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ABSTRACT
There is an emerging desire across manufacturing industries
to deploy robots that support people in their manual work,
rather than replace human workers. This paper explores
one such opportunity, which is to field a mobile robotic
assistant that travels between part carts and the automotive
final assembly line, delivering tools and materials to the
human workers. We compare the performance of a mobile
robotic assistant to that of a human assistant to gain a better
understanding of the factors that impact its effectiveness.
Statistically significant differences emerge based on type
of assistant, human or robot. Interaction times and idle
times are statistically significantly higher for the robotic
assistant than the human assistant. We report additional
differences in participant’s subjective response regarding
team fluency, situational awareness, comfort and safety.
Finally, we discuss how results from the experiment inform
the design of a more effective assistant.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems;
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Experimentation, Performance, Human Factors

Keywords
mobile robotic assistant, human-robot collaboration, manu-
facturing, efficiency and productivity

1. INTRODUCTION
Industrial robots that operate in structured environments

and perform repetitive tasks are widely used in manu-
facturing industries, especially those that are capable of
building their factories around current industrial robotics
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capabilities. For instance, approximately fifty percent
of a typical automotive assembly process is performed
using industrial robotics and automation [1]. However,
many other industries still face significant challenges in
automating low-volume, complex, and customized processes.
Seventy percent of the build process for large commercial
airplanes [2], ninety percent of the assembly process for
electronics [3], and a majority of the work done by small
business manufacturing in the US [4] is still manual. The
automotive industry, too, sees challenges to further automa-
tion; final assembly of cars involves highly dexterous tasks
that are performed almost exclusively by humans workers.
Rather than supplant human workers with robotics, there
is an emerging desire across these industries to strategically
integrate advanced robotics into the manual processes. The
goal is to improve efficiency by supporting people in doing
their best work.

One approach is to use robotics to improve the pro-
ductivity of people in performing “value-added work” and
look for opportunities where robots can relatively easily
perform “non-value-added work.” This paper explores one
such opportunity, which is to field a mobile robotic assis-
tant that travels between part carts and the automotive
final assembly line, delivering tools and materials to the
human workers. Human workers walk to pick their own
parts today. Although seemingly insignificant, this walking
time accumulates. An adept mobile robotic assistant can
provide a significant boost to human worker productivity,
while preserving operational flexibility as compared to fixed
infrastructure solutions.

Multiple challenges must be addressed prior to deploying
such a mobile robotic assistant in the dynamic, uncer-
tain, and human-oriented assembly line environment [6,
7, 18]. The robotic assistant should not only be safe,
but also perform the tasks efficiently and in a human-
intuitive fashion. Akin to human-human collaboration, prior
human-robot interaction studies have shown that a fluent
collaboration requires awareness and anticipation of intent
by both human and robotic agents [13]. To enable and
facilitate this awareness and anticipation, it is important
that both humans and robots communicate their status,
location and intent, either explicitly through certain cues
such as audio/visual signals or implicitly via their actions
and motion paths [9]. Small deficiencies in the human-robot
interaction in a time-critical domain such as automotive
final assembly can significantly degrade the efficiency of the
overall workflow.



In this paper, we evaluate the comparative performance of
a mobile robotic assistant vis-a-vis human assistant during
the delivery phase of a repetitive fetch-and-deliver task. Our
goal is to gain a better understanding of the factors that
impact the efficiency and effectiveness of a robot assistant
situated in an analogue assembly line environment. We
assess objective and subjective measures of team fluency,
assistant saliency, and investigate the requirement and
effectiveness of explicit and implicit indicators designed to
improve the human co-worker’s awareness of the mobile
robotic assistant. Specifically, we assess the effect of a
flashing light on the robotic assistant and variations in the
assistant’s approach angle. Lastly, we analyze whether a
more salient assistant (utilizing the aforesaid indicators)
produces a more fluent collaborator.

Results from the experiment indicate that interaction time
and idle time are higher for the robotic assistant than the hu-
man assistant (p<0.05). Changes in the assistant’s approach
angle make the robot more salient according to subjective
measures, but do not affect the objective measures of
fluency. Further, although the explicit indicator (flashing
light) is salient, it does not improve the objective measures
of fluency and degrades the subjective measures and human
situational awareness. We discuss how these results inform
the design of a more effective assistant, and also suggest
interesting questions regarding robot saliency and its affect
on collaboration, which warrant further investigation and
analysis.

2. RELATED WORK
Human-human collaboration during fetch-and-deliver tasks

is seemingly trivial, and does not require much cognitive
effort for the human agents. For instance, while delivering
or receiving an object from a fellow human being we are least
concerned about the motion of our hands. However, much
can be learnt about how to successfully carry out human-
robot collaboration by studying human-human interactions.

