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Johnson-Lindenstrauss (JL) matrices implemented by sparse random
synaptic connections are thought to be a prime candidate for how
convergent pathways in the brain compress information. How-
ever, to date, there is no complete mathematical support for such
implementations given the constraints of real neural tissue. The
fact that neurons are either excitatory or inhibitory implies that
every so implementable JL matrix must be sign consistent (i.e., all
entries in a single column must be either all nonnegative or all
nonpositive), and the fact that any given neuron connects to a rela-
tively small subset of other neurons implies that the JL matrix should
be sparse. We construct sparse JL matrices that are sign consistent
and prove that our construction is essentially optimal. Our work
answers a mathematical question that was triggered by earlier
work and is necessary to justify the existence of JL compression
in the brain and emphasizes that inhibition is crucial if neurons
are to perform efficient, correlation-preserving compression.

Johnson-Lindenstrauss compression | synaptic-connectivity matrices |
sign-consistent matrices

1. Introduction

The existence of some form of compression in the brain is well
accepted among neurobiologists. Its biological “evidence” pro-
ceeds from the brain’s numerous convergent pathways, where
information coming from a large number of neurons must be
compressed into a small number of axons or neurons. Classical
examples are the optic nerve fibers that carry information about
the activity of 100 times as many photoreceptors™ (1) or the
pyramidal tract fibers that carry information from the (orders-of-
magnitude) larger motor cortex to the spinal cord (2).

As far back as 1961, Barlow (3) hypothesized that the role of
early sensory neurons is to remove statistical redundancy in
sensory input. This “efficient encoding” theory has been studied
by many, as surveyed in depth by Simoncelli and Olshausen (4).

A recent survey by Ganguli and Sompolinsky (5) highlights the
importance of compression and compressed sensing in the neural
system for reducing the dimensionality of the activity pattern. A
fundamental question they pose is “How much can a neural
system reduce the dimensionality of its activity patterns without
incurring a large loss in its ability to perform relevant computa-
tions?” They identify, as a minimal requirement, the importance of
preserving the similarity structure of the neuronal representations
at the source area, to capture the idea (6, 7) that in higher per-
ceptual or association areas in the brain, semantically similar
objects elicit similar neural activity patterns.

Ganguli and Sompolinsky suggest that such compression can
be achieved in the brain via random synaptic-connectivity ma-
trices implementing Johnson—-Lindenstrauss (JL) matrices. How-
ever, because each neuron is either excitatory or inhibitory, an
additional constraint, sign consistency, is necessary for this
implementation to work.

In this paper, we show for the first time to our knowledge that
JL matrices can be simultaneously compression efficient, sparse,
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and sign consistent and are thus implementable by biologically
plausible neural networks.

JL Compression and Synaptic Connectivity. Informally, JL. compression

(8) uses a random matrix 4 to map a long vector of reals, x, the

input, to a much shorter vector of reals, y = Ax, the JL output. The

JL result shows that if the number of input vectors one may ever

need to compress is reasonably upper bounded, then the following

property is satisfied:

Inner-product preservation. (x,x') ~ (Ax, Ax') for all envisaged x and x".
Note that inner-product preservation implies the aforementioned

“similarity property” of biological interest; that is,

Correlation preservation.

<x,x’> o <Ax,Ax’>
(bl = {1 fledoe]] - [lAx]|

for all envisaged x and x'.*

That is, similar JL inputs correspond to similar JL outputs.

The mentioned insight for implementing JL compression in
the brain is random synaptic connectivity. An m X d JL matrix 4
is biologically implemented via the synaptic connections among
(the axons of) d “input” neurons and (the dendrites of) m <d
“output” neurons. In essence,
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rons are either excitatory or inhibitory. We prove that sparse
sign-consistent matrices can deliver the desired compression,
lending credibility to the hypothesis that correlation-preserving
compression occurs in the brain via synaptic-connectivity matrices.

Author contributions: S.M. and N.S. designed research; Z.A.-Z. and R.G. performed re-
search; Z.A.-Z. and R.G. contributed new reagents/analytic tools; and S.M. and N.S. wrote
the paper.

