All Variants. The challenge thus
is to estimate the heritability attributable to all common variants
associated with a disease, without actually identifying these
variants. The basic idea follows from the classical notion, artic-
ulated by Galton (18) in the 19th century, that the heritability of
a trait is captured by the extent to which genetic similarity be-
tween individuals predicts their phenotypic similarity. The chal-
lenge is to convert this notion into a mathematical procedure for
estimating heritability.
Yang et al. (9) made the key observation that because we are

interested in the value Σu2k rather than each of the individual
effect sizes uk, the effect sizes may be regarded as “nuisance
parameters.” They adopted a “random effects” model in which
the uk are treated as identical and independently distributed

random variables drawn from a distribution with mean 0 and
variance σ2u. (Higher values of σ2u imply larger effects, resulting in
higher heritability, and vice versa.)
Under our additive model above with random effects, we have

the following elegant relationship:

corr
�
pi; pj

�
=E

�
pipj

�
= h2Gij; [4]

where Gij denotes the genetic correlation between individuals
i and j, given by

Gij = corr
�
gi; gj

�
=
1
m

Xm
k=1

gik gjk: [5]

Eq. 4 provides an intuitive method for estimating heritability—
regressing the empirical phenotypic correlations (pipj) onto the
genetic correlations Gij. The estimated slope of this regression
is an unbiased estimator of the heritability. This procedure is
known in the genetics literature as Haseman–Elston regression
(16, 17). We refer to the general idea of regressing the pheno-
typic correlations onto the genetic correlations and using the
slope for heritability estimation as PCGC and note that Haseman–
Elston regression is a special case of PCGC regression.
To apply Eq. 4, we need to know the genetic correlation Gij

between people. However, a problem shared by all heritability
estimation methods is that these correlations are unknown and
need to be estimated from the data. A classical approach used in
human genetics is to use the expected kinship coefficient for
individuals in a pedigree (for example, 50% for siblings, 3.125%
for second cousins, or 0 for unrelated individuals). However, the
genetic correlation between related individuals may vary consid-
erably around the kinship coefficient, and unrelated individuals
may have substantial cryptic sharing, resulting in nonzero corre-
lations. For example, the genetic correlation between siblings
varies around the expected value of 50% with an SD of 3.6% (19).
Hence, more accurate estimates of Gij may be obtained by directly
examining partial genotype or complete sequence information. We
return to the problem of estimating Gij below.

Fig. 1. Distributions of genetic effects, environmental effects, phenotypes, and liabilities in three study designs. In each of A, B, and C, a phenotype is
assumed to depend on the sum of a genetic effect and an environmental effect. The scatterplot shows the joint distribution of the genetic and environmental
effects, the upper left shows the marginal distributions of the environmental effect, the upper right shows the marginal distributions of the genetic effect,
and the lower portion shows the marginal distribution of the phenotype. (A) Quantitative phenotype in a random sample of the population. (B) Disease
phenotype in a random sample of the population. (C) Disease trait in a balanced case–control study. Disease phenotypes were simulated under a liability
threshold model with disease prevalence of 10% (B) and 0.1% (C), with red points indicating affected individuals (liability above the threshold) and black
points indicating unaffected individuals (liability below the threshold). In C, the marginal distributions of the genetic and environmental effects no longer are
normally distributed, and there is an induced positive correlation between the genetic and environmental effects (r = 0.53).
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Improving Heritability Estimates with REML. Although the PCGC
regression approach for estimating heritability is easy to un-
derstand and implement, and produces unbiased estimators, it
does not, in fact, make full use of all available information. In
a sense, PCGC regression looks only at pairs of individuals at
a time, whereas there is additional information in looking at trios
of individuals simultaneously, or even at the entire cohort si-
multaneously. More precisely, the PCGC regression estimator is
a moments-based estimator. In statistics, maximum likelihood
estimators generally are preferred because they can extract more
information and provide more precise estimates.
To use maximum-likelihood estimation, one is required to put

forward an explicit probabilistic model of the data (by contrast, the
PCGC regression approach requires only independence as-
sumptions, namely that the genetic and environmental effects are
independent, and that the environmental effects of different
individuals are independent). The common additional assumptions
are that the genetic component g and the environmental compo-
nent e of the phenotype both follow a normal (Gaussian). In this
case, the phenotype p is distributed normally, and the joint dis-
tribution of the phenotype vector p = (p1,p2,. . .,pn) is given by

p∼N
�
0;Gh2 + I

�
1− h2

��
; [6]

where I denotes the identity matrix, and G is the genetic corre-
lation matrix whose off-diagonal entries are the pairwise corre-
lations Gij and its diagonal is 1. This model is a special case of a
more general statistical approach known as random effects mod-
els, and the problem of estimating heritability is a special case of
the problem of estimating variance components.
Yang et al. (9) use this framework for the estimation of her-

itability, which allows them to apply well-established methods
such as REML to obtain estimates of h2. The resulting REML
estimates are better than those based on the regression approach
(i.e., they require fewer observations to reach the same accuracy of
the estimate). For example, Yang et al. (9) use REML to estimate
the narrow-sense heritability of height explained by common SNPs
at 53.7 ± 10.0%. By contrast, the PCGC regression estimate (which
in this case, reduces to standard Haseman–Elston regression) using
the same data are 51.0 ± 13.5% (9).

