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ABSTRACT

Conventional high-order discontinuous Galerkin (DG)
schemes suffer from interface errors caused by the misalign-
ment between straight-sided elements and curved material
interfaces. We have developed a novel DG scheme to reduce
those errors. Our new scheme uses the correct normal vectors
to the curved interfaces, whereas the conventional scheme
uses the normal vectors to the element edge. We modify the
numerical fluxes to account for the curved interface. Our
numerical modeling examples demonstrate that our new
discontinuous Galerkin scheme gives errors with much
smaller magnitudes compared with the conventional scheme,
although both schemes have second-order convergence.
Moreover, our method significantly suppresses the spurious
diffractions seen in the results obtained using the conventional
scheme. The computational cost of our scheme is similar to
that of the conventional scheme. The new DG scheme we de-
veloped is, thus, particularly useful for large-scale scalar-
wave modeling involving complex subsurface structures.

INTRODUCTION

Discontinuous Galerkin (DG) finite-element methods have been
developed for a wide range of problems since their inception in the
1970s (e.g., Reed and Hill, 1973; Cockburn and Shu, 1989; Hes-
thaven and Warburton, 2007). In contrast to classical continuous
finite-element methods, the solution of DG methods can be discon-
tinuous across element interfaces. The weak coupling between el-
ements makes the mass matrix local to the cell, and thus, DG
schemes are compact because only communication with immediate
neighbors is needed. DGmethods are attractive choices for handling

complicated geometries and allowing hanging nodes in the mesh.
DG methods have gained popularity for seismic modeling since the
work of Käser and Dumbser (2006).
For simulations of waves propagating in piecewise constant me-

dia, DG methods with an interface-fitting triangular mesh can cap-
ture material discontinuity more accurately than methods based on
unstructured meshes. However, the errors caused by misalignment
between straight-sided elements and curved interfaces remain an
issue. When triangular meshes are used to fit curved boundaries,
any continuous finite-element method for elliptic equations is, at
most, second-order accurate for the solution and 1.5-order accurate
for the gradient of the solution (Strang and Berger, 1971; Thomée,
1973). DG methods using high-order polynomial bases for hyper-
bolic equations are at most second-order accurate for the solution
(e.g., Bassi and Rebay, 1997). In the presence of curved material
interfaces, the same accuracy reduction holds for wave-propagation
modeling if we assume homogeneous media on each element (Tou-
lorge et al., 2008; Wang, 2010; Fahs, 2011). In seismic modeling,
interface errors may lead to spurious diffractions in the calculated
wavefield, particularly when the element size is comparable with
the wavelength. The wave energy of the spurious diffractions is
much smaller than that of the primary reflections, but is comparable
with that of the multiple reflections.
Although the overall error is dominated by the second-order in-

terface error on fine meshes, choosing the order of the polynomial
basis depends on the problem (e.g., model, data frequency spec-
trum, etc.), the available computational resources, and the desired
modeling quality. For example, Käser and Dumbser (2006) develop
arbitrary high-order polynomial bases and use up to tenth-order pol-
ynomial for the Lamb’s problem. Etienne et al. (2010) advocate
low-order polynomial bases for very complex media. In general,
very high-order polynomial bases are popular when a coarse mesh
is used because the dispersion error usually causes more harm
than the interface error in seismic imaging and inversion. In fact,
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finite-difference methods with second-order accuracy in time and
high-order accuracy in space are widely used, although the interface
error is at most first order (Symes and Vdovina, 2009).
To reduce errors caused by curved geometries, curved elements

have been developed (e.g., Monk and Wang, 1999; Barucq et al.,
2014). For the optimal order of convergence, the standard approach
is using curvilinear elements (Gordon and Hall, 1973) to represent
curved interfaces. The curvilinear elements are constructed using
isoparametric coordinate transforms. Every curvilinear element
has its own mass matrix needed to be factored and stored, leading
to prohibitive computer-memory requirement when a large number
of curvilinear elements are used to fit complex interfaces. Although
the computer memory requirement is mitigated by the low-storage
curvilinear DG method (Warburton, 2013), significant extra efforts
are needed for implementation. We aim to develop a simpler algo-
rithm to reduce the interface errors in this paper.
Krivodonova and Berger (2006) introduce a simple way to

approximate curvilinear boundaries and reduce the boundary errors
for gas dynamics problems using the correct representation of the
normal vectors to the boundary geometry. This approach avoids the
use of curvilinear elements. However, we observe from our numeri-
cal experiments that extending this approach to interface problems
leads to almost the same results as the conventional DG scheme.
We present a simple correction to the DG methods on triangles to

reduce errors due to piecewise segment approximation of curved
interfaces. We not only use the correct normal vectors to the curved
interfaces but also modify the evaluation points for computing
numerical fluxes. We demonstrate the effectiveness of our simple
correction using numerical modeling of scalar-wave propagation
in media with curved interfaces. Our examples demonstrate that
our new DG scheme gives errors with much smaller magnitudes
compared with the conventional DG scheme, although both the
schemes have second-order convergence. Our method is certainly
not as accurate as curvilinear elements, but the advantage of our
method is its simplicity, especially for problems involving multiple
complex interfaces.