The authors declare no conflict of interest.
Freely available online through the PNAS open access option.
"To whom correspondence should be addressed. Email: silvio@csail.mit.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1419100111/-/DCSupplemental.

*Tan C (2013) From vision to memory to concept learning. Lecture, MIT CBCL-CSAIL Brains,
Minds and Machines Seminar Series.

TAs usual, (x,x") represents the inner product of x and x’, that is, >_;xix{. Inner-product
preservation immediately implies (and is in fact equivalent to) norm preservation:
Namely, ||x|| ~||Ax]|| for all envisaged x.

*As usual, ||x|| represents the ¢; norm of x, that is, \/{x,x).

www.pnas.org/cgi/doi/10.1073/pnas. 1419100111


http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1419100111&domain=pdf
mailto:silvio@csail.mit.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419100111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419100111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1419100111

L T

/

1\

=y

in a synaptic-connection matrix, the jth column corresponds to the
connections of the jth input neuron, nj. An entry (i,j) is 0 if n; does
not connect to the ith output neuron; else, it is the strength of their
synaptic connection.

The encouraging aspect of the above biological implementa-
tion of a JL matrix 4 is that the random structure of A matches
the randomness of neural connections.®

1.1. Three Interrelated Challenges.

Sign consistency. Let us explain the constraint in reference 16 of
Rajan, Abbott, and Sompolinsky (10). According to Dale’s principle,
almost all neurons have one of the following two types: excitatory or
inhibitory, but not both. The type of a neuron » essentially determines
the “sign of the signal” it can transmit to a postsynaptic neuron p. As
a standard approximation, an excitatory neuron n can only increase
the activity of p, and an inhibitory one can only decrease it. Thus,
a synaptic-connection matrix must be sign consistent (10, 11). That is,
the nonzero entries of a column j must be either (i) all positive, if the
jth input neuron #; is excitatory, or (if) all negative, if n; is inhibitory.

Unfortunately, typical JL matrices are not sign consistent.
Sparsity. Let us emphasize another fundamental biological con-
straint: sparsity. A neuron may be connected to up to a few
thousand postsynaptic neurons (12). (Furthermore, two neurons
typically share multiple connections.) Thus, no synaptic-connec-
tivity matrix could implement a dense JL matrix when m is large."

As originally constructed, JL matrices were dense. Sparse JL
matrices have been recently constructed (14-18), but they are far
from being sign consistent. Therefore, although the sign consis-
tency of synaptic action may have a few exceptions, the extent to
which the above mathematical constructions may be biologically
relevant is not clear.

Efficiency. As we mentioned at the start of Section 1, Introduction,
implementing an m Xd JL matrix in the brain is interesting only
if m is significantly smaller than d. [Of course, achieving such
efficiency is more challenging with sign consistency, but Rajan
and Abbott (10) have expressed optimism about the general
ability to satisfy the latter constraint.]

Three prior approaches. Let us explain why these three challenges
have not been simultaneously met.

A first and simplest way for JL matrices to be sign consistent is
for them not to have any negative entries, corresponding to syn-
aptic-connectivity matrices without inhibitory neurons. However,
it is not hard to prove that nonnegative JL matrices must be ex-
tremely inefficient (e.g., m >d/2 for typical choices of parameters,
SI Appendix D). This strong lower bound actually provides addi-
tional evidence for the cruciality of inhibition for neural functions.

The result of Rajan and Abbott (10) on the eigenvalue spectra
of square matrices implies a way to transform JL matrices into
sign-consistent ones (subject to mild assumptions on the inputs).
However, the sign-consistent JL matrices they obtained were
very dense: Half of their entries had to be nonzero (details in
Section 2, Related Mathematical Work).

A third approach to sign-consistent JL matrices is implicitly
provided by a transformation of Krahmer and Ward (19). Indeed,
when applied to nonnegative matrices satisfying the restricted
isometry property, their transformation yields sign-consistent JL
matrices, but this construction can be proved to be much less
efficient than ours.