Model for Disease Traits. From the description above, estimating
the heritability due to common variants may be considered
largely solved for the case of a quantitative trait. However, the
primary focus of medical genetics is disease traits—which are
binary (affected vs. unaffected) rather than quantitative. Disease
traits pose further challenges.
Disease phenotypes traditionally have been modeled by a

liability threshold model (illustrated in Fig. 1B; see ref. 2 for
details). The model assumes the existence of a quantitative trait,
called the “liability score” and denoted l. As above, we have l =
g + e, where the genetic component g and the environmental
component e both are normally distributed and uncorrelated
with each other. Individuals are affected if and only if their lia-
bility score exceeds a threshold t. The value of t determines the
prevalence of the disease in the population, so the liability
threshold model can accommodate diseases of any frequency by
adjusting the threshold parameter accordingly.
Heritability may be calculated based on either the unobserved

liability scale (denoted h2l ) or the observed binary disease phe-
notype (denoted h2o). Geneticists typically are interested in
knowing h2l , but because the liability score is unobserved, they
must estimate it indirectly based on h2o. Dempster and Lerner
(20) discovered a surprisingly simple relationship between these
two heritabilities:

h2l =
Kð1−KÞ
φðtÞ2 h2o; [7]

where K is the prevalence of the disease in the population, t is the
threshold, and φ is the standard Gaussian density.

Adapting REML to Case–Control Studies of Disease Traits. Lee et al.
(10) sought to use this framework to adapt the REML method to
disease traits. In the case of a random sample from the pop-
ulation, they offer a simple recipe: (i) code the disease pheno-
type as a 0/1 variable, (ii) use the REML procedure for a
quantitative trait to calculate the heritability of the 0/1 on this
observed scale, and (iii) convert the resulting estimate to the
liability scale as in Eq. 7. There is an important caveat: although
the liability is a continuous quantitative trait, the 0/1 variable
itself is not and therefore does not actually fit the likelihood
function assumed in the REML method (Eq. 6). Although this
approach yields unbiased estimates (SI Appendix, section 5.4.2),
the resulting estimates no longer are maximum-likelihood esti-
mates; thus, some of the favorable properties of maximum
likelihood estimates no longer are guaranteed to hold.
Real disease studies, however, rarely involve a random sample

from the population: the number of affected individuals cap-
tured in the sample would be too small. Instead, geneticists use
case–control studies, in which cases are considerably over-
sampled relative to their prevalence in the population. Because
of this oversampling of cases, several assumptions of the prob-
abilistic model of REML are violated: (i) the marginal distri-
butions of the genetic and environmental effects, as well as of the
liability, no longer are normal; (ii) the multivariate distribution
of these effects no longer is multivariate normal; and (iii) the
genetic and environmental effects no longer are independent.
We illustrate two of these problems below.

Problem 1: Nonnormality of the Liability.Whereas the liability score
follows a normal distribution in the case of a random population
sample, it does not when case–control sampling is used: the
oversampling of cases inflates the right tail of the liability score
distribution, resulting in a nonnormal distribution of the liability
score in the study (Fig. 1C).
Lee et al. (10) acknowledge the nonnormality induced by

case–control sampling and propose the following analog to Eq. 7
to account for this issue in transforming REML estimates from
the observed to the liability scale:

ĥ
2
l =

K2ð1−KÞ2
P
�
1−P

�
φðtÞ2ĥ

2
o; [8]

where K and P are the prevalence of the disease in the population
and the study respectively, and ĥ

2
o refers to the REML estimate

of heritability, when the phenotype is coded as 0/1, and treated as
continuous. The same correction was derived by others in a Bayesian
framework (21). Intuitively, the term K2ð1−KÞ2

Pð1−PÞφðtÞ2 is a generalization of
Eq. 7, accounting for the nonnormality of the liability caused by the
oversampling of cases. In a random sampling scheme, we have
K =P, and Eq. 8 boils down to Eq. 7 as expected.

Problem 2: Case–Control Sampling Causes “Induced” GxE Interactions.
Although Lee et al. (10) consider the issue of the nonnormality of
the liability score induced by the case–control sampling, their
analysis misses a subtle but important problem. It turns out that
case–control sampling creates an induced positive correlation
between the genetic and environmental effects for the samples in
the study, as can be seen in Fig. 1C. Although there is no GxE
interaction in the population, there is an obvious interaction be-
tween g and e under case–control sampling.
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REML Underestimates the Heritability Explained. Just as it was demon-
strated in ref. 2 that the presence of GxG interactions leads to un-
derestimation of the fraction of heritability explained, we suspected
that the presence of such induced GxE interactions might result in
underestimation of the heritability. To test this idea, we simulated
the entire generative process of a case–control study of a disease.
In each simulation run, we generated data for millions of

individuals using a liability threshold model corresponding to the
desired population prevalence K. For each individual, we gen-
erated genotypes at 10,000 independent loci, with minor allele
frequencies between 0.05 and 0.5. The effect of each SNP was
drawn from a normal distribution, as in Yang et al. (9). The li-
ability was computed according to the polygenic model of Eq. 1,
with the variance of the genetic effect set to achieve the desired
heritability. Each individual then was classified as affected or
unaffected according to the appropriate threshold. Finally, all
affected individuals were sampled for the study as cases, whereas
unaffected individuals were chosen with a probability set to
achieve the desired proportion of cases P in expectation. This
process was repeated until 4,000 individuals (with the desired
proportion of cases) were collected for the study. We note that
the choice of simulating SNPs at linkage equilibrium was mo-
tivated by a theoretical result from Patterson et al. (22), which
shows that the resulting distribution of correlation matrices is
equivalent to the distribution obtained from a larger number of
SNPs in linkage disequilibrium.
Our simulations confirm our expectation: heritability esti-

mates obtained by applying REML and correcting using Eq. 8
are strongly downward biased (Fig. 2A). The magnitude of the
bias increases when (i) the disease is rarer, (ii) the proportion of
cases is closer to half, and (iii) the heritability is higher. Indeed,
these circumstances each increase the induced GxE interaction.