DISCONTINUOUS GALERKIN METHODS

Let x ¼ ðx; zÞ denote the spatial variables. We consider the follow-
ing scalar acoustic-wave equation in velocity-stress formulation as

ρ
∂v
∂t

þ ∇p ¼ 0;

1

κðxÞ
∂p
∂t

þ ∇ · v ¼ sðx; tÞ; (1)

where v ¼ ðvx; vzÞ is the velocity, p is pressure, ρ is the constant
density, and κ is the bulk modulus. We only consider models com-
posed of piecewise constant media. The wave speed is c ¼ ffiffiffiffiffiffiffiffi

κ∕ρ
p

.
The point source is given by sðx; tÞ ¼ fðtÞδðx − xsÞ, where xs is the
source location and fðtÞ is the source time function. We can rewrite
equation 1 as

wt þ Aðx; zÞwx þ Bðx; zÞwz ¼ ½0; 0; κfðtÞδðx − xsÞ�T; (2)

where w ¼ ½vx; vz; p�T and

A ¼
0
@ 0 0 1∕ρ

0 0 0

κ 0 0

1
A; B ¼

0
@ 0 0 0

0 0 1∕ρ
0 κ 0

1
A: (3)

For an interface-fitting triangular mesh, we set ρ and κ as con-
stants on each triangle K. Multiplying equation 2 by a smooth test
function u compactly supported in K and taking an integral over K,
after integration by parts, we obtain

Z
K
wtudV−

Z
K

�
∂u
∂x

Aþ∂u
∂z

B
�
wdVþ

Z
∂K
uFds¼sðtÞuðxsÞ;

(4)

where sðtÞ ¼ ½0; 0; κðxsÞfðtÞ�T , the flux F ¼ ðnxAþ nzBÞw, and
n ¼ ðnx; nzÞ is the outward unit normal vector to the boundary
∂K of the triangle.
In DGmethods, we seek piecewise polynomialswh satisfying the

following weak formulation for any piecewise polynomial test func-
tion uh:

d
dt

Z
K
whuhdV−

Z
K

�
∂uh
∂x

Aþ∂uh
∂z

B
�
whdV

þ
Z
∂K
uhF̂ds¼sðtÞuhðxsÞ; (5)

where the numerical flux F̂ ¼ ðnxAþ nzBÞw�. Here, w� is an
approximation to the values of w on the boundary because wh is dis-
continuous across the boundary ∂K. For instance, w� can be taken as
the exact solution of the 1D Riemann problem in the direction normal
to each edge of K (Wang, 2010). We denote the three edges of K by
eiK , i ¼ 1; 2; 3, with outward unit normal vector ni. LetKi denote the
neighboring triangle along eiK , andwK denote the polynomial defined
on K. Then, the numerical flux term ∫ ∂KuhF̂ds can be written as

Z
∂K

uhF̂ds¼
X3
i¼1

Z
eiK

uhF̂ds

¼
X3
i¼1

Z
eiK

uhðnixAþnizBÞw�½wintðKÞ;wextðKÞ;ni�ds;

(6)

where wintðKÞ ¼ wK and wextðKÞ ¼ wKi
for each edge eiK are the

approximation values from inside and outside of K, respectively. For
each edge eiK , let v

intðKÞ ¼ vintðKÞ · ni and vextðKÞ ¼ vextðKÞ · ni de-
note the normal velocities, then w�½wintðKÞ;wextðKÞ; ni� denotes the ex-
act solution of the following 1D Riemann problem:

ρðξÞ ∂v
∂t

þ pξ ¼ 0;
1

κðξÞpt þ vξ ¼ 0;

ðvðξ; 0Þ; pðξ; 0ÞÞ ¼
(

ðvintðKÞ; pintðKÞÞ; ξ < 0

ðvextðKÞ; pextðKÞÞ; ξ > 0
;

ðρ; κÞ ¼
(

ðρK; κKÞ; ξ < 0

ðρKi
; κKi

Þ; ξ > 0
: (7)
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Applying integration by parts to equation 5, we obtain the equiv-
alent strong formulation of the DG scheme:

Z
K

�
∂wh

∂t
þ A

∂wh

∂x
þ B

∂wh

∂z

�
uhdV þ

X3
i¼1

Z
eiK

uhðF̂ − FÞds

¼ sðtÞuhðxsÞ: (8)

The time evolution is solved by the fourth-order low-storage Runge-
Kutta method (Hesthaven and Warburton, 2007).

