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We formulate an effective field theory description for SUð2ÞL triplet fermionic dark matter by combining
nonrelativistic dark matter with gauge bosons in the soft-collinear effective theory. For a given dark matter
mass, the annihilation cross section to line photons is obtained with 5% precision by simultaneously
including Sommerfeld enhancement and the resummation of electroweak Sudakov logarithms at next-to-
leading logarithmic order. Using these results, we present more accurate and precise predictions for the
gamma-ray line signal from annihilation, updating both existing constraints and the reach of future
experiments.
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If weakly interacting massive particles (WIMPs) exist
at the TeV scale, their annihilations in the present day—
and hence their signatures in indirect dark matter (DM)
searches—experience large corrections that are not well
described by a simple perturbative expansion in the
coupling. On the one hand, exchanges of electroweak
gauge bosons and photons between heavy DM particles
in the initial state give rise to a long-range attractive
potential. This “Sommerfeld enhancement” effect sums
large corrections ∼

P
kðα2mχ=mWÞk and has been exten-

sively studied in the literature (e.g., [1–4]). On the other
hand, a large hierarchy between the DMmassmχ and gauge
boson mass mW will generate large logarithmic corrections
to exclusive channels, and this has not yet been explored in
detail. A study [5] of wino DM annihilation at one-loop
found Oð1Þ corrections, which change the predicted anni-
hilation cross section by a factor of a few. This is a signal
of large logarithmic corrections, ∼

P
kðα2ln2;1m2

χ=m2
WÞk,

whose resummation is the focus of this work.
This goal is not an abstract one: existing ground-based

gamma-ray telescopes can probe the annihilation of multi-
TeV DM [6,7], and future colliders could also have
sensitivity [8]. Null results from the LHC already place
stringent lower bounds on the SUSY spectrum; so, while
direct constraints on DM from the LHC are still not
especially strong, the lack of a detection of new physics
below the TeV scale motivates consideration of heavier-
than-TeV DM and its properties. As one example, models
of “split supersymmetry” [9,10] can preserve the unifica-
tion of gauge couplings with fermionic superpartners at the
TeV scale [11]. It is therefore imperative to understand how
to translate models of heavy DM into signal predictions
with accurate theoretical cross sections.
We focus on pure wino DM and its annihilation to line

gamma rays, χ0χ0 → γγ, γZ. At the weak scale and above,
such spectral lines have zero astrophysical background,
so detection would be a smoking gun for new physics.

We show that Sommerfeld enhancement effects can be
factorized from large logs to all orders in α2, and compute
the cross section at next-to-leading logarithmic (NLL)
order for line photon production, including an estimate
of theoretical uncertainties.
Dark matter model.—We do not know yet what the

nongravitational interactions of dark matter (DM) are. Here
we are interested in DM being an SUð2ÞL triplet of
Majorana fermions, a scenario under active investigation
[5,6,8,12] both in the context of the SUSY wino and more
generally. The DM triplet can be written as

χ ¼
�
χ0=

ffiffiffi
2

p
χþ

χ− −χ0=
ffiffiffi
2

p
�
; ð1Þ

which transforms from left and right under the SUð2ÞL
gauge group of the standard model (SM). We extend the
SM Lagrangian by including LDM ¼ 1

2
Trχ̄ðiD −MχÞχ,

where the trace sums over the SUð2ÞL indices and the
covariant derivative couples the DM to SM gauge bosons
W1;2;3 or, equivalently, γ;W; Z (χ has zero hypercharge). In
principle, the mass mixing and splitting can be described by
an arbitrary matrixMχ ; however, in the minimal scenario it
is Mχ ¼ mχ1. A small mass splitting between χ0 and χ− is
generated radiatively, and we take it to be δ ¼ 0.17 GeV
for the Sommerfeld calculation [1,13], but ignore it in the
Sudakov calculation. The presence of this splitting means
the χ0 constitutes all the stable DM. However, initial-state
exchange of W bosons allows excitation from a χ0χ0 two-
body state into an (off-shell) χþχ− state, and in calculating
the Sommerfeld-enhanced cross section the matrix ele-
ments for annihilation from χ0χ0 and χþχ− initial states
must therefore be included.
We focus on the late-time annihilation of triplet DM and