To illustrate the magnitude of the bias, consider a situation
representative of a balanced case–control study of a disease in
which true underlying heritability due to common SNPs is 50%.
If the prevalence is 0.1% (comparable to the frequencies of MS
or Crohn’s disease), then the REML method yields an estimated
heritability of only 29.4% on average. The bias decreases for
more common diseases. For prevalences of 0.5%, 1%, 5%, and
10%, the expected heritability estimate in a balanced case–con-
trol study is 34.9%, 37.9%, 43.7%, and 48.1%, respectively.
In addition to the factors described above, the bias of REML

estimates depends on other factors—most importantly, it increases
with the study size. To illustrate the effect of study size on the bias
of REML estimates, we simulated case–control studies with
a varying number of individuals (between 2,000 and 8,000) but kept
all other parameters constant (we simulated 10,000 SNPs in linkage
equilibrium, prevalence of disease in the population was set to 1%,
average proportion of cases in the study was 30%, and the heri-
tability was set to 50%). The average REML estimates of herita-
bility decreased with study size, from 43.6% (SE: 0.7%) with 2,000
individuals to 35.3% (SE: 0.2%) with 8,000 individuals (Fig. 2B).
We note that Lee et al. (10) tested their method using simu-

lations, which appeared to confirm that the REML method
provides unbiased estimates. However, these simulations did not
explicitly simulate genotypes. Instead, they proceeded as follows:
they (i) generated individuals in batches of 100; (ii) assigned
genetic correlations to all pairs of individuals, by assuming that
individuals in the same batch have correlation 0.05 and individ-
uals in separate batches have correlation 0; and (iii) simulated
phenotypes, by generating liabilities according to Eq. 6 and
comparing them to the threshold t. All affected individuals were
retained for the simulation, together with an equal number of
randomly selected unaffected individuals. The problem with this
simulation scheme is that most batches contain few cases—indeed,

Fig. 2. Comparison of REML and PCGC regression. (A) REML yields biased estimates for case–control studies of diseases, whereas PCGC regression yields
unbiased estimates. We simulated case–control studies for nine combinations of K (prevalence) and P (proportion of cases among overall samples), and for
five values of h2 (0.1, 0.3, 0.5, 0.7, and 0.9). For each combination of parameters, we show the average of 10 heritability estimates obtained by applying the
REML method of Lee et al. (10) and PCGC regression to our simulated case–control data. REML produced biased estimates, whereas PCGC regression produced
unbiased estimates for all scenarios. The bias of REML estimates increases as both the true heritability and overrepresentation of cases increase. To dem-
onstrate the severity of the bias, consider the scenario of a disease with prevalence of 0.1% in a balanced case–control study (values typical for Crohn’s disease
or MS). When the true heritability is 50%, the estimated heritability would be 30% on average, as indicated by the black dots. (B) Heritability estimates for
case–control studies with increasing sample size. Simulated case–control studies are as previously described, with the prevalence of the disease, the pro-
portion of cases, and the heritability fixed at 1%, 30%, and 50%, respectively. The size of simulated studies ranged from 2,000 to 8,000. The bias of heritability
estimates from REML increases with study size, whereas those from PCGC regression estimates remain unbiased. (C) Heritability estimation in the presence of
fixed effects. We simulated case–control studies with an additional “sex” covariate, which either has no effect on the disease or increases the relative risk (RR)
by twofold or fourfold. The prevalence of the disease in the population was 0.5%, the heritability was set to 50%, and the numbers of cases and controls were
equal. Applying REML with or without accounting for the additional covariate resulted in underestimation of the heritability. Moreover, inclusion of the
covariate as a fixed effect resulted in even lower estimates of heritability when the effect of the covariate on the phenotype was considerable. By contrast,
PCGC regression correctly accounted for the presence of the covariate.
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often zero or one for a disease with low frequencies. Because there
were few cases within each batch, the genetic correlation between
most case pairs, most control pairs, and most case–control pairs was
exactly 0 (with a small number of nonzero correlations set at 0.05).
In some simulation scenarios, up to 99.98% of the correlations were
set to 0. In short, the simulation did not resemble actual genetic
correlations. Our simulations above overcome this problem by ex-
plicitly simulating genotypes (SI Appendix, section 5).