A SIMPLE AND ACCURATE INTERFACE
TREATMENT

We assume edge e1K of triangle K approximates the curved inter-
face; see Figure 1a for an illustration. We briefly review how to com-
pute flux terms before introducing a simple geometric correction to
the flux term ∫ e1K

uhðF̂ − FÞds on this edge in equation 8. For con-
venience, we denote the integrand uhðF̂ − FÞ as a function of x ∈ e1K :

Gðx;n1Þ ¼ uhðxÞðn1xAK þn1zBKÞðw�½wKðxÞ;wK1
ðxÞ;n1�

−wKðxÞÞ: (9)

The line integral is computed by quadratures. We assume that the
polynomial degree of wh is N, and we use the α-optimized nodal
distribution points of triangle K to represent degrees of freedom of
all polynomials as discussed by Hesthaven and Warburton (2007).
Then, the line integral can be written as

Z
e1K

uhðF̂ − FÞds ¼
XNþ1

j¼1

Gðxj; n1Þωj; (10)

where xj (j ¼ 1; : : : ; N þ 1) are the nodal points of K lying on
edge e1K and ωj denotes the corresponding weight with

PNþ1
j¼1 ωj

equal to the length of the edge e1K .
We observe the following geometric corrections to equation 10

reduce interface errors:

1) Find the projection points of xj on the curve, denoted as x̄j. See
Figure 1b for an illustration.

2) Find a vector normal to the curve at the pro-
jection points x̄j. For instance, we can use
x̄j − xj. The outward unit normal vector is
denoted by nðx̄jÞ.

3) Replace Gðxj; n1Þ by Gðx̄j; nðx̄jÞÞ in equa-
tion 10; i.e.,

Z
e1K

uhðF̂ − FÞds ¼
XNþ1

j¼1

Gðx̄j; nðx̄jÞÞωj:

(11)

Let Γ denote the curve in Figure 1a. In
the last step of this correction, notice thatPNþ1

j¼1 Gðx̄j; nðx̄jÞÞωj in equation 11 is not a
high-order accurate approximation of the integral

∫ ΓuhðF̂ − FÞds ¼ ∫ ΓGðx; nÞds because the arc length of the curve
Γ is not included. Intuitively, the correction would be more accurate

if we replaced ∫ e1K
uhðF̂ − FÞds in equation 11 with an accurate

approximation of ∫ ΓuhðF̂ − FÞds. However, the function ðF̂ − FÞ
becomes zero on the interface curve Γ if wK and wK1

are equal

to the exact solution in equation 9. Thus, ∫ ΓuhðF̂ − FÞds can be
regarded as a penalty term approximating zero. When replacing
the numerical solution wK and wK1

with the exact solution in equa-

tion 9,
PNþ1

j¼1 Gðx̄j; nðx̄jÞÞωj in equation 11 is also zero, but

∫ e1K
uhðF̂ − FÞds is second order away from zero. Thus,PNþ1

j¼1 Gðx̄j; nðx̄jÞÞωj is a good approximation to the penalty term

∫ ΓuhðF̂ − FÞds from the point of view of the local truncation error,
which explains why this correction may reduce interface errors. In
our numerical tests, we did not observe any meaningful improvement
by including the arc length in equation 11. Therefore, we recommend
using the simple correction without involving the arc length.
We apply this correction for all edges approximating the curve.

Our correction strategy is different from the one in Krivodonova and
Berger (2006). Their method is developed for the solid wall boun-
dary condition in gas dynamics problems. To extend the method to
interface problems, one may replace the normal vector in the flux
term ∫ eiK

uhF̂ds in equation 6 with the correct normal vector to the
interface geometry. However, our numerical tests suggest that such
correction may not be consistent with the wave equation. A consis-
tent correction is using the correct normal vector in the term
∫ eiK

uhðF̂ − FÞds in equation 8. Our numerical tests show that this
correction hardly changes the modeling results obtained using the
conventional DG scheme.
For highly curved interfaces, we have to locally refine the mesh

such that the mesh size is sufficiently smaller than the radius of
curvature. When the mesh size approaches zero, we obtain the
asymptotic convergence rate of second order. For a given radius
of curvature, it is very difficult to quantitatively analyze the maxi-
mum allowed mesh size for numerical stability and accuracy. Such
analyses are out of the scope of this paper.