thus assume there are no on-shell χ� present in the DM
halo. We also assume s-wave annihilation, since p-wave
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and higher terms are suppressed by at least the square of
the small DM velocity in the local halo (v ∼ 10−3). This
ensures the χ0χ0 initial state is a spin singlet. This also
implies that annihilation to three neutral gauge bosons is
forbidden by CP conservation [5], so we consider only
two-body final states.
Electroweak corrections in NRDM-SCET.—The soft-

collinear effective theory (SCET) [14–17] has been used
to describe electroweak radiative corrections in high-energy
processes via exchanges of weak gauge bosons of the SM
gauge group [18,19]. We generalize this formalism to the
case with heavy nonrelativistic dark matter (NRDM) in
the initial state, and use it to calculate χχ → ZZ; Zγ; γγ. The
calculation can be broken into pieces: constructing oper-
ators, matching at a high scale μ≃ 2mχ , running down to
μ≃mZ, and calculating matrix elements at this low scale
which include the Sommerfeld enhancement.
EFT and high scale matching.—At the high scale μmχ

≃ffiffiffi
s

p ¼ 2mχ we match the annihilation process in the full
theory LSM þ LDM onto a set of leading order operatorsOr
in our effective theory NRDM-SCET:

Lð0Þ
ann ¼

X2
r¼1

Crðmχ ; μÞOrðmW=Z; v; μÞ: ð2Þ

There are only two operators in the complete basis for spin-
singlet S-wave annihilation of DM:

Or ¼ ðχaTv iσ2χbvÞðSabcdr Bic
n⊥B

jd
n̄⊥Þiϵijkðn− n̄Þk;

Sabcd1 ¼ δabðSce
n Sde

n̄ Þ; Sabcd2 ¼ ðSae
v Sce

n ÞðSbf
v Sdf

n̄ Þ: ð3Þ

Here, v ¼ ð1; 0; 0; 0Þ, n ¼ ð1; n̂Þ, and n̄ ¼ ð1;−n̂Þ with n̂
the direction of an outgoing gauge boson. χav is a
nonrelativistic two-component fermion DM field in the
adjoint representation, Bn;n̄ contain the observed (collinear)
gauge bosons, and the Sκ ¼ Sκ½κ · As� are adjoint Wilson
lines of soft gauge bosons along the κ ¼ n; n̄; v directions.
Without soft gauge bosons there are only two possible
contractions of gauge indices, δabδcd and δacδbd, since
ðχaTv iσ2χbvÞ ¼ χaαv χbβv ϵαβ is symmetric in ðabÞ. Because of
the factorization properties of soft gauge bosons for heavy
particles v, or collinear particles n, n̄, the addition of the
soft Sκ Wilson lines does not change this, see [17]. The
final state gauge bosons are also in a spin singlet with
orthogonal polarizations so they must be contracted with
ϵijk. The outgoing energetic gauge bosons appear in the
adjoint collinear gauge invariant building block Bμa

n⊥ ¼
i=ðin̄ · ∂nÞn̄νGνμb

n Wba
n ¼ Aμa

n⊥ − ðkμ⊥=n̄ · kÞn̄ · Aa
n þ � � �,

where Aμa
n is the n-collinear gauge boson field, Gνμb

n is the
field strength, andWba

n ¼ Wba
n ½n̄ · An� is a collinear Wilson

line in the adjoint representation. For the definition of
Bμa
n̄⊥ simply swap n ↔ n̄. In addition to the hard annihi-

lation process encoded in Lð0Þ
ann, we will also use the

leading order SCETII Lagrangian [17] Lð0Þ
SCET and leading

order nonrelativistic Lagrangian for DM Lð0Þ
NRDM ¼

χ†vðiv · ∂ þ ~∇2
=2mχÞχv þ V̂½χð†Þv �ðmW;ZÞ, where V̂ is an

operator giving the Yukawa and Coulombic potentials
from potential exchange of the W;Z; γ.
To determine the Wilson coefficients Cr at the high scale

we match from the full theory onto the effective theory.
Since Cr only contain ultraviolet physics this matching
can be done in the unbroken SM with mW ¼ mZ ¼ 0. At
tree level we find C1ðμmχ

Þ ¼ −C2ðμmχ
Þ ¼ −πα2ðμmχ

Þ=mχ ,

where α2 ¼ g2=4π ¼ α=sin2θ̄W .
Sommerfeld-Sudakov factorization.—To the order we are

working, Lð0Þ
NRDM does not contain interactions with soft or

collinear gauge bosons beyond those that set the scale for

the couplings in the potential, and Lð0Þ
SCET contains no

interactions with χvs, so the matrix element for the χ0χ0

evolution and annihilation factorizes from the matrix
element involving the final state X:

CrhXjOrjχ0χ0i ¼ ½Criϵijkðn − n̄ÞkhXjSabcdr Bic
n⊥B

jd
n̄⊥Þj0i�

× h0jχaTv iσ2χbvjχ0χ0i: ð4Þ

For the spin-singlet state jðχaχbÞSi ¼ ϵβαjχaαχbβi=
ffiffiffi
2

p
, the

Sommerfeld enhancement factors are encoded in

h0jχ3Tv iσ2χ3vjðχ0χ0ÞSi ¼ 4
ffiffiffi
2

p
mχs00;

h0jχþT
v iσ2χ−v jðχ0χ0ÞSi ¼ 4mχs0�; ð5Þ

where the matrix elements are evaluated using the potential
V̂. For these channels the corresponding matrix elements on
the first line of Eq. (4) can be denoted FX

0 and FX
�, thus

giving an all-orders factorized result for the spin-singlet
annihilation amplitudes

Mχ0χ0→X ¼ 4mχð
ffiffiffi
2

p
s00FX

0 þ s0�FX
�Þ;

Mχþχ−→X ¼ 2
ffiffiffi
2

p
mχð

ffiffiffi
2

p
s�0FX

0 þ s��FX
�Þ: ð6Þ

In the one-loop calculation of [5], the coefficients s½5�0 ¼ s00
and s½5�� ¼ s0� were also included as multiplicative factors,
which is consistent with this factorization. We obtain the
Sommerfeld coefficients s00 and s0� by solving the
Schrödinger equation numerically (see, e.g., Appendix A
of [6] for details). Note that at tree level s00 ¼ s�� ¼ 1
and s0� ¼ s�0 ¼ 0.
With SUð2ÞL symmetry the gauge index structure of the

first line of Eq. (4) implies that the SCET perturbative
corrections at any order are encoded in just two Sudakov
form factors, Σ1 and Σ2. The gauge boson masses induce
symmetry breaking corrections at NLL, which are included
by using ΣW

1;2 for the WþW− final state, so

PRL 114, 211302 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
29 MAY 2015

211302-2



Fγγ
0 ¼ PγγðΣ1 − Σ2Þ; Fγγ

� ¼ 2PγγΣ1;

FWþW−

0 ¼ PWΣW
1 ; FWþW−

� ¼ PWð2ΣW
1 − ΣW

2 Þ; ð7Þ

where the prefactors are Pγγ ¼ −e2ϵin⊥ϵ
j
n̄⊥ϵijkn̂k=ð2mχÞ

and PW ¼ ðg2=e2ÞPγ . For F
γZ
0 and FZZ

0 one simply replaces
Pγγ by PγZ ¼ cot θ̄WPγγ or PZZ ¼ cot2 θ̄WPγγ. At tree level
the form factors are all unity, Σ1 ¼ Σ2 ¼ 1.
For the γγ and γZ final states there is no tree-level

annihilation from χ0χ0, so we normalize by writing

σχ0χ0→X ¼ σtreeχþχ−→Xjs00ðΣ1 − Σ2Þ þ
ffiffiffi
2

p
s0�Σ1j2: ð8Þ

Sudakov resummation.—We now calculate the Sudakov
form factors Σ1;2. For simplicity, in this calculation we take
all DM components to have a common mass mχ . The
operators O1;2 in (3) mix under renormalization and the
resummation of α2ln2;1ðm2

χ=m2
WÞ corrections is achieved by

finding their SCET anomalous dimension matrix, and
running between the high scale μmχ

≃ 2mχ and the low
scale μZ ≃mZ. For NLL order resummation we need the
two-loop cusp and one-loop noncusp anomalous dimen-
sions, plus the high scale matching at tree level. The one-
loop anomalous dimension matrix for an operator with
standard model quantum numbers and any number of
single collinear building blocks was derived in Ref. [18],
and we will make use of their results, including the
Δ-regulator [18,20]. Our case differs from this general
result because the incoming nonrelativistic DM fields are in
the same direction v, and hence we have two soft Sv Wilson
lines that can interact with each other or self-interact.
The anomalous dimension matrix for ðC1C2ÞT is