PCGC Regression as a General Method for Estimating Heritability.
Given the serious bias in REML estimates for case–control
studies, we sought to develop an alternative approach based on
PCGC regression. Because PCGC regression estimates are mo-
ment estimators, they (in contrast to maximum-likelihood esti-
mators) do not require assuming an entire probabilistic model to
obtain unbiased estimates; this is a useful feature in situations in
which the actual probabilistic setup is complex.
PCGC regression is based on the simple idea that the heritability

of a trait controls the strength of the relationship between genotype
and phenotype. In the general case, the relationship among genetic
correlation (Gij), phenotypic correlation (pipj), and the heritability
due to common variants (h2Þ may be expressed as

E
�
pipj

�
= f

�
h2;Gij

�
; [9]

where the function f depends on (i) the design of the study and
(ii) the properties of the phenotype. Given the function f, we can
estimate h2 by searching for the value that provides the best fit
when across all pairs of individuals—for example, by minimizing
the sum of squares between the actual and predicted phenotypic
similarities:

ĥ
2
=min0≤h2≤1

X
i≠j

h
pipj − f

�
h2;Gij

�i2
: [10]

The simplest situation is one in which (i) the individuals com-
prise a random sample from the population and (ii) the pheno-
type is an additive polygenic quantitative trait, in which case we
have f ðh2;GijÞ= h2Gij. The value of h2 may be estimated by
linear regression; the estimate is the slope obtained by regressing
the values of pipj onto the values of Gij. This practice is known
as Haseman–Elston regression.
PCGC regression may be extended to other study designs,

although explicit expressions for f are harder to obtain. However,
when focusing on studies of largely unrelated individuals, the
values of Gij are mostly small. Accordingly, f can be approxi-
mated by a Taylor series at Gij = 0:

f
�
h2;Gij

�
=

df
dGij

�
h2; 0

�
Gij +O

�
G2

ij

�
: [11]

Provided that g and e are normally distributed, we show (SI
Appendix, section 1.3) that df

dGij
ðh2; 0Þ is linear in h2, and thus

f
�
h2;Gij

�
= ch2Gij + o

�
G2

ij

�
[12]

for some constant c that depends on the properties of the phe-
notype and the study, but not on the heritability.
In this situation, we can use linear regression to estimate h2.

The only question is how to calculate the constant c. We provide
step-by-step calculations for determining c under several relevant
study designs (SI Appendix, sections 1–4).
As an example, consider the situation of case–control studies,

as above. We show (SI Appendix, section 1.3) that the value of c
is given by

c=
Pð1−PÞφðtÞ2
K2ð1−KÞ2 ; [13]

which is the reciprocal of the coefficient in Eq. 6. [Notably, the
REML correction is derived by Lee et al. (10) to correct for the
problem of nonnormality (problem 1 above), whereas the use of
regression in combination with this c addresses both the marginal
nonnormality and the induced GxE correlations (problem 2)
simultaneously.] As a test, we applied PCGC regression to the
simulated case–control data. The results (Fig. 2A) confirmed that
the approach indeed yields estimates that are unbiased and con-
siderably more accurate than those achieved by the method of Lee
et al. (10). We tested PCGC regression across many scenarios:
simulating a wide range of disease prevalence (SI Appendix, Figs.
S5 and S6), populations with cryptic relatedness (SI Appendix, Fig.
S7); different numbers of SNPs (SI Appendix, Fig. S8), increasing
study sizes (Fig. 2B), and alternative polygenic architectures (SI
Appendix, Figs. S11 and S12); and estimating heritability in the
presence of additional covariates (see below for more details, or
see SI Appendix, section 5.6). In all scenarios, PCGC regression
yielded unbiased estimates of heritability.

Estimating the Heritability Due to Common SNPs. So far, we have
discussed PCGC regression as a general method for estimating
heritability. Its input is a matrix G of genetic correlations and
a vector p of phenotypes, and its output is an estimate of the
heritability (the same generally is true for any correlation-based
heritability estimation method). It is important to note that the
interpretation of the resulting estimate depends heavily on the
actual G used. Yang et al. (9) pioneered the approach of esti-
mating G from genotyped common SNPs, and thus the result is an
estimate of the heritability explained (or tagged) by common
SNPs. If, for example, G were to be estimated using SNPs from
only one chromosome, the result would be an estimate of the
heritability explained by common SNPs on that chromosome (23).
The commonly used estimate of the genetic correlation is the

empirical correlation, computed over the set A of variants gen-
otyped or sequenced:

Ĝij =
1
jAj

X
k∈A

gikgjk: [14]

Because G typically is estimated by using only genotyped SNPs,
the resulting estimate is interpreted as the heritability due to
genotyped SNPs (sometimes referred to as “chip heritability,”
i.e., the heritability explained by the SNPs on the genotyping
chip). Hence, it is expected to underestimate the heritability
explained by all common SNPs, because the genotyped SNPs
are in imperfect linkage disequilibrium (LD) with the ungeno-
typed common SNPs. Yang et al. (9) suggest a method for quan-
tifying and correcting this underestimation. We adopt their
correction when appropriate, because our focus is on methods
for estimating heritability and not on estimating correlation ma-
trices (SI Appendix, section 7). We address alternative approaches
in Discussion.

Applying PCGC Regression to Case–Control Studies of Disease. We
applied PCGC regression to six case-control studies of disease: the
WTCCC studies of Crohn’s disease, bipolar disorder, and type 1
diabetes investigated by Lee et al. (10); studies of MS and
schizophrenia to which the same REML methodology was applied
(11, 24, 25); and a study of early-onset MI (26). Where necessary,
we applied stringent quality control, as suggested by Lee et al.
(10), to mitigate batch effects (SI Appendix, section 10). We in-
cluded sex as a covariate (SI Appendix, section 2) and removed the
top 10 principal components of the correlation matrix to control
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for population structure (SI Appendix, section 8). To address the
problem of imperfect LD between causal SNPs and genotyped
SNPs (which, as noted above, results in underestimation of heri-
tability), we applied the correction proposed by Yang et al. (9) (SI
Appendix, section 7); we note that this correction also was applied
by Lee et al. (10) for their REML estimates.
As expected, PCGC regression estimates were higher than