Prior studies on human-robot hand-overs provide useful
insights for improving the motion of armed manipulators
[8, 10, 17]. Experiments of give-and-take tasks between
a human and robot [10], standing at a fixed locations,
investigate the use of robot reaching gestures, vocalizations,
and pauses as indicators for delivery. The study reports that
communication using implicit natural actions is sufficient
for give-and-take tasks, and the human collaborators do not
require explicit instructions or expertise while collaborating
with the robot. In other work, multiple studies on human-
human and human-robot hand-overs result in design recom-
mendations for robot motion, and formal descriptions of the
physical and cognitive aspects of the hand-over process [17].
Experiments in [8] investigate the use of contrasting motion
to communicate the onset of a hand-over, and demonstrate
statistically significant improvements in fluency of hand-
overs by using temporal contrast during delivery. The study
also reports a small but not significant increase in robot
waiting time when the human participant is performing an
attention task. Although a mobile robot is used in [8], the
primary focus is on the motion of the armed manipulator,
and modifications to motion that reduce the human waiting
time.

Interaction between mobile robots and humans has been
investigated for fetch-and-carry tasks. Studies evaluate
robot approach direction and its impact on task efficiency

Figure 1: The Rob@Work mobile robotic platform

and human comfort [14, 19]. Ideally results from these
experiments would inform the design of motion planners
that take into consideration human preferences. However,
reported results are contradictory. [19] finds a left/right ap-
proach direction to be most favorable, while a rear approach
direction to be the least favorable. In contrast, [14] indicates
a frontal approach and delivery to be more favorable,
especially for participants experienced with robots. These
studies are carried out in settings without restrictions on
approach directions, and with human participants that are
primarily focused on the robot throughout its approach.

A frontal approach is often not practical in a constrained
factory environment. Oblique approach angles affect the
human’s visibility of the robot, and further study is needed
into the effect of variations in robot approach angle from
the rear direction. Additionally, human workers in a factory
setting will usually be busy and not actively focused on
the robot. Hence, there is a need to evaluate the robot’s
approach towards an otherwise busy human co-worker.

3. AIM OF THE EXPERIMENT
Through human factors experimentation, we investigate

interactions between an assistant and worker in an analogue
assembly line environment, where the experiment partici-
pant takes the role of the worker. The task of the robotic
or human assistant is to present the parts on a tray to the
static human co-worker in a timely manner for continuation
of the assembly task. Through the experiments we seek to
evaluate the following hypotheses:

H1 The interaction between the robotic assistant and worker
during the delivery phase is less fluent than the inter-
action between a human assistant and worker. For
this hypothesis, fluency is characterized by objective
measures including interaction time and the assistant
idle time.
This hypothesis is founded in prior studies of hand-
overs [17], which indicate hand-over quality degrades
when working with a robot versus a human partner.
We hypothesize that a similar effect exists, even when
the assistant does not use manipulators and manipula-
tion is the sole responsibility of the human worker. Idle
times of agents (both human and robot) are indicative
of fluency in a collaborative task, and have been used
as objective measures of fluency in prior studies [13,



16, 15]. The design of our experiment ensures that the
human worker is continuously occupied with tasks, and
hence only idle times of the assistants (both robot and
human) are evaluated. Interaction time, indicative of
the total delivery time, is meant to quantify the time
both the agents are interacting during the delivery
phase of the task.

H2 The worker subjectively assesses the interaction with the
robotic assistant during the delivery phase to be less
fluent than similar interaction with a human assistant.
Subjective measures of fluency are evaluated using a
series of Likert-scale questionnaires.
Subjective measures of fluency are as important as
their objective counterparts for evaluating human-
robot collaboration. Hence, we evaluate the current
hypothesis as a follow-on to H1. We have developed
the questionnaire used in this experiment based on
[12], which includes a survey of questions used to eval-
uate team fluency that produce values of Cronbach’s
alpha ≥ 0.7 (indicating measurement of similar latent
variable).

H3 Salient indicators for the robotic assistant improve the
worker’s awareness of the robot. Namely as indicators,
we investigate the effect of variations in approach angle
and the inclusion of a flashing light on the robot.
Literature suggests awareness of the assistant and its
intent improves task efficiency [13]. Factory settings
are noisy, the workers’ attention is occupied with
assembly tasks, and the robot may not always be in
the human worker’s field of view. With this hypothesis
we evaluate whether the specified indicators make the
robot more salient. We measure the notice time, the
time of the participant’s first head turn towards the
assistant. An evaluation inspired by the Situational
Awareness Global Assessment Technique (SAGAT)
[11] is designed to measure the human worker’s aware-
ness of the robot in the task environment.