γ̂ ¼ 2γWT
1þ γ̂S: ð9Þ

Here, γWT
is the collinear anomalous dimension of Bia

n⊥
which only mixes into itself, and hence multiplies a
diagonal matrix. Including the two-loop cusp and one-loop
noncusp terms it is equal to [18]

γNLLWT
¼ α2

4π
Γg
0 ln

2mχ

μ
−
α2
4π

b0 þ
�
α2
4π

�
2

Γg
1 ln

2mχ

μ
; ð10Þ

where here and below α2ðμÞ is in the MS scheme, and for
SU(2) in the SM, CA ¼ 2, b0 ¼ 19=6 is the one-loop β
function, the cusp anomalous dimensions are Γg

0¼ 4CA ¼ 8

and Γg
1 ¼ 8ð70

9
− 2

3
π2Þ. When integrating, we will also need

the two-loop β function b1 ¼ −35=6.
The soft anomalous dimension γ̂S encodes the running

and mixing of the soft factors Sabcd1;2 and hence has non-
trivial structure. After canceling the regulator dependent
part with the zero-bin subtracted [21] collinear graphs, the
remaining nonzero one-loop contributions come from
wave function renormalization from self-contracting a

Sv, connecting the two Sv Wilson lines, and connecting
the Sn and Sn̄ Wilson lines. The wave function renormal-
ization is the same as in heavy quark effective theory,
γhv ¼ −CAα2=ð2πÞ. The full result needed at NLL is

γ̂NLLS ¼ α2
π
ð1 − iπÞ

�
2 1

0 −1

�
−
2α2
π

�
1 0

0 1

�
: ð11Þ

At the low scale μZ ≃mZ the operators O1, O2 are
matched onto operators with W;Z; γs, and effects associ-
ated with the gauge boson masses are included from low
scale matching (or using the rapidity renormalization group
[22,23]). Here we are interested in neutral transverse final
state gauge bosons, where the matching at NLL order reads
[19] B3⊥ → expðDÞðZ⊥ cos θW þ A⊥ sin θWÞ with

DðμZÞ ¼
α2ðμZÞ
2π

ln
4m2

χ

μ2Z
ln
m2

W

μ2Z
: ð12Þ

The Sommerfeld enhancement factors in (5) are low scale
matrix elements which are also calculated at μZ ≃mZ in the
MS scheme.
Analytical resummation formula at NLL order.—The

resummed amplitude is

�
C1ðμZÞ
C2ðμZÞ

�
¼ eDðμZÞP exp

�Z
μZ

μmχ

dμ
μ
γ̂

��C1ðμmχ
Þ

C2ðμmχ
Þ
�
: ð13Þ

This equation can be integrated analytically using
dμ=μ ¼ dα2=β2½α2�. For X ¼ ZZ; γZ; γγ we find

Σ1 ¼
eΩþD

3
ð2z−ð4ψ=b0Þ þ zð2ψ=b0ÞÞ;

Σ1 − Σ2 ¼
2eΩþD

3
ðz−ð4ψ=b0Þ − zð2ψ=b0ÞÞ; ð14Þ

where ψ ¼ 1 − iπ, z ¼ α2ðμZÞ=α2ðμmχ
Þ, D is in Eq. (12),

and Ω at NLL order equals

Ω ¼ −2πΓg
0ðz ln zþ 1 − zÞ
b20α2ðμZÞ

−
Γg
0b1ðln z − z − ln2z

2
þ 1Þ

2b30

−
ln z
2b0

�
8

�
ln
4m2

χ

μ2mχ

− 1

�
− 2b0

�
−

Γg
1

2b20
ðz − ln z − 1Þ:

ð15Þ

At LL order we would only have Σ1 ¼ Σ2 ¼ expðΩ0Þ,
where Ω0 is the first term in (15). Treating Sommerfeld
effects at tree level the ratio of cross sections is given by the
Sudakov form factors
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σNLLþSE
χþχ−→X

σtreeχþχ−→X

¼ jΣ1j2;
σNLLþSE
χ0χ0→X

σtreeχþχ−→X

¼ jΣ1 − Σ2j2: ð16Þ

This nonzero result for χ0χ0 → ZZ; Zγ; γγ at short dis-
tances starts at NLL in jΣ1 − Σ2j2, and occurs because there

is a Sudakov mixing between the WþW− and W3W3 from
soft gauge boson exchange. This is similar in spirit to the
Sommerfeld mixing of the initial states.
In Fig. 1 we plot jΣ1j2 and jΣ1 − Σ2j2 as a function ofmχ .