REML estimates for all six diseases (Table 1). Specifically, the
estimated heritability attributable to common variants increased
from 39.3% to 47% for bipolar disorder, from 20.2% to 24.6%
for Crohn’s disease, from 14.6% to 16.3% for type 1 diabetes
(excluding chromosome 6 from the analysis), from 38.2% to
42.1% for schizophrenia, and from 33.3% to 38.2% for MI. The
most notable increase was for the least frequent disease: for MS,
the estimated heritability attributable to common variants in-
creased from 33.5% to 45.3%.
We can infer the proportion of the overall heritability attrib-

utable to common variants by dividing these values by published
estimates of the total heritability (derived from population
studies of the phenotypic correlations among relatives; Table 1).
Mindful of the considerable uncertainty in these published esti-
mates, we estimate that the proportion of the overall heritability
attributable to common variants for these diseases ranges from
41% to 68% (mean 60%).

Extending PCGC Regression to Incorporate Covariates in Heritability
Estimation. PCGC regression similarly can deal with other im-
portant situations. Although genetic and environmental effects
often are assumed to represent the sum of many small effects and
thus to be distributed normally, some specific effects may be very
large. For example, men are considerably taller than women, the
prevalence of Alzheimer’s disease increases sharply with age, and
lung cancer is more prevalent in smokers than nonsmokers. Such
covariates (sex, age, smoking) also are referred to as “fixed effects”
and must be accounted for in attempting to estimate the herita-
bility due to common variants.
In the case of a randomly sampled continuous phenotype,

REML methodology can be naturally extended to account for
additional covariates, and this extension indeed is implemented
in the popular GCTA software (27). In the scenario of case–
control studies, Lee et al. (10) continue to treat the phenotype as
quantitative, apply the extended REML approach to account for

fixed effects, and use their correction (Eq. 6) to transform the
resulting estimates of heritability to the liability scale. However,
the presence of fixed effects only aggravates the problems arising
from case–control sampling, and as a result, the heritability esti-
mates obtained in this manner are even more biased. The in-
creased bias is seen in our simulations (Fig. 2C and SI Appendix,
Fig. S13) and also is supported by theoretical arguments (28).
By contrast, PCGC regression can be extended readily to ac-

count for covariates while still yielding unbiased estimates. This
is done by replacing the constant c from Eq. 7 with a set of
constants cij that depend on the covariates for individuals i and j.
Deriving the specific values of cij is more involved (SI Appendix,
section 2). Briefly, we let zi denote the covariates for individual i,
which includes all relevant additional data (smoking habits, sex,
age, and so on). Rather than having studywide parameters
denoting (i) the fraction K of cases in the population, (ii) the
liability threshold t, and (iii) the probability P that an individual
in the study is affected, we have individual-specific parameters,
where each individual has (i) an individual-specific probability Ki
of being affected, conditional on her specific covariates; (ii) a
corresponding individual-specific liability threshold ti; and (iii) a
corresponding individual-specific probability Pi of being affected,
conditional on both her specific covariates and the fact that she
was selected for the study.
Using these definitions, we show (SI Appendix, section 2.2) that

cij =

φðtiÞφ
�
tj
�"

1−
�
Pi +Pj

�� P−K
Pð1−KÞ

�
+PiPj

�
P−K

Pð1−KÞ
�2

#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pið1−PiÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pj
�
1−Pj

�q �
Ki + ð1−KiÞKð1−PÞ

Pð1−KÞ
��
Kj +

�
1−Kj

�Kð1−PÞ
Pð1−KÞ

�:
[15]

Our simulations confirm that PCGC regression accounts cor-
rectly for additional covariates (Fig. 2C).
The relatively complex formulas for PCGC regression in the

fixed-effects scenario shed light on a key difference between
REML-based methods and PCGC regression. When no fixed
effects are involved, both the REMLmethod of Lee et al. (10) and
PCGC regression appear rather similar: both may be viewed as
a two-step procedure, in which the first step entails applying

Table 1. Estimates of phenotypic variance explained and proportion of heritability explained by common variants from REML and
PCGC regression for six diseases: bipolar disorder, Crohn’s disease, early-onset MI, MS, schizophrenia, and type 1 diabetes

Phenotypic variance explained
by common variants, % (SE)

Phenotype Prevalence, % REML PCGC
Estimated total
heritability, %

Heritability explained
by common variants, %

Bipolar disorder 0.5 39.3 (4.3) 47.0 (7.1) 71 66
Crohn’s disease 0.1 20.2 (3.1) 24.6 (4.3) 50–60 41
MI 1 33.3 (6.1) 38.2 (9.1) 56 68
MS 0.1 33.5 (3.5) 45.3 (5.5) 25–75 60
Schizophrenia 1 38.2 (3.3) 42.1 (5) 64 66
Type 1 diabetes (w/o HLA) 0.5 14.5 (4.0) 16.3 (5.5)
With HLA (SI Appendix, section 11) 0.5 51.3 72–88 58