H4 Salient indicators for the robotic assistant improve the
objective and subjective measures of fluency for the
robot.
With this last hypothesis we evaluate whether the
indicators, which may make the robot more salient, do
indeed influence task fluency. Namely, we investigate
the effect of indicators described in H3. The objective
and subjective measures described in H1 and H2 are
used to assess improvement in task fluency.

4. EXPERIMENT METHODOLOGY
The experiment is designed to simulate an analogue envi-

ronment to the assembly line. In this setting the participant
worker is standing at a workstation, stationary, and facing
away from the assistant’s approach path. The worker
is provided an assembly task to occupy their attention.
In the course of each trial two assistants, one robotic
and one human, interact with the experiment participant.
The assistants deliver parts enabling the continuity of the
assembly task.

4.1 Materials and Setup
A Rob@Work robotic platform [5], shown in Fig. 1, is

used as the mobile robotic assistant for this experiment. The

Figure 2: Experiment setup with human partici-
pant, workstation, Rob@Work platform, and white
location markers.

robotic platform is designed for industrial environments and
has an omni-directional base equipped with four indepen-
dently actuated and steerable wheels, wheel encoders, two
SICK S300 safety laser scanners1, and safety features (both
at hardware and software level) to avoid collisions. The
basic platform is augmented with one Asus Xtion RGB-D
device2 used for person tracking, and one red, flashing and
rotating light3. A raised platform and tray are mounted on
the robot to represent the height of a future robotic arm.
The robot, though capable of navigating autonomously, is
operated manually by a human supervisor throughout the
experiment to reduce variability in motion paths.

Observations during the experiment are obtained using
demographic survey, four in-experiment questionnaires, a
post-experiment questionnaire, a Vicon motion capture
system, video camera, and the on-board Xtion. The
participants and the human assistant wear hard hats with
Vicon markers. The robotic assistant also has Vicon markers
mounted on its top to enable tracking via the Vicon cameras.

During each experiment, a recording of factory sounds4

is played to simulate the factory environment. This serves
to mask the noises made by the movement of the assistants
to some degree, much like actual factory conditions would.
Human participants are asked about the location of assis-
tants in some questionnaires; thus, to eliminate the need to
numerically estimate distances we place three large white
poles equidistant from each other behind the participant.
These poles are used as visual indicators to mark locations
in the room (see Figs. 2-3), and divide the room into four
names zones: very close, close, far, and very far, relative to
the participant.

4.2 Procedure
Each participant is instructed to stand at a specified

location to work at a standing table as shown in Fig.
2. A dexterous, model-assembly task is presented to
the participant. The task is chosen for its complexity
and similarity to a factory assembly task, and involves
constructing a Lego model (Fig. 4). Portions of the Lego
parts and assembly instructions are delivered at specified

1http://goo.gl/VwoA42
2http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
3http://goo.gl/yxreko
4http://goo.gl/od11EQ



Figure 3: Schematic diagram of the experimental
setup for the two approach angles (90◦ and 45◦)

intervals during the experiment by either the human or
robotic assistant. Each delivery, but for the first, consists of
three items: Lego parts, corresponding instruction set, and
a questionnaire to assess level of awareness of the robot, and
perception of safety, comfort, trust, and fluency. To keep the
participants occupied prior to the first delivery, the first set
of instructions (but not the Lego parts and questionnaire)
are given during the briefing, and the first delivery contains
only Lego parts and a questionnaire. The total experiment
task time is ≈12-18 min, with a cumulative participant-
assistant interaction time of ≈10-20 seconds for each trial.
This is similar to factory-like tasks, where delivery of parts
constitutes only a portion of the overall assembly.

Each participant is aided by an assistant four times during
the experiment, twice consecutively each by the human
and robotic assistant (Fig. 5). This setup allows for each
participant’s response towards the robot to be compared
to their own responses of working with a human assistant.
Participants are randomly assigned to two groups one in
which the first assistant is a human and the other in which
the first assistant is a robot, to counterbalance differences
that may arise due to the sequence of human and robot
interactions. One of the experimenters plays the role of
human assistant for consistency; the same human assistant
works with all the participants. Both the human and robot
assistants follow the same schedule for deliveries and stop at
the same distance from the participant. Further, trays are
used by both human and robotic assistants during delivery,
since the focus of the study is on the assistant’s approach
rather than manipulator motion.

