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Abstract

Matching pursuit (MP) methods are a prom-
ising class of feature construction algorithms
for value function approximation. Yet exist-
ing MP methods require creating a pool of
potential features, mandating expert knowl-
edge or enumeration of a large feature pool,
both of which hinder scalability. This pa-
per introduces batch incremental feature de-
pendency discovery (Batch-iFDD) as an MP
method that inherits a provable convergence
property. Additionally, Batch-iFDD does
not require a large pool of features, leading
to lower computational complexity. Empiri-
cal policy evaluation results across three do-
mains with up to one million states highlight
the scalability of Batch-iFDD over the previ-
ous state of the art MP algorithm.

1 Introduction

In complex decision-making tasks, from stacking
blocks to flying surveillance missions, the number of
possible features used to represent a domain grows ex-
ponentially in the basic number of variables. It follows
that generating a small number of relevant features
that are sufficient for determining an optimal policy is
a critical component for tractable reinforcement learn-
ing in complex environments. However, even in the
well-studied case of linear value function approxima-
tion [Silver et al., 2008; Stone et al., 2005], finding the
“right” set of features remains a challenge.

In the linear value function approximation case, sev-
eral methods exist for automated feature construction
[e.g., Lin and Wright, 2010; Ratitch and Precup, 2004;
Whiteson et al., 2007]. Of these techniques, Matching
Pursuit (MP) algorithms [Painter-Wakefield and Parr,
2012] have shown great promise in incrementally ex-
panding the set of features to better model the value

function. However, all prior MP techniques begin with
a collection of potential features from which new fea-
tures are selected. In large MDPs, this pool of features
has to either be carefully selected by a domain expert
or be prohibitively large to include all critical features,
both hindering scalability. Still, despite such require-
ments, MP algorithms have various desirable proper-
ties [See Painter-Wakefield and Parr, 2012], making
them an attractive option for RL feature construction.

Some similar techniques avoid enumerating a set of po-
tential features, but are not scalable for other reasons.
For example, Bellman Error Basis Function (BEBF)
[Parr et al., 2007] iteratively constructs a set of ba-
sis vectors without an enumerated pool of potential
features. However, BEBF relies on supervised learn-
ing techniques to map states to their feature values.
This process can be as complex as determining the
value function itself, mitigating the tractability gains
of feature construction. Similarly, Proto-Value Func-
tions [Mahadevan et al., 2006] do not use a pool of
potential features but learn a complex manifold rep-
resentation that can be computationally intensive for
arbitrary MDPs.

This paper presents a new algorithm, Batch incremen-
tal Feature Dependency Discovery (Batch-iFDD), that
does not require a large set of potential features at ini-
tialization. Moreover, we prove Batch-iFDD is an MP
algorithm, thereby inheriting the theoretical benefits
associated with those techniques. Batch-iFDD extends
the previously described online incremental Feature
Dependency Discovery (iFDD) algorithm [Geramifard
et al., 2011], which creates increasingly finer features
that help to eliminate error of the value function ap-
proximation. Our contributions in this paper are to
(1) extend iFDD to the batch setting (Section 2.4),
(2) prove that Batch-iFDD is an MP algorithm (Corol-
lary 3.6) and derive its guaranteed rate of error-bound
reduction (Theorem 3.4), (3) derive a practical approx-
imation for iFDD’s objective function resulting in an
algorithm called Batch-iFDD+ (Equation 10), and (4)
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empirically compare Batch-iFDD with the state of the
art MP algorithm across three domains including a 20
dimensional version of the System Administrator do-
main with over one million states (Section 4).

2 Preliminaries

In this section we define data structures for modeling
RL domains and approximating value functions. We
also describe a basic reinforcement learning technique
(Temporal Difference Learning) for evaluating a pol-
icy’s value through experience. Finally, we provide
definitions of the relationships between features and
describe the feature search process.