SEs are given in parentheses. PCGC and REML estimates are corrected for estimated genetic correlations, as discussed in refs. 9 and 10, and include sex and
the top 10 principal components as fixed effects (SI Appendix, sections 2 and 8, respectively). SEs for PCGC regression estimates are estimated using 100
jackknife iterations (SI Appendix, section 6), and REML SEs are produced by the GCTA software (27). For population prevalence and family-based estimate
references, see SI Appendix, Table S8. The heritability explained by common variants was obtained by dividing (i) the PCGC estimate of the proportion of
phenotypic variance explained by common variants by (ii) the reported heritability. Where a range of values is given for the heritability, we use the largest
value; this provides a conservative estimate. For type 1 diabetes, the REML and PCGC analyses exclude chromosome 6, which includes the large effect of the
MHC. Based on family studies, the MHC has been estimated to explain ∼50% of the heritability of type 1 diabetes, which would correspond to 36–44% of the
phenotypic variance (39). Based on direct analysis of the relative risk of various MHC haplotypes, we obtain a conservative estimate that the MHC explains at
least 35% of the phenotypic variance (SI Appendix, section 11); we use this value as the contribution of the MHC. w/o, without.
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a simple recipe appropriate for quantitative traits to a disease trait
coded as 0/1 and the second step entails applying a “correction” to
the result, to account for issues overlooked in the first step.
Although Lee et al. (10) use the same approach when fixed

effects are involved (i.e., they apply a standard REML procedure
and an ex post facto correction), PCGC regression no longer may
be viewed in this manner. Accounting for the fixed effects is an
intrinsic part of the estimation process, rather than an ex post
correction. We no longer regress the product of the phenotypes
onto Gij and divide the resulting slope by a single factor c to
obtain liability-scale heritability estimates. Instead, we have a
different cij for every pair of individuals, and we regress pipj onto
the product cijGij.
Thus, although REML-based methods and PCGC regression

may appear similar, they actually are fundamentally different.
PCGC regression constructs the estimates from first principles,
which is why its estimates are unbiased in the presence of both
case–control sampling and covariates.

Applying PCGC Regression to Extreme-Phenotype Studies of Quantitative
Traits. PCGC regression also can be applied to other study designs
in which unbiased REML estimates are not available because of the
complexity of the situation. A particularly important design is an
“extreme-phenotypes” study, in which only individuals with ex-
tremely high or low values of the phenotype are selected for gen-
otyping. Lander and Botstein (29) showed that such designs are
efficient for genetic mapping, because most of the power resides in
individuals with extreme phenotypes.
Extreme-phenotype studies pose challenges similar to those of

case–control studies for REML-based estimation of heritability,
because the assumptions of the normality and GxE indepen-
dence no longer hold (SI Appendix, Fig. S15). As a result, REML
estimates will be biased.
Our PCGC regression framework can deal with extreme-

phenotype studies in a fashion analogous to that of case–control
studies. For example, when sampling individuals whose pheno-
types are either below the Kth quantile, or above the ð1−KÞth
quantile, the value of c is given by (SI Appendix, section 4)

c=
�
1+

φðtÞt
K

�2

; [16]

where t=Φ−1ð1−KÞ is the upper threshold for inclusion on the
liability scale, and φ is the standard Gaussian density, as before.
We derive similar expressions for studies in which different quan-
tiles are used for including extremely high or extremely low phe-
notypes in the study, as well as several other generalizations (SI
Appendix, section 4). Simulations confirm that the PCGC esti-
mates are unbiased (SI Appendix, Fig. S16).
To study the potential benefit of extreme-phenotype studies,

we used simulations to measure the improvement in the accuracy
of heritability estimates obtained by extreme-phenotype sampling
(SI Appendix, section 4). We find, for example, that the accuracy
obtained by randomly samplingN individuals from the population
can be achieved by sampling approximately N/8 individuals from
each of the top and bottom deciles (SI Appendix, Fig. S17). We
observe similar accuracy benefits when comparing the SEs of
heritability estimates of HDL levels in GWASs based on random-
sampling vs. GWASs based on extreme-phenotype sampling (SI
Appendix, section 10.3).

Discussion
The genetic architecture of most common traits and diseases is
complex, involving contributions from genetic variants at many
genes and, potentially, interactions among them. These genetic
variants likely span the range of allele frequencies, from common

variants in the population to rare variants present at extremely
low frequencies.
CVASs (typically called GWASs) of traits and diseases already

have uncovered numerous statistically significant associations
with common variants at individual genetic loci. However, sta-
tistical analyses suggest that many more associated variants lurk
below the surface—falling short of statistical significance because
of inadequate sample sizes. Accordingly, it would be valuable to
have reliable methods to infer the overall contribution of com-
mon variants without the need to identify each individual locus.

REML Methods for Estimating Heritability. Visscher and coworkers
(9) pioneered the random-effects approach for using CVAS data
to estimate the narrow-sense heritability of a quantitative trait
due to common variants. By modeling effect sizes as random
variables, this method elegantly circumvents the need to estimate
the effect size of each SNP. Instead, it focuses on estimating the
overall heritability due to the entire set of common variants.
Applying this REML methodology to a wide range of quantita-
tive phenotypes indicates that for many phenotypes, common
genetic variants account for a substantial portion of the overall
heritability—much more than the portion explained by the in-
dividual loci that so far have attained genome-wide significance.
Visscher and coworkers (10) subsequently sought to extend

the REML methodology to disease phenotypes. Disease studies
typically involve case–control designs, wherein cases are con-
siderably oversampled relative to their frequency in the pop-
ulation; this sampling design violates various assumes of the
REML framework. Lee et al. (10) attempted to account for these
issues by applying a post hoc correction. However, as demon-
strated by our extensive simulations (and by actual genetic
studies of six diseases), their method yields strongly downwardly
biased estimates of the heritability due to common variants in
a variety of interesting and relevant scenarios. The bias depends
on properties of the disease, including the prevalence in the
population and the true underlying heritability. Most troublingly,
the bias increases with study size and with the proportion of cases
in the sample. (The bias also depends on the number of SNPs
actually genotyped, although this is of secondary importance.)
We conclude that REML methods do not provide a suitable
framework for estimating heritability for disease phenotypes.