SAlthough it may be easier to biologically construct a large random matrix, billions of
years of evolution may not suffice for the emergence of a very special and very large
matrix of neural connections. Moreover, this random construction need not be first
found by evolution and then preserved genetically. That is, a good matrix A need not
be the same across different individuals of the same species. It suffices that our DNA
ensures that each individual, during development, randomly constructs his own matrix A.

YMoreover, even if m were small—e.g., m=1,000—it seems hard to find in the brain a com-
plete bipartite graph with d “inputs” and m “outputs” (ref. 13, p. 35).

Allen-Zhu et al.

1.2. Our Contributions. The mentioned biological constraints mo-
tivate the following purely mathematical question: How efficient
can sparse (randomly constructed) and sign-consistent JL matrices be?

We answer this question exactly by providing tight upper and
lower bounds.

We begin by formally stating the classical JL lemma (using
norms rather than inner products):

Letting m =0(721log(1/6)), there exists a distribution A over
m xd matrices such that, for any x € R?, with probability at least
1=, [lAx], = (1 &)

The parameter ¢ measures the distortion introduced by the JL
compression; in particular, one may consider e =10% (5). The
parameter 5 measures the confidence with which the 1+e& dis-
tortion is guaranteed. Because one may only need to compress
polynomially many (rather than exponentially many) vectors in his
lifetime, one typically chooses 5=1/poly(d) and thus log(1/8) =
O(logd). [With this choice of §, after applying union bound, a
matrix 4 generated from A is capable of compressing poly(d)
envisaged vectors from R?, with high confidence.]

We prove two main results:

Theorem 1. “A Construction of Sparse, Efficient, and Sign-Consistent
JL Matrices.” That is, letting m=0©(e2log?(1/5)), there exists a
distribution A over m X d sign-consistent matrices such that, for any
x €RY, with probability at least 1 -6, ||Ax|, = (1 + &)|x]|,.

More precisely, a matrix 4 generated according to .4 enjoys
the following properties:

o Sparsity: Each column has ®(s™! log(1/8)) nonzero entries.

e Same magnitude: All nonzero entries have the same abso-
lute value.

o Simplicity: The positions of the nonzero entries in a column and
the sign of a column itself are both randomly selected, indepen-
dent from other columns.

Note that Theorem 1 shows the norm preservation up to a mul-
tiplicative error 1 + e. This implies correlation preservation up to
an additive error +O(e); that is,

(x,x") _ (Ax,Ax") N
el Il flee] - [l =

Note also that we cannot hope for a multiplicative error on correlation
preservation because the correlation value is between —1 and 1, and
thus a multiplicative error would imply the ability to recover orthog-
onal vectors (i.e., vectors with correlation zero) precisely.

O(e).

Theorem 2. "Output-Length Optimality Among All Sign-Consistent
JL Matrices.” That is, let A be a distribution over mxd sign-
consistent matrices such that, for any x €R?, with probability
at least 1 -8, ||Ax||, = (1 + &)|x||,. Then, m =Q (¢7*log(1/5) - min
{logd, log(1/5)}).”

Note that in the interesting parameter regime of 6 =1/poly(d),
our lower bound becomes Q (£72log?(1/5)); that is, it essentially
matches our upper bound.

1.3. In Sum. Our work closes an open mathematical question that
is necessary to justify the existence of JL compression in the
brain. Our work provides the missing support by constructing JL
matrices that are simultaneously sparse and sign consistent and
offer the most efficient JL compression possible; moreover, our
work interestingly implies that inhibition is crucial if neurons are
to perform efficient, correlation-preserving compression.

#Recall that the notation of Q (N) signifies that logarithmic factors of N are ignored. Thus,
in our case, factors of log(1/¢) and loglog(1/5) are ignored in this lower bound.
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Looking forward, the brain has inspired several models of
computation, from perceptrons (20) to neural networks (21), which
have already proved fruitful in many fields and in machine learning
in particular.

Computer scientists have started studying computational models
that are increasingly biologically relevant, for fundamental
tasks such as concept representation and formation (22) and
memory allocation (23-25). We consider our paper a further
step in this direction.