2.1 Reinforcement Learning

A Markov Decision Process (MDP) is a tuple
(S,A,Pass′ ,Rass′ , γ) where S is a set of states, A is
a set of actions, Pass′ is the probability of getting to
state s′ by taking action a in state s, Rass′ is the cor-
responding reward, and γ ∈ [0, 1) is a discount factor
that balances current and future rewards . We focus
on MDPs with finite states. A trajectory is a sequence
s0, a0, r0, s1, a1, r1, s2, . . ., where the action at ∈ A is
chosen according to a deterministic policy π : S → A,
mapping each state to an action. Given a policy π, the
value function, V π(s) for each state, is the expected
sum of the discounted rewards for an agent starting at
state s and then following policy π thereafter:

V π(s) = Eπ

[ ∞∑

t=0

γtrt

∣∣∣∣s0 = s

]

=
∑

s′∈S
Pπ(s)
ss′

[
Rπ(s)
ss′ + γV π(s′)

]
.

Since this paper primarily addresses the policy eval-
uation problem (i.e., finding the value function of a
fixed policy), the π notation is dropped from this point
on and included implicitly. For a finite-state MDP,
the vector V |S|×1 represents the value function. The
matrix P |S|×|S| represents the transition model with

P ij = Pπ(si)
sisj , and the vector R|S|×1 is the reward

model, with Ri =
∑
j P

π(si)
sisj Rπ(si)

sisj . Hence V can be
calculated in the matrix form as V = R + γPV =
T(V ), where T is the Bellman operator.

Storing a unique value for each state is impractical
for large state spaces. A common approach is to use
a linear approximation of the form V (s) = θ>φ(s).
The feature function φ : S → Rn maps each state to
a vector of scalar values. Each element of the feature
function φ(s) is called a feature; φf (s) = c ∈ R denotes
that feature f has scalar value c for state s, where
f ∈ χ = {1, . . . , n}. χ represents the set of features;1

1Properties such as being close to a wall or having low

the vector θ ∈ Rn holds weights. Hence,

V ≈ Ṽ =




—– φ>(s1) —–
—– φ>(s2) —–

...
—– φ>(s|S|) —–


×




θ1

θ2

...
θn


 , Φθ.

Binary features (φf : S → {0, 1}) are of special interest
to practitioners [Silver et al., 2008; Stone et al., 2005;
Sturtevant and White, 2006], mainly because they are
computationally cheap, and are the focus of this paper.

The Temporal Difference Learning (TD) [Sut-
ton, 1988] algorithm is a traditional policy evaluation
method where the current V (s) estimate is adjusted
based on the difference between the current estimated
state value and a better approximation formed by
the actual observed reward and the estimated value
of the following state. Given (st, rt, st+1) and the
current value estimates, the TD-error, δt, is calcu-
lated as: δt(V ) = rt + γV (st+1) − V (st). The one-
step TD algorithm, also known as TD(0), updates
the value estimates using V (st) = V (st) + αδt(V ),
where α is the learning rate. In the case of linear
function approximation, the TD update can be used
to change the weights of the value function approx-
imator: θt+1 = θt + αδt(V ). In the batch setting,
the least-squares TD (LSTD) algorithm [Bradtke and
Barto, 1996] finds the weight vector directly by min-
imizing the sum of TD updates over all the observed
data.

2.2 Matching Pursuit Algorithms

This paper considers algorithms that expand features
during the learning process. The class of matching
pursuit (MP) algorithms, such as OMP-TD [Painter-
Wakefield and Parr, 2012] has been shown recently to
be a promising approach for feature expansion. An
algorithm is MP if it selects the new feature from the
pool of features that has the highest correlation with
the residual.

2.3 Finer (Coarser) Features and Search

We now define some properties of state features and
feature-search algorithms. The coverage of a feature
is the portion of the state space for which the feature
value is active (i.e., non-zero). We say that a feature
A is coarser than feature B (B is finer than A) if A
has a higher coverage than B. For example, consider
a task of administrating 3 computers (C1, C2 and C3)
that each can be up or down. Feature A (C1 = down)
is coarser than feature B (C3= down AND C2 = up),
because coverage(A) = 0.5 > coverage(B) = 0.25.

fuel can be considered as features. In our setting, we as-
sume all such properties are labeled with numbers and are
addressed with their corresponding number.
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Figure 1: A partial concept lattice showing poten-
tial features as identified by iFDD. With methods like
OMP-TD, all nodes are considered as potential fea-
tures, despite their location in the lattice.