NUMERICAL EXAMPLES

We compare the accuracy of our simple geometric correction
with that of the conventional DG scheme. We do not show the re-

a) b)

Figure 1. An illustration of (a) an element near the curved interface and (b) the pro-
jection of the quadrature points to the interface. The red curve is the material interface.
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sults obtained using the method of Krivodonova and Berger (2006)
because they are almost the same as those of the conventional DG
scheme in all our numerical examples. In the first set of examples,
the maximum errors of both methods are exactly the same within
three significant figures. In the second set of examples, there is no
visible difference between the common-shot gathers obtained using
both methods.

Media with circular interfaces

We consider scattering of a plane wave by a cylinder with the
given analytical solution to test the accuracy of the geometric cor-
rection. The cylinder is assumed to have a radius of r0 ¼ 0.6. Out-
side the cylinder, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
¼ r < r0, the density is constant ρ1

and the bulk modulus is constant κ1. For r ≥ r0, the density and
bulk modulus are constants ρ2 and κ2, respectively. The source term
sðx; tÞ ¼ 0 in equation 1. Assume the cylinder is illuminated by a
plane wave of the following form:

pinc ¼ exp ð−iðk1x − ωtÞÞ; uinc ¼ exp ð−iðk1x − ωtÞÞ;
vinc ¼ 0; (12)

where k1 ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ1∕κ1

p
. Then, the problem has an exact solution

given as follows (Cai and Deng, 2003):

pðx;z;tÞ¼pðr;θ;tÞ

¼eiωt
� P∞

n¼−∞Ctot
n Jnðk2rÞeinθ; r≤r0P∞

n¼−∞ði−nJnðk1rÞþCscat
n Hnðk1rÞÞeinθ; r>r0

;

(13)

where ðr; θÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
; arctanðz∕xÞÞ represent the polar coordi-

nates, Jn and Hn represent the nth-order Bessel function of the first
kind and the Hankel function of the second kind, respectively, and
k2 ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2∕κ2

p
. The expansion coefficients are given as

Ctot
n ¼ i−n

k1
ρ1
Jn 0ðk1r0ÞHnðk1r0Þ−k1

ρ1
Hn

0ðk1r0ÞJnðk1r0Þ
k2
ρ2
Jn 0ðk2r0ÞHnðk1r0Þ−k1

ρ1
Hn

0ðk1r0ÞJnðk2r0Þ
(14)

and

Cscat
n ¼ i−n

k1
ρ1
Jn 0ðk1r0ÞJnðk2r0Þ − k2

ρ2
Jn 0ðk2r0ÞJnðk1r0Þ

k2
ρ2
Jn 0ðk2r0ÞHnðk1r0Þ − k1

ρ1
Hn

0ðk1r0ÞJnðk2r0Þ
:

(15)

Plug the pressure into equation 1, then we can obtain the expres-
sions for the velocity.
The computational domain is ½−1.5; 1.5� × ½−1.5; 1.5�, and we use

perfectly matched layers (PMLs) of width 0.25 to
terminate the computation at the boundaries. We
set ω ¼ 2π and use the real part of the analytical
solution to test the accuracy of DG schemes. The
final time is set as T ¼ 0.4, and we monitor the
maximum error over the nodal points of each tri-
angle inside the square ½−0.8; 0.8� × ½−0.8; 0.8� to
exclude possible errors due to the PML. Mesh 1
and mesh 2 used in the numerical tests are shown
in Figure 2. Mesh 3 is a straightforward refine-
ment of mesh 2. We consider two cases with dif-
ferent velocity contrasts. One is with ρ1 ¼ κ1 ¼
ρ2 ¼ 1 and κ2 ¼ 1∕2.25 such that the velocity
contrast is 1∶1.5. We take ρ1 ¼ κ1 ¼ ρ2 ¼ 1

and κ2 ¼ 1∕25 for the other case such that the
velocity contrast is 1∶5.
The errors for the low-contrast case are listed

in Table 1, and the errors for the high-contrast

X

Z

–0.5
a) b)

0 0.5
X

–0.5 0 0.5

–0.5

0

0.5

Z

–0.5

0

0.5

Figure 2. (a) Mesh 1 and (b) mesh 2 for DG modeling. Both meshes fit the circular
material interface indicated by heavy curves.