2. Related Mathematical Work

To the best of our knowledge, the only mathematical analysis
of a random sign-consistency matrix is the one suggested by Rajan
and Abbott (10) and followed by ref. 11. Although their results
are about the eigenvalue spectra of a random sign-consistent
square matrix, it implies! the following way of constructing an
m xd sign-consistent JL matrix 4'.

e First, construct an m xd JL matrix A, by randomly assigning
each entry of 4 from {-1/y/m,1/\/m}.

e Second, construct an m X d special matrix M, by assigning each
entry of (a random) half of the columns of M to be —1/\/m
and each entry of the remaining half to be 1/\/m.

o At last, set A" (1/v2)(A+M).

Then, A’ is sign consistent, and A'x =Ax (so A’ is JL), assuming
that x satisfies 3°,c,x; =0. This assumption aside, however, the
resulting matrix A" must be very dense.

The classical JL construction requires a distribution over dense
matrices (e.g., i.i.d. Gaussian or Rademacher entries), but achieves
a target dimension of m =0(s2log(1/8)), which is essentially
optimal (26). A beautiful line of work (19, 27-31) has made use
of the Hadamard or Fourier matrices in the JL construction, to
speed up the matrix—vector multiplication to nearly linear time.
However, their matrices are dense too. Recent constructions
(14-18) yield sparse JL matrices that have O(s™! log(1/8)) rows,
which have been shown to be essentially optimal (32).

Although not applicable to JL matrices, Clarkson and Woodruff
have shown how to construct sign-consistent and optimally sparse
(namely, a single nonzero entry per column) random matrices
(33). Their matrices preserve correlation for inputs satisfying
an algebraic constraint, namely, coming from a hidden subspace.
By contrast, we want to compress arbitrary inputs.

For numerous applications of JL compression in computer
science, see refs. 34 and 35.

A JL matrix 4 can be easily constructed (with very high
probability) by choosing each entry at random. Of course, given
such a randomly constructed matrix, it would be nice to recon-
struct, with meaningful approximation, the original JL-compressed
input x from Ax;** but this cannot be done without assuming
that the inputs are of a restricted type [e.g., close to vectors with
few nonzero entries (36, 37)]. However, even without recon-
structing the inputs, inner-product preservation allows us to
perform a variety of fundamental computations on the JL out-
puts directly and thus with great efficiency. This includes nearest
neighbors (38), classification (39), regression (40), and many others.

3. A Simple Experimental Illustration

Let us consider a simple experiment to numerically verify the
dependency m =0(e~%log(1/6)) in the classical JL construction
and the dependency m=0(g2log*(1/5)) in our novel con-
struction. Rather than fixing the distortion & and the confidence

lin fact, given any random matrix whose eigenvalues are randomly distributed on the
complex unit disk, a random subset of its rows forms a JL matrix.

**To be sure, inner-product preservation always implies a weak form of reconstructabil-
ity. Namely, each entry x; of an input vector x can be reconstructed up to an additive
error of - [|x|[,.

16874 | www.pnas.org/cgi/doi/10.1073/pnas.1419100111

m—Classical JL

——Sign-consistent JL

510]0]
Dimension m

Fig. 1. The classical and our sign-consistent JL constructions.

6 and computing the target dimension m, we find it more con-
venient to fix m and § first and then compute e.

Specifically, we fix d =3,000 and 6=0.1. Consider the fol-
lowing values of m: m=10, 20, 40,...,1,280; and then nu-
merically compute the distortion e for each value of m, both
for the classical and for our new JL construction.

In the classical JL construction, the m X d dimension matrix A
is chosen so that each entry is either 1/y/m or —1//m, each with
half probability.

In our construction, we first define the column sparsity
s=|y/m|. [Note that this is consistent with the parameters sug-
gested by Theorem 1: s=0(e""log(1/6)) =0(\/m).] Then, for
each column of A, we randomly choose s entries of this column
and then flip a fair coin: If it is heads, we set each of these s
entries to 1/4/s; if it is tails, we set each of them to —1/4/s.