Figure 4: The Assembled Lego Model

Figure 5: Typical deliveries made by the Assistants
(Top row: approach angle = 90◦, Bottom row:
approach angle = 45◦, Left column: robotic
assistant, Right column: human assistant)

Participants are instructed to remove all the items from
the tray once an assistant stops next to them. Further,
they are told before the experiment that the assistants
are involved in other time-sensitive tasks, to indicate the
importance of the assistant’s time. Using the items de-
livered, the participants build the part of the Lego model
corresponding to the current instruction, and then answer
the corresponding questionnaire. The assistant’s approach
towards the human co-worker, for the next delivery, starts
as soon as the participant begins answering the previously
delivered questionnaire. The length of the questionnaire is
designed to ensure the participant is always busy when the
assistant (both human and robot) reaches him/her.

When a delivery is not in progress, the human and robot
assistants either move around behind the participants in the
far or very far zones or stand still. These movements are
scheduled for pre-determined times during the experiment,
and are included to simulate the assistant’s involvement
in other factory tasks. At different, pre-determined times
the appearance of the robot is altered by affixing different
colored foam bumpers and printed signs; similarly, the
human assistant alters his appearance by wearing/removing
a safety vest, watch, and gloves. The color of the trays used
by both human and robotic assistants, on which items are
delivered, also varies between deliveries. The participants
are not informed of these signs, indicators, and possibility
of their modification a priori, since our goal is to evaluate
the saliency of these features in a natural workflow.

4.3 Design
The experiment is designed to evaluate the effect of three

independent variables on the human-robot collaboration
task, and participants are randomly assigned across a fourth
factor to counterbalance differences that may arise due to
sequence of human and robot interactions:

• IV1: Human or Robotic Assistant, varied within
participants.

• IV2: Robot’s Flashing Light (Explicit Indicator) On
or Off, varied between participants.

• IV3: Assistant Approach Angle (Implicit Indicator)
90◦ or 45◦, varied between participants.

• IV4: Human or Robotic Assistant for the first deliv-
ery, varied between participants.



Table 1: Design of Experiment (N=24)
Approach Angle

90◦ 45◦ Participants

Light
On

H-H-R-R (3) H-H-R-R (3)
12

R-R-H-H (3) R-R-H-H (3)

Off
H-H-R-R (3) H-H-R-R (3)

12
R-R-H-H (3) R-R-H-H (3)

Participants 12 12 24

The approach angle variable indicates the orientation of
participant relative to that of the assistant’s fixed approach
path (Fig. 3). The 90◦ approach angle corresponds to the
participant facing towards a wall and directly away from
the assistant’s path. The 45◦ indicates an orientation of 45◦

away from the wall and towards the assistant’s path. We use
light rather than sound as an explicit indicator since factory
environments are frequently much too noisy for effective
verbal/auditory communication.

Thus, the experiment is carried out as a mixed factorial
design with four factors, one within- and three between-
participants. Participants are randomly assigned across
the 8 groups (2k, where k=3 is the number of between-
participant factors) indicated in Table 1. Next, we describe
the dependent measures observed for each participant.

4.4 Objective Evaluation
Objective measures of team fluency include interaction

time and assistant idle time. Interaction time is defined as
the difference between the assistant’s stop on arrival and
the beginning of the assistant’s retreat, and provides an
assistant-centric measure of the time of each task’s delivery
phase. Idle time is defined as the difference between the
assistant’s stop on arrival and the start of the participant’s
reach towards the tray. Idle time is a subset of the
interaction time; we measure both since uncontrolled-for
factors may affect the precise time of each assistant’s retreat.
Saliency of the assistant is quantified by the derived measure
notice time, the time between the participant’s head turn
towards the assistant and the assistant’s arrival. Note that
the notice time may be negative or positive depending on
whether the assistant is acknowledged with a head turn
prior to or after its arrival. Table 2 defines these measures
for the delivery task in the current experiment. These

Table 2: Objective Measures: Definitions

Interaction Time tretreat − tarrive
Time between assistant’s stop on
arrival and retreat, i.e., time
required to complete the delivery

Idle Time treach − tarrive
Time between assistant’s stop on
arrival and the onset of the
participant’s reach towards the tray.

Notice Time tarrive − tnotice
Time between participant’s first
head turn towards the assistant
and the assistant’s stop on arrival.

Table 3: Objective Measures - Question Set

Awareness of Assistant
Common Questions
1. What color was the top surface of the tray on

which the Lego pieces were delivered?
2. After delivering the parts, what was the

robot/human assistant doing while you were
working on the model? (i.e. which zone was
he/it in, was he/it stationary or moving?)