Table 1. Errors for DG schemes with polynomials of degree N. The interface geometry is a circle, and the velocity contrast is
1∶1.5. Our new DG scheme gives errors with much smaller magnitudes compared with the conventional DG scheme although
both schemes have second-order convergence.

Conventional DG Modified DG

N Mesh 1 Mesh 2 Order Mesh 3 Order Mesh 1 Mesh 2 Order Mesh 3 Order

2 7.13E − 3 1.41E − 3 2.33 3.03E − 4 2.22 3.57E − 3 4.78E − 4 2.89 6.64E − 5 2.85

3 4.11E − 3 1.03E − 3 1.99 2.58E − 4 2.00 4.57E − 4 9.94E − 5 2.20 2.27E − 5 2.13

4 4.11E − 3 1.03E − 3 2.00 2.58E − 4 2.00 3.30E − 4 8.36E − 5 1.98 1.94E − 5 2.11

5 4.12E − 3 1.03E − 3 2.00 2.58E − 4 2.00 2.59E − 4 7.02E − 5 1.88 1.75E − 5 2.00

6 4.12E − 3 1.03E − 3 2.00 2.58E − 4 2.00 2.34E − 4 6.38E − 5 1.88 1.59E − 5 2.00

7 4.13E − 3 1.03E − 3 2.00 2.58E − 4 2.00 2.01E − 4 5.66E − 5 1.83 1.43E − 5 1.98

T86 Zhang and Tan
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case are listed in Table 2. In Table 1, the error of the conventional
DG scheme decreases significantly when the order of the polyno-
mial basis is increased from N ¼ 2 to N ¼ 3 on mesh 1. When the
order of the polynomial basis is further increased, the overall errors
are almost unchanged on mesh 1. This is because the interface error
dominates, and the conventional high-order DG scheme is not able
to reduce the interface error without grid refinement. We can see
that the simple geometric correction reduces the error magnitude
in Tables 1 and 2. Even though there is an apparent reduction in
the order of convergence for mesh 2 in the low-contrast case,
the convergence rate for the further refined mesh 3 is approximately

second order for both the DG schemes with polynomials of de-
gree N ≥ 2.
For comparison, we list the errors of the curvilinear element

method in Table 3. In general, the curvilinear element method gives
smaller errors and faster convergence rates than our modified DG
method. However, in some cases, the errors of the two methods are
similar. For example, in the case of velocity contrast 1∶1.5, the error
of our method with the polynomial of degreeN ¼ 2 is 3.57E − 3 on
mesh 1, whereas the error of the curvilinear element method with
the same N is 3.37E − 3 on mesh 1. In the case of velocity contrast
1∶5, the errors of our method with polynomials of degrees N ¼ 2

Table 2. Errors for DG schemes with polynomials of degree N. The interface geometry is a circle, and the velocity contrast is
1∶5. Our new DG scheme gives much smaller errors than the conventional DG scheme.

Conventional DG Modified DG

N Mesh 1 Mesh 2 Order Mesh 3 Order Mesh 1 Mesh 2 Order Mesh 3 Order

2 1.12E − 1 1.42E − 2 2.98 2.39E − 3 2.57 1.01E − 1 1.18E − 2 3.09 1.65E − 3 2.84

3 2.38E − 2 4.03E − 3 2.56 9.98E − 4 2.01 1.51E − 2 1.05E − 3 3.84 2.48E − 4 2.08

4 1.62E − 2 3.98E − 3 2.02 9.95E − 4 2.00 3.88E − 3 8.81E − 4 2.14 2.24E − 4 1.97

5 1.62E − 2 3.98E − 3 2.02 9.96E − 4 2.00 3.24E − 3 8.03E − 4 2.01 1.95E − 4 2.04

6 1.62E − 2 3.98E − 3 2.02 9.96E − 4 2.00 2.70E − 3 6.93E − 4 1.96 1.83E − 4 1.92

7 1.62E − 2 3.98E − 3 2.03 9.96E − 4 2.00 2.40E − 3 6.23E − 4 1.95 1.67E − 4 1.90

Table 3. Errors for DG schemes using curvilinear elements with polynomials of degree N. The interface geometry is a circle. In
general, the curvilinear element method gives smaller errors and faster convergence rates than our modified DG method.
However, in some cases, the errors of the two methods are similar.