PCGC Regression. To solve this problem, we developed PCGC
regression, which provides a powerful framework for estimating
the heritability due to common variants in a wide range of sce-
narios. Extensive simulations show that PCGC regression yields
heritability estimates that are unbiased (as expected mathemat-
ically) and more accurate than the REML approach, when ap-
plied to case–control studies.
PCGC regression is a general framework for heritability esti-

mation. In the case of an unascertained quantitative phenotype,
it boils down to the well-known regression method of Haseman
and Elston. When dealing with case–control studies, PCGC re-
gression allows unbiased estimation of heritability, even in the
presence of covariates. As such, it subsumes several recent an-
ecdotal observations (14, 15), provides a theoretical foundation,
and, importantly, allows for the incorporation of covariates. In
addition to case–control studies, the PCGC regression frame-
work can readily accommodate other complex study designs.
One important application is extreme-phenotype studies for
quantitative traits, which may be more cost-effective than ran-
dom sampling studies for the purposes of identifying causal loci
and estimating heritability.
One limitation of PCGC regression is that it is based on a first-

order approximation of the relationship between phenotypic
similarity and genetic correlation. This approximation is expec-
ted to be accurate when individuals in the study largely are un-
related. However, in populations with a high degree of cryptic
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relatedness, this might not be the case. In such cases, PCGC re-
gression can be extended by using second-order, or higher-order,
approximations (SI Appendix, section 1.4). We note, however,
that for the WTCCC population, using first- or second-order
approximations yielded very little difference.

Design of Simulations. Our paper highlights a critical issue con-
cerning the design of genetic simulations. Lee et al. (10) did not
observe the serious bias inherent in REML methods for case–
control studies because they used a highly incomplete simulation.
In particular, they did not explicitly generate genotypes and phe-
notypes for each individual, but rather arbitrarily assigned genetic-
correlation values to pairs of individuals. This shortcut eliminated
critical correlations between genotype and phenotype. By contrast,
our simulations use a generative approach: they explicitly (i) as-
sign effect sizes to each variant, (ii) generate genotypes for each
individual, and (iii) ascertain cases and controls based on phe-
notype, by selecting or rejecting individuals. These simulations
readily revealed the large downward bias in REML estimates.
One issue with the generative approach is the considerable

running time of each simulation, which greatly limits the possible
number of individuals and SNPs that can be simulated, as well as
the prevalence of the disease simulated. To overcome this problem,
we developed a dynamic programming approach, allowing direct
sampling of genotypes of cases (SI Appendix, section 5.8). We
implemented this approach in a software package called simCC,
which is freely available from our website. Simulations using simCC
are considerably faster; therefore, we could expand our simulations
from 10,000 SNPs to 100,000 SNPs, with qualitatively similar
results (SI Appendix, Fig. S18).
We note that our simulations fail to be fully realistic because

they do not model linkage disequilibrium among variants.
Although the mathematical result by ref. 22 means that this
limitation has little impact on the results in the context of herita-
bility estimation, it is interesting to ask how linkage disequilibrium
might be included for the benefit of other endeavors. Several
authors have used an approach that takes actual genotypes from
an existing study (e.g., WTCCC), assigns effect sizes, and then
calculates phenotypes (e.g., refs. 13, 23, 30). However, as currently
implemented, this approach has the serious flaw that it does not
impose selection to obtain cases and controls and, accordingly,
cannot yield a realistic correlation structure for a case–control
study (such as the striking correlation effects in Fig. 1C). One
could solve this problem by using a vastly larger collection of ac-
tual genotypes, such that one could obtain cases by imposing
stringent selection (i.e., discarding 90–99% of samples, depending
on the disease frequency); however, current datasets are too small
for his approach. Alternatively, it may be possible to use programs
such as HapGen (31) to simulate realistic genotypes from a
smaller sample of actual genotypes. Whether this approach is
feasible at the required scale is a topic for further study.

Improved Estimates of Genetic Correlation. We demonstrate that
PCGC regression yields unbiased heritability estimates, given
knowledge of the genetic correlation matrix G. However, G is
unknown, and estimates of G are used by most heritability esti-
mation methods. As pointed out by Yang et al. (9), replacing the
true value of G with a noisy estimate results in underestimation
of the heritability. This effect is not unique to heritability esti-
mation and is known as “diluted” regression (or “errors-in-var-
iables”): when regressing a dependent variable y onto a noisy
measurement of an explanatory variable x, the estimated slope is
attenuated. It is important to stress that this bias is not a result of
the heritability estimation method, but rather to the use of noisy
estimates of genetic correlations instead of the true correlations.
Yang et al. (9) overcome this problem by quantifying the bias

via simulations, and correcting for it post hoc. This eliminates the
bias but increases the variance of the estimate. We adopt their

method when estimating the heritability due to common SNPs
using real data.
Several recent papers (13, 21, 30, 32–35) focused on improving

the estimation of the genetic correlation matrices, by accounting
for sparsity (33, 34), LD and LD-dependent genetic architecture
(30), prior information regarding effect sizes of different SNPs
(35), or the relationship between minor allele frequency and
effect size (30). As better methods for estimating the genetic
correlation matrix are developed, they may be used in PCGC
regression in place of the correction method of Yang et al. (9).
More accurate estimates of the genetic correlation matrix are
expected to increase the estimated proportion of heritability due
to common SNPs even further.