Robotic Assistant
3. What colors were the bumpers on the robot?
4. What did the sign on the robot say the last

time it delivered Legos?
5. Were the lights on top of the robot on

during the last delivery?
Human Assistant
6. What color was the assistant’s watch?
7. What color were the assistant’s gloves?
8. Was the human assistant wearing a safety vest?

measures are summed across the two deliveries, for each
assistant, to obtain the cumulative measures reported in
Section 5. The total task time in this study is dependent on
the participant’s expertise in Lego assembly tasks. Hence,
the total task time, a usual measure of task fluency, is not
used in this study since the assistants only deliver the parts
and do not contribute in the actual assembly.

These objective measures are independently coded by
two raters from the video recordings of the experiment.
The measured quantities are continuous and so Pearson’s
correlation coefficient is used to determine the inter-coder
agreement. For all the derived quantities, the resulting
correlation coefficient is ≥ 0.98 indicating very high inter-
coder agreement. Further, when determining statistical
significance, data from both the coders is used independently
to arrive at the final results, and any differences among
coders are reported as errors.

To evaluate saliency of robot features, additional quanti-
tative data is derived through in-experiment questionnaires.
Participants are requested to fill out these in-experiment
questionnaires between assembly steps. Questions are
selected from a list of eight questions (in Table 3) pertaining
to assistant’s whereabouts and characteristics, and responses
are evaluated as correct or incorrect. The questions pertain
to the time immediately preceding the delivery of the ques-
tionnaire, and the features, of both the robotic and human
assistant, examined via these questions are hidden from the
participant while he or she answers the questions. This
evaluation is inspired by the Situational Awareness Global
Assessment Technique (SAGAT) [11], and focuses on Level
1 SA pertaining to“the perception of the elements [including
status, attributes, and dynamics] in the environment within
a volume of time and space.”

4.5 Subjective Evaluation
Likert-scale statements and open-ended questions are used

to collect subjective data regarding the experiment. Partic-
ipants are administered a pre-experiment demographic sur-
vey and a post-experiment questionnaire. Further, subjec-
tive questions are also presented via the four in-experiment
questionnaires. Several Likert-scale measures, derived from
[12] and listed in Table 4, are used to evaluate participants’
subjective response regarding comfort, safety, and perceived
fluency.



Table 4: Subjective Measures - Question Set

Comfort and Safety
1. I am comfortable with the time at which I first noticed

the assistant.
2. I feel safe working in this environment.
3. I am comfortable with my level of awareness about the

assistant’s whereabouts.
4. I was stressed when the human/robotic assistant was

assisting me.
5. I felt safe when working with the human/robot assistant.
6. I would have liked to notice the human/robot

assistant coming earlier.
Fluency
7. The human/robotic assistant and I work well together.
8. Deliveries made by the human/robotic assistant were

smooth.
9. I worked fluently together with the human/robot

assistant.
Trust in Assistant
10. The human/robotic assistant’s actions were consistent.
11. The human/robot assistant came when I expected

him/it to.
12. The human/robot assistant’s actions were predictable.
13. The human/robot assistant was dependable.
Additional Indicators
14. The human/robot assistant did his/its part successfully.
15. The human/robot assistant contributed to the success

of the task.

The in-experiment questionnaire is changed from delivery
to delivery. Only a subset of the questions shown in Tables
3-4 are provided in each questionnaire. This is to reduce
learning effects.

5. RESULTS
This section summarizes statistically significant results,

trends, and other insights obtained from the experiments.

5.1 Participants
Thirty participants performed the experiment, out of

which data from six participants could not be used in
analysis due to incorrect task performance, non-completion
of the experiment, or missing video data. The results
presented in this section are for the 24 participants that
successfully completed the experiment with complete data
for analysis. These participants were randomly assigned
amongst the three between-participant factors of the exper-
iment, resulting in three replicates for each experimental
setting (Table 1). The participants (13 men and 11 women)
were recruited via email, and had a median age of 20
years (max = 31, min = 18). None of the participants
indicated any form of colorblindness in the pre-experiment
demographic survey. Prior to the experiment a pilot
study was carried out with 5 participants to streamline the
experimental procedure; data from the pilot experiment are
not included in the reported analysis.

5.2 Assistant Interaction and Idle times
A mixed factor, four-way Analysis of Variance (ANOVA)

is carried out to compare the interaction times and assistant
idle times across the four independent variables (1 within-,
3 between-participants). Statistically significant differences
(p<0.05, N=24) are observed in both these measures for use
of human versus robotic assistant (the within-participant

variable). No statistically significant differences were found
across the other factors including use of robot flashing light,
approach angle, and type of first assistant.