High coverage is not always the best criterion for se-
lecting features because the resulting partitions may
not yield a good approximation of the value function.
For example, suppose that having C1 = down trans-
lates into negative values except when C3 = up. If
the weight corresponding to feature A (C1 = down) is
set to a negative value, the value function is reduced
for all parts of the state space covered by A, includ-
ing situations where C3 = up. The problem of feature
construction is to find a small set of features with high
coverage that still approximate the value function with
bounded error.

One approach is to assume a set of base binary fea-
tures that, in full combination, uniquely describe each
state. These features would have high coverage, and
constitute a very large set. Combining base features
with the conjunction operator would allow us to find
features with lower coverage. This search process can
be thought of as selecting nodes in a graph structure
(Figure 1). Each node represents a feature, with the
top level nodes corresponding to the domain’s base fea-
tures. An edge indicates the origin feature subsumes
the destination feature (and therefore the destination
is finer). For instance, in our example, ((C1 = up) →
(C1 = up ∧ C2 = up)) would be an edge.

Current MP methods such as OMP-TD require an
enumerated set of potential features (e.g., all possi-
ble feature conjunctions of base features) that can be
combinatorially large. MP methods iterate over this
set on every step of feature generation, leading to high
computational demand if the set is large, or poor per-
formance if only a few nodes in the lattice are con-
sidered. Methods such as BEBF [Parr et al., 2007]
adopt an alternative approach by creating new fea-
tures using supervised learning that often do not have
a clean logical interpretation and can be arbitrary com-
plex. Hence, this paper focuses on mapping states to
conjunctive features in the concept lattice. Ideally,
a search method would find relevant features in the
lattice by selectively growing the tree as opposed to
current MP techniques that have to be initialized with

the set of all potential features.

2.4 iFDD and Batch-iFDD

The iFDD algorithm [Geramifard et al., 2011] is an
online feature expansion technique with low computa-
tional complexity. Given an initial set of base features,
iFDD adds the conjunction of existing binary features
as new features. Following the original work, we re-
strict new features to be the conjunction of previously
selected features, which still gives us a rich set of po-
tential features without introducing complex reason-
ing into the search process. At each time-step, iFDD
performs the following steps:

1. Identify pair-wise combinations of active features.
2. Accumulate the absolute value of the observed TD-
error for all such pairs.
3. If the accumulated value for a pair of features f and
g exceeds a predefined threshold, add feature f ∧ g to
the pool of features.

Within the concept lattice described in Section 2.3,
the first step considers features where two parent con-
cepts are already in the feature space, and the con-
junction of these parents is equivalent to the potential
feature. Then potential features that also reduce the
value function approximation error significantly are
added to the feature set. This algorithm has the abil-
ity to include fine-grained features where they are nec-
essary to represent the value function, but can avoid
other (less helpful) features of similar complexity.

This paper uses iFDD for policy evaluation in a batch
setting where LSTD estimates the TD-error over all
samples and then the most “relevant” feature is added
to the features. We now analyze the behavior of Batch-
iFDD and through this analysis derive a new algo-
rithm, Batch-iFDD+, which better approximates the
best guaranteed rate of error-bound reduction.

3 Theoretical Results

Geramifard et al. [2011] introduced iFDD, empirically
verified the approach, and proved the asymptotic con-
vergence of iFDD combined with TD. This work ex-
tends those theoretical results by showing that exe-
cuting iFDD combined with TD in the batch setting
is equivalent to approximately finding the feature from
the conjunction of existing features with the maximum
guaranteed error-bound reduction.