Velocity contrast 1∶1.5 Velocity contrast 1∶5

N Mesh 1 Mesh 2 Order Mesh 3 Order Mesh 1 Mesh 2 Order Mesh 3 Order

2 3.37E − 3 4.72E − 4 2.99 5.96E − 5 2.99 9.99E − 2 1.18E − 2 3.07 1.65E − 3 2.84

3 1.88E − 4 1.37E − 5 3.78 8.88E − 7 3.95 1.51E − 2 1.00E − 3 3.91 6.84E − 5 3.87

4 7.02E − 6 2.24E − 7 4.97 7.03E − 9 4.99 1.95E − 3 5.92E − 5 5.04 2.08E − 6 4.83

5 1.68E − 7 3.41E − 9 5.62 5.60E − 11 5.93 1.61E − 4 2.99E − 6 5.75 5.09E − 8 5.88

6 1.54E − 7 3.70E − 11 12.01 8.95E − 13 5.37 1.62E − 5 1.30E − 7 6.96 1.13E − 9 6.85

7 1.22E − 7 1.44E − 11 13.04 6.84E − 14 7.72 9.54E − 7 4.26E − 9 7.80 1.83E − 11 7.86

Figure 3. (a) A 2D dome model and (b) the inter-
face-fitting triangular mesh used for modeling.
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and N ¼ 3 are almost the same as those of the
curvilinear element method with the same mesh.
Thus, for some problems and certain given error
thresholds, the performance of our DG method is
similar to that of the curvilinear element method.

Dome model

We consider a 2D dome model illustrated in
Figure 3a in which the density is constant every-
where. The model is similar to the one used
by Wang (2010). A Ricker-wavelet source with
a central frequency of 25 Hz is located at
(3300 m, 40 m). All 400 receivers lie uniformly
on the line from (2300 m, 40 m) to (4300 m,
40 m).
We test DG methods with a polynomial of de-

gree 8 on the mesh shown in Figure 3b. This high
polynomial order is necessary to ensure that there
is no visible dispersion error in the modeled
wavefields. Along the curved interface, the
length of the edges of the triangles ranges from
35 to 42 m, which is around the minimum wave-
length. The conventional DG scheme on trian-
gles produces spurious diffractions on this
relatively coarse mesh due to the piecewise seg-
ment approximation to the curve. In Figure 4a,
we observe nonphysical scattering generated
near the curved interface. We then apply the sim-
ple geometric correction to the conventional DG
scheme. The numerical diffractions are signifi-
cantly suppressed (Figure 4b). The spurious dif-
fractions generated by the conventional DG
scheme also appear in the common-shot gather

shown in Figure 5a. The spurious diffractions are almost invisible
in the common-shot gather obtained using our geometric correction
(Figure 5b). Figure 6 displays traces obtained using both schemes at
the receiver with an offset of 250 m. The reference trace is obtained
using the conventional DG scheme with a polynomial of degree 9
on a refined mesh. The trace obtained using our geometric correc-
tion matches well with the reference one, whereas the conventional
DG scheme gives spurious oscillations. The computational cost of
our scheme is much smaller than that of the conventional DG
scheme on the refined mesh.

CONCLUSIONS

We developed a novel DG scheme for modeling scalar-wave
propagation in media with curved interfaces. As the conventional
DG scheme, our scheme is based on straight-sided triangular ele-
ments. To account for curved interfaces, we use the correct normal
vectors and modify the numerical fluxes. Numerical examples dem-
onstrate that our new DG scheme gives much smaller errors com-
pared with the conventional scheme, although both schemes have
second-order convergence. For the dome model, the conventional
scheme generates spurious diffractions caused by interface errors,
whereas our scheme significantly suppresses the spurious diffrac-
tions. Our scheme gives a wavefield similar to that obtained using
the conventional scheme on a refined mesh, but with a much smaller
computational cost than the latter. Our new DG scheme is, thus,

Figure 4. Snapshots of the pressure wavefield at T ¼ 0.7 s obtained using (a) the con-
ventional DG scheme and (b) our DG scheme with simple geometric correction. The
snapshot in panel (a) contains spurious diffractions caused by interface error. Our geo-
metric correction significantly suppresses the spurious diffractions in panel (b).
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Figure 5. Common-shot gather obtained using (a) the conventional DG scheme and
(b) our DG scheme with simple geometric correction. The spurious diffractions in panel
(a) are almost invisible in panel (b).
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Figure 6. Traces obtained using the conventional DG scheme (plus
symbols) and our DG scheme (circle symbols) at the receiver with
an oset of 250 m. The solid curve shows the reference trace. The
trace obtained using our DG scheme matches well with the refer-
ence one, whereas the conventional DG scheme gives spurious os-
cillations.
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particularly useful for large-scale scalar-wave modeling involving
complex subsurface structures.