Further analysis of the significant factors confirms that
the interaction times and idle times associated with the
robotic assistant are statistically significantly higher than
those for the human assistant (p<0.05, using two-tailed,
paired t-tests to compare means with unknown, unequal
covariance). The human assistant on average interacts with
the participant for a cumulative time of 8.9 seconds (SD =
3.1s) as compared to the robotic assistant’s average of 12.7
seconds (SD = 6.3s). Similarly, the human assistant idles
for a cumulative time of 1.0 second (SD=2.4s), in contrast
to the robotic assistant’s idle time of 3.8 seconds (SD =
6.0s). These results support our first hypothesis H1, i.e.,
according to the objective measures of fluency the robotic
assistant is a less fluent collaborator in comparison to the
robotic assistant.

5.3 Subjective Measures of Fluency
Likert responses to statements about fluency (presented

in Section 4.5) are analyzed across factors using non-
parametric tests. No statistically significant differences are
found in responses for the human versus robotic assistant
(using the paired, Wilcoxon signed-rank test). Thus, the
second hypothesis H2 comparing the subjective measures
of fluency is not supported by the experiment results.

5.4 Saliency
Saliency of the assistant is evaluated using the derived

measure notice time as defined in Section 4.4. Responses to
fourteen objective questions (listed in Table 3) pertaining
to assistant’s whereabouts and characteristics are also eval-
uated and frequencies of correct versus incorrect answers
are compared. Overall no statistically significant effects are
found for type of indicators, and the third hypothesis H3 is
unsupported. Type or use of indicators did not produce
statistically significant differences in interaction and idle
times, leaving the fourth hypothesis H4 unsupported as well.

However interesting differences emerge based on type
of assistant, human or robot (within-participant variable).
Analysis of notice time is performed using a mixed factor,
four-way ANOVA, and a statistically significant difference
(p=0.005 ±0.001) is observed. The robotic assistant is
noticed much earlier with average notice time of 9.0 seconds
(SD=9.7s) prior to stop on arrival, as opposed to the human
assistant’s average notice time of 1.8 seconds (SD=3.3s).
These results suggest that degradations in fluency are likely
due to factors other than robot saliency, since on average
the robot is acknowledged earlier than the human assistant.

Overall, there is only one statistically significant difference
in the frequencies of correct responses between types of
assistants. Color of the tray is noticed significantly better
by the participants during the two deliveries each made by
the robotic assistant (37%) than the human assistant (8%)
(p<0.05, Fisher’s exact test with 2×2 contingency table).
However, participants demonstrated through responses on
Question 2 (Table 3) that they were significantly more aware
of their background environment after delivery by a human
assistant (p<0.001). This suggests that the robot may
have a transitory distracting effect that degrades situational
awareness, even after the robot leaves the participant’s side.



Table 5: Sample of Open-ended Comments

Human Assistant
“I liked that he said thank you!”
“Making eye contact & speaking was key to feeling

more comfortable - I liked getting confirmation that
the person wanted me to take stuff from the tray.”

“Delivered parts when I’m still working, made me
feel more stressed.”
Robotic Assistant

“Smooth transition. Didn’t get too close to me
which I liked.” “Did a good job at a simple task.”

“Having the robot moving around in the back-
ground was more distracting than the human in the
background.”

“With the robot, I think I made it wait till I’m
done to get the stuff, I was less stressed.”

More visible features such as safety vest for human assis-
tant and the state of the light for the robotic assistant were
noticed by 79% and 67% of the participants, respectively.
The participants were not informed about the existence or
relevance of these signs in advance, and thus noticed them
during the course of natural interaction with the assistant.
Participants were equally unaware about less noticeable
features such as the human assistant’s glove color (13%
correct responses) and watch (18%), and the robot’s bumper
color (4%) and printed signs (21%).

5.5 Factors affecting Subjective Measures
The effect of flashing light and approach angle (between-

participant factors) on Likert statement responses is eval-
uated using the two-sided unpaired Wilcoxon rank sum
test. Participants agreed less strongly with the following
statements when the robot’s light was flashing, indicating a
reduction in perception of safety and trust in the robot:

• I felt safe while working with the robot. (p<0.05,
evaluated during post-experiment survey)

• The robot assistant’s actions were consistent. (p<0.01
through in-experiment questionnaire, while not statis-
tically significant during post-experiment survey)

Variation in approach angle resulted in statistically signif-
icant differences in responses as well. Participants agreed
more strongly with the following statement in the 45◦

approach condition, indicating increased comfort with the
robot when it approaches obliquely as opposed to from the
rear (no such difference was found for the human assistant):

• I am comfortable with my level of awareness about the
robot assistant’s whereabouts. (p<0.05, assessed twice
in the in-experiment questionnaires)

5.6 Open-ended Comments
The participants are asked to provide open-ended com-

ments about their experience with each assistant at the end
of the experiment. Selected comments from these responses
are included in Table 5. The open-ended responses suggest
mixed reactions towards the robotic assistant. Interestingly,
some comments reflect that participants felt rushed by the
human assistant, and that the robot let them work at their
own pace.