In order to use the conjunction operator to define new
features, we redefine the notion of a feature. Given an
initial feature function φ outputting vectors in Rn, we
address each of its n output elements as an index rather
than a feature from this point on; φi(s) = c denotes
index i of the initial feature function has value c in



state s.2 The set of all indices is Vn = {1, · · · , n}. A
feature, f , is redefined as an arbitrary subset of Vn,
where φf (s) ,

∧
i∈f φi(s), and

φ{}(s) ,
{

1 if ∀i ∈ Vn, φi(s) = 0
0 otherwise

,

where {} is the null feature. For example φ{1,3}(.) =
φ1(.)∧φ3(.). Notice that a single index can constitute
a feature (e.g., f = {1}). Further we assume that all
sets are ordered based on the cardinality size of each
element in ascending order, unless specified. Given a
set of features χ = {f1, f2, ...fN} , the definition of Φ
is extended as follows:

Φχ=




φf1(s1) φf2(s1) · · · φfN (s1)
φf1(s2) φf2(s2) · · · φfN (s2)

...
...

. . .
...

φf1(s|S|) φf2(s|S|) · · · φfN (s|S|)



|S|×N

.

For brevity, we define φf as a column of feature
matrix Φχ that corresponds to feature f . φf =

Φ{f} =
[
φf (s1) φf (s2) · · · φf (sm)

]>
. Also, de-

fine Bn ,
{
{}, {1}, {2}, · · · , {n}

}
, as the set of fea-

tures with cardinality less than 2, and Fn , ℘(Vn)
as the set of all possible features. ℘ is the power set
function (i.e., the function that returns the set of all
possible subsets). Hence, χ ⊆ Fn is an arbitrary set
of features. Further, define operator pair : χ1 → χ2,
where χ1,χ2 ⊆ Fn:

pair(χ) ,
{
f ∪ g

∣∣∣∣f, g ∈ χ, f ∪ g /∈ χ
}
,

pairk(χ) , pair(pair(· · · (pair(χ))))︸ ︷︷ ︸
k times

,

pair0(χ) , χ, full(χ) ,
⋃
i=0,··· ,n pair

i(χ). Essen-
tially, the pair operator provides the set of all possible
new features built on the top of a given set of features
using pairwise conjunction. The full operator gener-
ates all possible features given a set of features.

Now, given an MDP with a fixed policy, the feature
expansion problem can be formulated mathematically.
Given χ as a set of features and the corresponding
approximation of the value function under the fixed
policy, Ṽ χ = Φχθ, find f ∈ pair(χ) that maximizes
the following error reduction:

ER = ‖V − Ṽ χ‖ − ‖V − Ṽ χ∪{f}‖, (1)

where ||.|| is the `2 norm weighted by the steady state
distribution. Consequently, all our theoretical anal-
yses are performed in the weighted Euclidean space

2Note switch in subscript from f (feature) to i (index).

following the work of [Parr et al., 2007]. The theorem
and proof following the next set of assumptions pro-
vide an analytical solution that maximizes Equation 1.

Assumptions:
A1. The MDP has a binary d-dimensional state space,
d ∈ N+ (i.e., |S| = 2d). Furthermore, each vertex
in this binary space corresponds to one unique state;
s ∈ {0, 1}d.
A2. The agent’s policy, π, is fixed.
A3. Each initial feature corresponds to a coordinate
of the state space (i.e., φ(s) = s). Hence the number
of indices, n, is equal to the number of dimensions, d.

Assumption A1 is a more specific form of a general
assumption where each dimension of the MDP can be
represented as a finite vector and each dimension has a
finite number of possible values. It is simple to verify
that such an MDP can be transformed into an MDP
with binary dimensions. This can be done by trans-
forming each dimension of the state space with M pos-
sible values into M binary dimensions. The MDP with
binary dimensions was considered for brevity of the
proofs.

Definition The angle between two vectors X,Y ∈
Rd, d ∈ N+ is the smaller angle between the
lines formed by the two vectors: ∠(X,Y ) =

arccos
(
|〈X·Y 〉|
||X||.||Y ||

)
, where 〈·, ·〉 is the weighted inner

product operator. Note that 0 ≤ ∠(X,Y ) ≤ π
2 .