For the above two constructions, we apply the JL transformation
Ax on 1,000 randomly chosen inputs x1, . .., X1 000 eR?. For each
construction, we compute the 1,000 distortions ‘||Ax, llo/ Ilill, = 1],
call ¢ the 100th highest distortion, and plot ¢ in Fig. 1. (This
process is equivalent to choosing §=0.1 and throwing out the
highest & fraction of the distortions. Indeed, 100= &§-1,000.)

The experiment illustrates that for both curves, whenever m is
enlarged by a factor of 4, the error & decreases approximately by
a factor of 2. This corresponds to the dependency m « £~2 in both
constructions. Also note that the blue curve falls slightly below
the red curve, corresponding to the difference between the dimen-
sion choice of m = @®(s2 log(l /8)) in the classical JL construction
and m=0(e2log(1/8)*) in ours.

4. Proof Sketch of Theorem 1

Let A" be the distribution of m xd matrices defined as fol-

lows. For each of the d columns, we choose uniformly at random

s distinct entries [of (m> possibilities] and assign a random value
s

between {—1/+/5,1/+/s} (with half probability each) to these s
entries, while leaving it zero in other entries of the same column. "

Theorem 1. Lettmg m=0(e2log*(1/5)) and s=0© (" log(1/5)),
for any x R4, with probability at least 1-6, we have ||Ax|, =
(1x8)|lx||, over the choice of A~ A™5.

The proof of Theorem 1 is quite complex and is given in S/
Appendix A. (In particular, the classical technique of the Hanson—
Wright inequality fails to give a tight upper bound in our case,
just like ref. 18.) Below, we outline just the important ingredients
of the proof.

™ Our theorem remains true if one divides each column into[m/s] blocks and chooses one
random entry from each block and/or if one uses ©(log(1/5))-wise independent hash
functions to generate A™95.
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Proof Sketch. Observe that the entries of a matrix 4 € R™*¢ that
we construct can be written as A;; =#;;0;/+/s, where o; € {—1,1}
is chosen uniformly at random, and #,;; € {0,1} is an indicator
variable for the event 4;; #0. All of the {o}},¢, are independent;
{11 }iem) jei are independent across columns, but not indepen-
dent (and in fact negatively correlated) in the same column, be-
cause there are exactly s nonzero entries per column.

Given any fixed x € R? with |[x||, =1, let us study the following
random variable:

def 2 1 &
Z= || Ax|l;-1=—- Z Z Ny iy jOiOXiX; -
]

S = ijeid

To show that |Z| <& with probability at least 1 -6, we need
a good upper bound on the tth moment of Z [note that we will
eventually choose t=0(log(1/6))]:

t t
St~]E[Zt1 = Z (Hxiuxju) (EHO‘,‘MO']‘U>
it ge€ld) \U=1 u=1

il#jl w»-i/#fr

t m
X (JE H Z M, nrju) .

u=1 r=1

The authors of ref. 18 analyzed a similar expression but with
o;,0j, replaced by o, ;,0,;,. In their case, they decompose Z into
subexpressions Z=2; + ** + Z,,: Each Z, contains all terms with
the same row r (e.g., o,» and 7, , ) and can be analyzed separately.
This greatly simplifies their job because Z, and Z,- are negatively
correlated when r#r’. In contrast, if we did the same thing, we
would not have the same negative correlation anymore: Z, and
Z,» both contain the same random variables o; for all i € [d]. Thus,
we have to analyze the whole expression at once.

Reusing ideas from refs. 16-18, we analyze Z' by associating
monomials that appear in Z' to directed multigraphs with labeled
edges: An x; x;, term corresponds to a directed edge with label u
from vertex i, to vertex j,. We then group the monomials to-
gether based on their associated graphs and prove the following
lemma. (Its proof is analogous to that of equation 13 in ref. 19
but is more tedious.)

4 dp
Lemma 1. 5'-E[Z'] <¢'S"1 Y geqr, (/O V& " ) - e
[T~ (s/m)". Here,

o G, is a set of directed multigraphs with v labeled vertices (1 to v)
and t labeled edges (1 to t).

e d, is the total degree of vertex p € V] in a graph G € G;,.**

e wandvy,...,v, are defined by G and r, ... ,r; as follows. Let
an edge u € [t] be colored with r,, € [m]; then we define w to be the
number of distinct colors used in ry,...,r, and v; to be the
number of vertices incident to an edge with color i € [w].