6. DISCUSSION
The results of the human factors experimentation support

our hypothesis (H1) that the human-human collaboration is
more fluent, as quantified by assistant interaction times and
idle times, than human-robot collaboration for the current
fetch-and-deliver task. Statistically significant results indi-
cate that the robotic assistant spent on average 3.8 seconds
(43%) more time than the human assistant interacting
with the human for the same delivery tasks. Similarly, a
statistically significant three-fold rise (2.9 seconds, 3x) is
observed in the assistant idle time. A factory assistant will
be making deliveries to multiple human co-workers. These
differences in interaction and idle time, though small in
magnitude, will substantially affect the productivity of the
robotic assistant over the course of a two or three-shift work
day, and should be alleviated using design interventions.
For example, a back-of-the-envelope analysis indicates if
the experiment task was replicated over a two-shift day (
assuming a total of 12 hr of assembly time), and the robot
assistant is multi-tasked to deliver items to five workers, the
robot accumulates approximately 30 minutes of additional
interaction time, as compared to a human assistant.

Surprisingly, the robotic assistant’s approach is noticed on
average much earlier (7.2 seconds, a statistically significant
difference) by the participants as compared to that of the
human assistant. Nonetheless, the robotic assistant idled
more than the human assistant. This provides contrary
evidence for the fourth hypothesis (H4), suggesting a salient
agent does not necessarily produce an efficient collaborator.

These results suggest that degradations in fluency are
likely due to factors other than robot saliency, since on
average the robot is acknowledged earlier than the human
assistant. While the participants reported the human and
robotic assistant to be equally fluent, they appeared to
be more comfortable with making the robot wait. This
is supported by open-ended responses indicating different
attitudes towards the human and robot. We posit that the
human assistant’s time is valued more than that of the robot,
and personal objectives and comfort take a higher priority
during collaboration with the robotic assistant. Further
study is required to understand how to design the robot and
its human interface so that it does not wait unnecessarily for
human co-workers, which degrades the productivity of the
robotic assistant and the overall assembly line workflow.

We confirm that an oblique approach angle is preferable
since the participants report increased comfort about their
awareness of the robot, although it did not improve the
objective measures of fluency. The red flashing light is
observed to be the most noticeable feature amongst those
evaluated but did not improve objective measures of fluency.
Further, the participants reported feeling less safe with the
light flashing. This is possibly due to the color choice, and
suggests that a red flashing light should not be used in
nominal, safe operation of the robot.

7. LIMITATIONS AND FUTURE WORK
We designed our experiment to emulate a factory setting

through careful choice of task and features such as noise,
however limitations remain. The study was carried out
in a large mostly empty room with student participants
rather than factory workers. Further, the participants were
working with the robotic assistant for the first time, and



hence the effect of long-term experience working with the
robot cannot be evaluated. In typical factory operations,
the robot will be assisting multiple workers. Although
participants were told that the assistant has additional
responsibilities and tasks, it is possible human workers will
behave differently when the robot’s responsibilities clearly
relate to other co-workers. Future experiments will include a
longitudinal study with multiple co-workers, to observe how
the interaction changes over time and with multiple people.
We also plan to conduct user studies in a factory setting
to investigate whether the results, trends and insights from
this study apply in the real-world operational environment.

8. CONCLUSIONS
We conduct a human factors experiment to compare

the performance of a mobile robotic assistant and human
assistant during the delivery phase of a fetch-and-deliver
task. Results from the experiment indicate that interaction
times and idle times are statistically significantly higher for
the robotic assistant than the human assistant. However
the robotic assistant’s approach is noticed on average much
earlier by the participants as compared to that of the
human assistant. These results suggest that degradations
in fluency are likely due to factors other than robot saliency.
Based on our observations, we conjecture that the human
assistant’s time is valued more than that of the robot, and
personal objectives and comfort take a higher priority during
collaboration with the robotic assistant. We confirm that an
oblique approach angle is preferable since the participants
report increased comfort about their awareness of the robot.
The robot’s red flashing light did not improve objective
measures of fluency, and the participants reported feeling
less safe with the light flashing. This suggests that a red
flashing light should not be used in nominal, safe operation
of the robot.