ACKNOWLEDGMENTS

The work of S. Tan was supported by the U.S. Department of
Energy through contract no. DE-AC52-06NA25396 to Los Alamos
National Laboratory. We thank the associate editor and two anony-
mous reviewers for their valuable comments.

REFERENCES

Barucq, H., R. Djellouli, and E. Estecahandy, 2014, Efficient DG-like for-
mulation equipped with curved boundary edges for solving elasto-acous-
tic scattering problems: International Journal for Numerical Methods in
Engineering, 98, 747–780, doi: 10.1002/nme.4652.

Bassi, F., and S. Rebay, 1997, High-order accurate discontinuous finite
element solution of the 2D Euler equations: Journal of Computational
Physics, 138, 251–285, doi: 10.1006/jcph.1997.5454.

Cai, W., and S. Deng, 2003, An upwinding embedded boundary method for
Maxwell’s equations in media with material interfaces: 2D case: Journal
of Computational Physics, 190, 159–183, doi: 10.1016/S0021-9991(03)
00269-9.

Cockburn, B., and C.-W. Shu, 1989, TVB Runge-Kutta local projection dis-
continuous Galerkin finite element method for conservation laws —
Part II: General framework: Mathematics of Computation, 52, 411–435.

Etienne, V., E. Chaljub, J. Virieux, and N. Glinsky, 2010, An hp-adaptive
discontinuous Galerkin finite-element method for 3D elastic wave mod-
elling: Geophysical Journal International, 183, 941–962, doi: 10.1111/j
.1365-246X.2010.04764.x.

Fahs, H., 2011, Improving accuracy of high-order discontinuous Galerkin
method for time-domain electromagnetics on curvilinear domains:
International Journal of Computer Mathematics, 88, 2124–2153, doi:
10.1080/00207160.2010.527960.

Gordon, W., and C. Hall, 1973, Transfinite element methods: Blending-
function interpolation over arbitrary curved element domains: Numeri-
sche Mathematik, 21, 109–129, doi: 10.1007/BF01436298.

Hesthaven, J., and T. Warburton, 2007, Nodal discontinuous Galerkin meth-
ods: Algorithms, analysis, and applications: Springer.

Käser, M.,, and M. Dumbser, 2006, An arbitrary high-order discontinuous
Galerkin method for elastic waves on unstructured meshes — Part I: The
two-dimensional isotropic case with external source terms: Geophysical
Journal International, 166, 855–877, doi: 10.1111/j.1365-246X.2006
.03051.x.

Krivodonova, L., and M. Berger, 2006, High-order accurate implementation
of solid wall boundary conditions in curved geometries: Journal of Com-
putational Physics, 211, 492–512, doi: 10.1016/j.jcp.2005.05.029.

Monk, P., and D.-Q. Wang, 1999, A least-squares method for the Helmholtz
equation: Computer Methods in Applied Mechanics and Engineering,
175, 121–136, doi: 10.1016/S0045-7825(98)00326-0.

Reed, W., and T. Hill, 1973, Triangular mesh methods for the neutron trans-
port equation: Los Alamos Scientific Laboratory, report LA-UR-73-479.

Strang, G., and A. E. Berger, 1971, The change in solution due to change in
domain, in D. C. Spencer, ed., AMS Symposium on Partial Differential
Equations: American Mathematical Society, 199–206.

Symes, W., and T. Vdovina, 2009, Interface error analysis for numerical
wave propagation: Computational Geosciences, 13, 363–371, doi: 10
.1007/s10596-008-9124-8.

Thomée, V., 1973, Polygonal domain approximation in Dirichlet’s problem:
IMA Journal of Applied Mathematics, 11, 33–44, doi: 10.1093/imamat/
11.1.33.

Toulorge, T., Y. Reymen, and W. Desmet, 2008, A 2D discontinuous Ga-
lerkin method for aeroacoustics with curved boundary treatment, in P. Sas,
and B. Bergen, eds., Proceedings of the International Conference on Noise
and Vibration Engineering, Katholieke Universiteit Leuven, 565–578.

Wang, X., 2010, Discontinuous Galerkin time domain methods for acoustics
and comparison with finite difference time domain methods: M.S. thesis,
Rice University.

Warburton, T., 2013, A low-storage curvilinear discontinuous Galerkin
method for wave problems: SIAM Journal on Scientific Computing,
35, A1987–A2012, doi: 10.1137/120899662.