Deviating from the Probabilistic Assumptions of the Model. A key
assumption throughout most works addressing the problem of
heritability estimation in general, and estimating heritability us-
ing case–control GWAS in particular, is that the genetic and
environmental effects follow a normal distribution. The as-
sumption of normality typically is justified by the central limit
theorem, as both the genetic and environmental effects are as-
sumed to be the sum of many small contributions, resulting in an
approximately normal distribution.
These assumptions might prove invalid when some covariates

have a considerable effect on the phenotype: for example, the
effect of sex on height or coronary artery disease. When the
problematic covariate is known and observed, it can easily be
accounted for directly by including it as a fixed effect in the model.
However, not all important covariates may be known or observed.
When the phenotype is quantitative, normality assumptions can be
tested; therefore, situations in which the normality assumption is
invalid can, at the very least, be identified. On the other hand, for
disease phenotypes, the liability is unobserved, and it is unclear
how to test the normality assumptions, as well as what the effect of
deviating from these assumptions would be. This question remains
to be addressed in future work.
We assume throughout that the underlying genetic architec-

ture is additive. However, one common speculation is that GxG
interactions play a considerable role in human disease (36). In
this case, one still might attempt to estimate the additive heri-
tability explained by common SNPs by means described here.
However, the proper interpretation of the result might depend
on the exact genetic architecture.
Another key assumption is that the selection of individuals for

the study is guided only by their phenotypes. Although this often
is the situation with case–control designs, other, more compli-
cated selection schemes exist. Two important examples are
covariate-driven sampling [in which the selection is guided by
both the phenotype and by a risk factor of interest, e.g., type 2
diabetes patients with a low body mass index (BMI) and controls
with a high BMI (37)] and case–control matching (in which, for
each case in the study, an effort is made to recruit a control with
similar characteristics). Such designs pose an interesting chal-
lenge for future research.

Role of Common Variants in Common Disease. Beyond the methodo-
logical results in this paper, our key biological finding is that the
heritability of disease traits attributable to common genetic variants
is even higher than current estimates. For the diseases analyzed
above, the heritability estimated by PCGC regression is 9–34%
(mean 19%) higher than the estimates produced by REML.
The phenotypic variance attributable to common variants is

25%, 38%, 42.1%, 45%, and 47% for Crohn’s disease, early-
onset MI, schizophrenia, MS, and bipolar disorder, respectively.
For type 1 diabetes, our estimate is 16.3% when we exclude the
large effects due to the major histocompatibility complex (MHC),
and 51.3% when we include it. [The contribution of the MHC can
be estimated from family studies (38, 39), as well as by considering
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the contribution of the individual common variants as fixed effects
(SI Appendix, section 11).]
We can estimate the proportion of heritability explained by

common variants by dividing (i) the proportion of phenotypic
variance explained by common variants by (ii) the proportion of
the phenotypic variance explained by additive genetic factors—
that is, the total heritability—based on phenotypic similarity
among relatives (e.g., monozygotic and dizygotic twins). We note
that estimates of the total heritability involve substantial un-
certainty [due to small study size and potential artifacts resulting
from the underlying genetic architecture (2)] and may vary con-
siderably across studies; where multiple estimates had been
reported, we used the largest value. The proportions are 41%,
58%, 60%, 64%, 66%, 66%, and 68% for Crohn’s disease, type 1
diabetes, MS, schizophrenia, bipolar disorder, and early-onset MI,
respectively, with a mean value of 60% (Table 1).
Our improved estimates still may underestimate the true

proportion of heritability explained by common variants for
three reasons. First, we calculated the proportion of heritability
explained by using the largest estimate of the total heritability,
when multiple estimates had been reported; this yields a con-
servative estimate. Second, as noted above, uncertainty about the
genetic correlation matrix decreases the heritability explained.
Improved estimates of the genetic correlations likely will in-
crease the estimated heritability explained by common SNPs.
Third, our analysis assumes that the contributions of variants are
drawn from a uniform prior distribution, regardless of biological
context. Instead, variants might be categorized based on bio-
logical annotation (e.g., those within or near coding regions,

regulatory elements, and so on). A distinct correlation matrix
might be estimated for each set and the matrices used simulta-
neously for heritability estimation, a task that can be accom-
modated readily by PCGC regression (SI Appendix, section 3). A
refined correlation structure should provide a better model of
the genetic architecture of disease, and thus would be expected
to yield higher estimates of the heritability explained by common
variants, as well as to provide useful scientific insights.
Our results suggest that larger CVASs will identify many ad-

ditional common variants related to common diseases, although
many additional common variants likely still will have effect sizes
that fall below the limits of detection given practically achievable
sample sizes. Still, common variants clearly will not explain all
heritability. As discussed in the first two papers in this series (2,
3), rare genetic variants and genetic interactions likely will make
important contributions as well. Fortunately, advances in DNA
sequencing technology should make it possible in the coming
years to carry out comprehensive studies of both common and
rare genetic variants in tens (and possibly hundreds) of thou-
sands of cases and controls, resulting in a fuller picture of the
genetic architecture of common diseases.
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