9. ACKNOWLEDGMENTS
This work is supported by BMW. We thank our colleagues

Stefan Bartscher and Johannes Bix of the Innovation Pro-
duction Division, BMW Group, Munich, Germany for their
valuable insights and domain expertise that informed this
work.

10. REFERENCES
[1] Stefan Bartscher, Innovation Product Division, BMW

Group, personal communication, February 2012.

[2] David Amirehteshami, Boeing Research and
Technology, personal communication, July 2011.

[3] John Davidson, Advanced Technology Engineering,
Jabil, personal communication, June 2012.

[4] Robots for small business: A growing trend, robotics
online, oct. 31, 2003. http://www.robotics.org/
content-detail.cfm/Industrial-Robotics-News/

Robots-For-Small-Business:

-A-Growing-Trend/content_id/1118.

[5] Rob@work 3. http:
//www.care-o-bot-research.org/robatwork-3.

[6] J. Bix. Mobile robots at the assembly line. In
International Conference on Robotics and Automation
(ICRA), 1st Workshop on Industrial Mobile
Assistance Robots, 2013.

[7] J. C. Boerkoel Jr and J. A. Shah. Planning for flexible
human-robot co-navigation in dynamic manufacturing
environments. In International Conference on
Human-Robot Interaction (HRI), Proceedings of
Human Robot Interaction Pioneers, 2013.

[8] M. Cakmak, S. S. Srinivasa, M. K. Lee, S. Kiesler, and
J. Forlizzi. Using spatial and temporal contrast for
fluent robot-human hand-overs. In Proceedings of the
International Conference on Human-Robot Interaction
(HRI), pages 489–496, 2011.

[9] A. D. Dragan, K. C. Lee, and S. S. Srinivasa.
Legibility and predictability of robot motion. In
Proceedings of the International Conference on
Human-Robot Interaction (HRI), pages 301–308, 2013.

[10] A. Edsinger and C. C. Kemp. Human-robot
interaction for cooperative manipulation: Handing
objects to one another. In Proceedings of the
International Symposium on Robot and Human
Interactive Communication (RO-MAN), 2007.

[11] M. R. Endsley. Situation awareness analysis and
measurement, chapter Direct measurement of situation
awareness: Validity and use of “SAGAT”. Mahwah,
NJ: Lawrence Erlbaum Associates, 2000.

[12] G. Hoffman. Evaluating fluency in human-robot
collaboration. In International Conference on
Human-Robot Interaction (HRI), Workshop on
Human Robot Collaboration, 2013.

[13] G. Hoffman and C. Breazeal. Effects of anticipatory
action on human-robot teamwork: Efficiency, fluency,
and perception of team. In Proceedings of the
International Conference on Human-Robot Interaction
(HRI), pages 1–8, 2007.

[14] K. L. Koay, E. A. Sisbot, D. S. Syrdal, M. L. Walters,
K. Dautenhahn, and R. Alami. Exploratory study of a
robot approaching a person in the context of handing
over an object. In AAAI Symposium: Multidisciplinary
Collaboration for Socially Assistive Robotics, 2007.

[15] S. Nikolaidis and J. Shah. Human-robot
cross-training: computational formulation, modeling
and evaluation of a human team training strategy. In
Proceedings of the International Conference on
Human-Robot Interaction (HRI), pages 33–40, 2013.

[16] J. Shah, J. Wiken, B. Williams, and C. Breazeal.
Improved human-robot team performance using
chaski, a human-inspired plan execution system. In
Proceedings of the International Conference on
Human-Robot Interaction (HRI), pages 29–36, 2011.

[17] K. W. Strabala, M. K. Lee, A. D. Dragan, J. L.
Forlizzi, S. Srinivasa, M. Cakmak, and V. Micelli.
Towards seamless human-robot handovers. Journal of
Human-Robot Interaction, 2(1):112–132, 2013.

[18] V. V. Unhelkar, J. Perez, J. C. Boerkoel Jr, J. Bix,
S. Bartscher, and J. A. Shah. Towards control and
sensing for an autonomous mobile robotic assistant
navigating assembly lines. In International Conference
on Robotics and Automation (ICRA), 2014. Currently
under review.

[19] M. L. Walters, K. Dautenhahn, S. N. Woods, and
K. L. Koay. Robotic etiquette: results from user
studies involving a fetch and carry task. In Proceedings
of the International Conference on Human-Robot
Interaction (HRI), pages 317–324, 2007.