Theorem 3.1 Given Assumptions A1-A3 and a set
of features χ, where Bn ⊆ χ ⊆ Fn, then feature f∗ ∈
Ω = {f |f ∈ pair(χ),∠(φf , δ) < arccos(γ)} with the
maximum guaranteed error-bound reduction defined in
Equation 1 can be calculated as:

f∗ = argmax
f∈Ω

|∑s∈S,φf (s)=1 d(s)δ(s)|
√∑

s∈S,φf (s)=1 d(s)
, (2)

where δ = T(Ṽ χ) − Ṽ χ is the Bellman error vector,
and d is the steady state distribution vector.

The rest of this section provides the building blocks of
the proof, followed by a discussion of the theoretical
result. Theorem 3.2 states that given an initial set of
features, the feature matrix is always full column rank
through the process of adding new features using the
pair operator. Lemma 3.3 provides a geometric prop-
erty for vectors in d-dimensional space under certain
conditions. Theorem 3.4 provides a general guaran-
teed rate of error-bound reduction when adding arbi-
trary features to the representation in addition to the
convergence proof stated in Theorem 3.6 of [Parr et
al., 2007]. Theorem 3.5 narrows down Theorem 3.4
to the case of binary features, where new features are



built using the pair operator. Finally Theorem 3.1,
as stated above, concludes that given the set of poten-
tial features obtained by the pair operator and filtered
based on the their angle with the Bellman error vector;
the one with the maximum guaranteed error-bound re-
duction is identified by Equation 2.

Theorem 3.2 Given Assumptions A1-A3, ∀χ ⊆
Fn,Φχ has full rank.

Proof In appendix.

Insight: Theorem 3.2 shows that the conjunction
operator creates a matrix ΦFn

that forms a basis
for R|S| (i.e., Φ will have |S| linearly independent
columns). The I matrix is another basis for R|S|, yet
no information flows between states (i.e., the coverage
of each feature is restricted to one state). When sort-
ing columns of ΦFn

based on the size of the features, it
starts with features with high coverage (excluding the
null feature). As more conjunctions are introduced,
the coverage is reduced exponentially (i.e., the number
of active features are decreased exponentially by the
size of the feature set). Next, we explain how adding
binary features can lead to guaranteed approximation
error-bound reduction. We begin with a geometric
Lemma used in Theorem 3.4.

Lemma 3.3 Let L be the plane specified by three dis-
tinct points P,Q,C ∈ Rd, with α = ∠(CQ,CP ) > 0.
Assume that the additional point X ∈ Rd is not nec-
essarily in L. Define the angles β = ∠(CX,CQ) and
ω = ∠(CX,CP ). Now let P ′ denote the orthogonal
projection of P on CX. If α+ β < π

2 , then ‖PP ′‖ is
maximized when CX ∈ L.

Proof In Appendix.

We now extend Theorem 3.6 of [Parr et al., 2007]
by deriving a lower bound (ζx) on the improvement
caused by adding a new feature.

Theorem 3.4 Given an MDP with a fixed policy,
where the value function is approximated as Ṽ , de-
fine δ = T(Ṽ ) − Ṽ , and ‖V − Ṽ ‖ = x > 0,
where V is the optimal value for all states. Then
∀φf ∈ R|S| : β = ∠(φf , δ) < arccos(γ)

∃ξ ∈ R : ‖V − Ṽ ‖ − ‖V − (Ṽ + ξφf )‖ ≥ ζx, (3)

where γ is the discount factor and

ζ = 1− γ cos(β)−
√

1− γ2 sin(β) < 1. (4)

Furthermore, if these conditions hold and Ṽ = Φθ
with φf /∈ span(Φ) then:

‖V −ΠV ‖ − ‖V −Π′V ‖ ≥ ζx, (5)

Ṽ

TṼ

↵ �

�x

x

x 0

Ṽ + ⇠⇤�f

�f

V

(a)

�f

�

�0

⇧0 ⇧

Ṽ

TṼ

� �

�x

x

x �

V�

Ṽ + ���f

�f

Figure 5: Geometrical view of V�, ⌅V,T⌅V, and ⇥f . As � shrinks x⇥ gets closer to ⇥x.