DG scheme for curved interfaces T89

D
ow

nl
oa

de
d 

05
/2

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1002/nme.4652
http://dx.doi.org/10.1002/nme.4652
http://dx.doi.org/10.1002/nme.4652
http://dx.doi.org/10.1006/jcph.1997.5454
http://dx.doi.org/10.1006/jcph.1997.5454
http://dx.doi.org/10.1006/jcph.1997.5454
http://dx.doi.org/10.1006/jcph.1997.5454
http://dx.doi.org/10.1016/S0021-9991(03)00269-9
http://dx.doi.org/10.1016/S0021-9991(03)00269-9
http://dx.doi.org/10.1016/S0021-9991(03)00269-9
http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
http://dx.doi.org/10.1080/00207160.2010.527960
http://dx.doi.org/10.1080/00207160.2010.527960
http://dx.doi.org/10.1080/00207160.2010.527960
http://dx.doi.org/10.1080/00207160.2010.527960
http://dx.doi.org/10.1007/BF01436298
http://dx.doi.org/10.1007/BF01436298
http://dx.doi.org/10.1111/j.1365-246X.2006.03051.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03051.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03051.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03051.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03051.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03051.x
http://dx.doi.org/10.1016/j.jcp.2005.05.029
http://dx.doi.org/10.1016/j.jcp.2005.05.029
http://dx.doi.org/10.1016/j.jcp.2005.05.029
http://dx.doi.org/10.1016/j.jcp.2005.05.029
http://dx.doi.org/10.1016/j.jcp.2005.05.029
http://dx.doi.org/10.1016/j.jcp.2005.05.029
http://dx.doi.org/10.1016/S0045-7825(98)00326-0
http://dx.doi.org/10.1016/S0045-7825(98)00326-0
http://dx.doi.org/10.1007/s10596-008-9124-8
http://dx.doi.org/10.1007/s10596-008-9124-8
http://dx.doi.org/10.1093/imamat/11.1.33
http://dx.doi.org/10.1093/imamat/11.1.33
http://dx.doi.org/10.1093/imamat/11.1.33
http://dx.doi.org/10.1093/imamat/11.1.33
http://dx.doi.org/10.1093/imamat/11.1.33
http://dx.doi.org/10.1137/120899662
http://dx.doi.org/10.1137/120899662
http://library.seg.org/action/showLinks?crossref=10.1007%2FBF01436298&isi=A1973R017900003
http://library.seg.org/action/showLinks?isi=A1989U510600009
http://library.seg.org/action/showLinks?crossref=10.1007%2FBF01436298&isi=A1973R017900003
http://library.seg.org/action/showLinks?crossref=10.1002%2Fnme.4652&isi=000335362500003
http://library.seg.org/action/showLinks?crossref=10.1002%2Fnme.4652&isi=000335362500003
http://library.seg.org/action/showLinks?crossref=10.1093%2Fimamat%2F11.1.33
http://library.seg.org/action/showLinks?crossref=10.1111%2Fj.1365-246X.2006.03051.x&isi=000239004900027
http://library.seg.org/action/showLinks?crossref=10.1111%2Fj.1365-246X.2006.03051.x&isi=000239004900027
http://library.seg.org/action/showLinks?crossref=10.1111%2Fj.1365-246X.2010.04764.x&isi=000283172100030
http://library.seg.org/action/showLinks?crossref=10.1006%2Fjcph.1997.5454&isi=000072215600001
http://library.seg.org/action/showLinks?crossref=10.1137%2F120899662&isi=000323892500009
http://library.seg.org/action/showLinks?crossref=10.1006%2Fjcph.1997.5454&isi=000072215600001
http://library.seg.org/action/showLinks?crossref=10.1016%2Fj.jcp.2005.05.029&isi=000232736800006
http://library.seg.org/action/showLinks?crossref=10.1016%2Fj.jcp.2005.05.029&isi=000232736800006
http://library.seg.org/action/showLinks?crossref=10.1080%2F00207160.2010.527960&isi=000291460400010
http://library.seg.org/action/showLinks?crossref=10.1016%2FS0021-9991%2803%2900269-9&isi=000220234800009
http://library.seg.org/action/showLinks?crossref=10.1016%2FS0021-9991%2803%2900269-9&isi=000220234800009
http://library.seg.org/action/showLinks?crossref=10.1007%2Fs10596-008-9124-8&isi=000268771300008
http://library.seg.org/action/showLinks?crossref=10.1016%2FS0045-7825%2898%2900326-0&isi=000080943200008