As one may have observed, for the aforementioned reason, we
need to deal with many rows (e.g., row rq,...,r;) together, in-
troducing a concept of color defined above. To be precise, a di-
rected edge (iy,j,) is now also colored with r, € [m], and this is
a major difference between our Lemma I and for instance
equation 13 in ref. 19. In essence, we are dealing with three-
dimensional tuples (iy,jy,r,) rather than just (i,,j,).

This difference is critical for obtaining a tight bound for Z":

We have to bound the H;=1 \dp % terms separately for graphs of
different colors (as otherwise we will lose a log(1/6) factor in the

*The total degree of a vertex is defined as the number of incident edges regardless of
direction.

Allen-Zhu et al.

proof). In other words, instead of enumerating Geg,as a
whole, we now have to enumerate subgraphs of different colors
separately and then combine the results. Below is one way (and
perhaps the only way we believe) to enumerate G that can lead
to tight upper bounds:

i

y Z (%>v1+m+vw Z Z ;]t[l\/cjpdp.

Vi Jroefw ViGi€GY
ngi < ECz N~ ——
— v vi

v

[4.1]

This gigantic expression enumerates all Gegy, and their
colorings r1, . .., € m] in six steps:

i) Number of graph vertices, ve{2,...,t}; the vertices are
labeled by 1,2,...,v. m

ii) Number of used edge colors, we {1,...,t}, and all ( )
possibilities of choosing w colors. W

iii) Edge colorings of the graph using selected w colors: How
many (denoted by c; >1) edges are colored in color i and
which of the ¢ edges are colored in color i.

iv) Number of vertices v; €{2, ..., 2¢;} in each G, the subgraph
containing edges of color i.

v) All possible increasing functions f; : [v;] — [v], such that f;(j)
maps vertex j in G; to the f;(j) th global vertex. [And we
ensure f;(j) <f;(k) for j <k to reduce double counting.]

vi) All graphs G; € G",, ., with v; labeled vertices (1 to v;) and ¢;
labeled edges (1 to ¢;). (Using all of the information above,
dp, the degree of vertex p € [v], is well defined.)

We emphasize here that any pair of graph G € G”,, and coloring
ri,....r €[m] will be generated at least once in the above pro-
cedure.™ Thus, [4.1] follows from Lemma 1, because the summa-

tion terms also have the same value (s/m)" ™" (1/¢)[T,_,\/d, .

It is now possible to consider G; s separately in [4.1] and prove
the following lemma:

Lemma 2.
t ot m t
st B[z < 20(t) Z
v=2 w=1 \ W Ly C1, , Cw
Cit..tey=t
ci>1
w —_
S\ ¢ v—1
2 Jj
< X6
=1 Vi—
ViyeeosVip
2<v;i<2c;

Some delicate issues arise here. For instance, one may use the
Cauchy-Shwartz technique of ref. 18 to deduce

55This follows from the fact that Gand ry, ..., r¢ together determine (/) w, the number of
used colors; (i) G; for each i€ |w] (with v; vertices and ¢; edges), the subgraph of G of
the ith used color; and (iii) f;, the vertex mapping from G; back to G. Any such triple will
be generated at least once in [4.1]. Note also that we may have double counts but it will
not affect our asymptotic upper bound.
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Jofw Vi,Gi€GY .~ p=1

2<v;<2¢;

J
in Lemma 2. However, even such a simple replacement leads to
a log(1/6) factor loss! Finally, after enduring layers of algebraic

simplifications we prove the following:
t

2
Lemma 3. s' - E[Z'] <200 ./ (5 .

getting a weaker upper bound as it replaces (:_ 11 ) with (: )
i —

By Lemma 3, there exists a constant C such that E[Z'] <
(Cts/m)". Using Markov’s inequality, we have Pr[|Z|> &] <E[Z]/

&' <(Cts/em)’. We now set parameters tdéflog(l /95), sd=8fs‘1t, and
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