To obtain theoretical uncertainty bands we use the residual
scale dependence at LL and NLL obtained by varying
μmχ

¼ ½mχ ; 4mχ � and μZ ¼ ½mZ=2; 2mZ�. The one-loop
fixed order results of [5] are within our LL uncertainty
band. Our NLL result yields precise theoretical results for
these electroweak corrections. To test our uncertainties we
added nonlogarithmic Oðα2Þ corrections to C1;2ðμmχ

Þ, of
the size found in [5], and noted that the shift is within our
NLL uncertainty bands.
Indirect detection phenomenology.—Combining Eqs. (8)

and (14) with the standard Sommerfeld enhancement (SE)
factors s00 and s0�, we can now compute the total cross
section for annihilation to line photons at NLLþ SE and
compare to existing limits from indirect detection. We sum
the rates of photon production from χ0χ0 → γγ; γZ, as the
energy resolution of current instruments is typically com-
parable to or larger than the spacing between the lines
(see, e.g., [6] for a discussion).
In Fig. 2 we display our results for the line cross sections

calculated at LLþ SE and NLLþ SE. Our theoretical
uncertainties are from μmχ

variation. (The μZ variations
are very similar. Since both cases are dominated by the
variation of the ratio of the high and low scales we do not
add them together.) In the left panel we compare to earlier
cross section calculations, including “Tree-levelþ SE”
where Sudakov corrections are neglected, the “One-loop
fixed-order” cross section where neither Sommerfeld or
Sudakov effects are resummed (taken from [7]), and the
calculation in [5] where Sommerfeld effects are resummed
but other corrections are at one-loop. At low masses, our
results converge to the known ones (except [5] which
focused on high masses, omitting the term jFγγ

0 j2, which is
important at low masses). At high masses, our NLLþ SE
result provides a sharp prediction for the annihilation cross
section with ≃5% theoretical uncertainty.
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FIG. 1 (color online). Resummed leading and next-to-leading
logarithmic electroweak corrections for χþχ−;χ0χ0 →ZZ;Zγ;γγ.
Only high scale variation by a factor of 2 from μmχ

¼ 2mχ is
shown. Low scale variation has a 20% smaller error band for the
top plot and a 5% bigger error band for the bottom plot.
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FIG. 2 (color online). Left panel: Our NLLþ SE cross section for χ0χ0 annihilation to line photons from γγ and γZ, compared to
earlier results. Right panel: current bounds from H. E. S. S and projected reach of 5 hours of CTA observation time, overlaid with our
(and previous) cross section predictions, for an NFW profile, with local velocity v=c ∼ 10−3.
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In the right panel of Fig. 2 we compare the NLL cross
section to existing limits from H. E. S. S [24] and projected
ones from CTA. In the latter case we follow the prescription
of [6], based on [25], and in both cases we assume an
Navarro-Frenk-White (NFW) profile [26] with local DM
density 0.4 GeV=cm3 (consistent with [27–29]). We
assume here that the χ0 constitutes all the DM due to a
nonthermal history (the limits can be straightforwardly
rescaled if it constitutes a subdominant fraction of the total
DM). For this profile, we see that H. E. S. S already
constrains models of this type for masses below
∼4 TeV, consistent with the results of [6] (which employed
the tree-level+SE approximation), and that five hours of
observation with CTA could extend this bound to
∼10 TeV. Any constraint on the line cross section should
be viewed as a joint constraint on the fundamental physics
of DM and the distribution of DM in the Milky Way [30].
The method we developed here allows systematically

improvable effective field theory techniques to be applied
to DM, and enabled us to obtain NLLþ SE predictions for
the DM annihilation cross section to photon lines. This
enables precision constraints to be placed on DM.

This work is supported by the U.S. Department
of Energy under Grants No. DE-SC00012567 and
No. DE-SC0011090, and by the Simons Foundation
Investigator Grant No. 327942 to I. S. T. S. thanks
Timothy Cohen for discussions.

Note added.—As our Letter was being finalized two papers
appeared [34,35] which also investigate DM with SCET.
They are complementary to ours: Ref. [34] computes the
semi-inclusive cross section for fermionic DM annihilation
at LL, and Ref. [35] investigates the exclusive line
annihilation cross section for scalar DM up to NLL. The
OðαÞ corrections obtained from matching at μ ¼ 2mχ in
Ref. [35] are consistent with our 5% uncertainty estimate.
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