In order to prove the second part of the theorem, the argument has to be specialized to the linear function approximation
case, meaning ⌅V = ⇥⌅. Since the first part of the proof holds for any approximation, lets consider the case where
⌅V = �V�. Showing ⌅V + ⇧�⇥f = �⇥V� completes the proof as substituting ⌅V and ⌅V + ⇧�⇥f to �V� and �⇥V�

turns Inequality 5 to Inequality 6.
To proceed, decompose ⇥f into two vectors ⇥⌃

f and ⇥⌅
f , where ⇥

⌃
f ⌅ span(⇥) and ⇥⌅

f ⌥ span(⇥). Note that

since ⇥f /⌅ span(⇥), then ⇥⌅
f is not a null vector. Lets show that ⌅V + ⇧�⇥f = �⇥V� with the assumptions of

⇥
⌃
f = 0 (i.e., ⇥f = ⇥⌅

f ). This assumption will be relaxed shortly after. Notice that ⇥⇥ = [⇥ ⇥f ] has one extra
column rank defined by ⇥f which is perpendicular to the span(⇥). Since both � and �⇥ are orthogonal projections,
we have the following:

�⇥V� = �V� + ⌃�⇥f

where, ⌃� � argmin
�
⌦(V� ��V�)� ⌃⇥f⌦

= argmin
�
⌦V� � (⌅V + ⌃⇥f )⌦

= ⇧�

⇤ �⇥V� = �V� + ⇧�⇥f

= ⌅V + ⇧�⇥f

The extension to the case where ⇥
⌃
f ⇧= 0 is easy. Consider a subspace defined by two representation matrices ⇥1 and

⇥2 (i.e., span(⇥1) = span(⇥2)), and corresponding projection operators �1 and �2 as defined in Equation 3. Since
both operators provide orthogonal projection into the same space, their results are equal (while the corresponding
coordinates, ⌅, in each case can be different). This means that adding ⇥

⌃
f to the last column of ⇥⇥ does not change �⇥.

Theorem 3.6 Given Assumptions 1 and 2, where the value function is approximated as ⌅V, � = T⌅V � ⌅V, and
⌦V� � ⌅V⌦ = x > 0

⌃F ⇥ Fd, ⌃f ⌅ pair(F ) such that ⇤ =

⇤
�f (s)=1 d(s)�(s)

⇧�⇤
�f (s)=1 d(s)

⇥�⇤
s⇤S d(s)�2(s)

⇥ > ⇥, F ⇥ = F  f,

10

�0V

V

�V

(b)

Figure 2: a) geometric view of V , Ṽ ,T(Ṽ ), and φf .
As β shrinks x′ gets closer to γx. b) increasing the
dimensionality of the projection operator.

where Π and Π′ are orthogonal projection operators
using Φ and Φ′ = [Φ φf ] respectively.

Proof Consider both cases of the orientation of points
V and T(Ṽ ) with respect to each other:

Case T(Ṽ ) 6= V : Due to the contraction property
of the Bellman operator, if ‖V − Ṽ ‖ = x, then ‖V −
T(Ṽ )‖ ≤ γx. Define α as the ∠(V − Ṽ , δ), then using
the sine rule:

sin(α) ≤ ‖V −T(Ṽ )‖
‖V − Ṽ ‖

≤ γ ⇒ α ≤ arcsin(γ)

Furthermore, by assumption, 0 ≤ β < arccos(γ) =
π/2 − arcsin(γ). Combined, these conditions indicate
that α+ β < π/2.

For the next step, given ξ > 0, mapping the points
V , Ṽ ,T(Ṽ ), Ṽ + ξφf to P,C,Q,X in Lemma 3.3
shows that the orthogonal projection length of vector
V − Ṽ on Ṽ + ξφf − Ṽ is maximized when all four

points are coplanar and ω = ∠(V − Ṽ , ξφf ) = α+ β.
Notice that the coplanar argument is implicit in the
proof of Theorem 3.6 of Parr et al. [2007]. Figure
2(a) depicts the geometric view in such a plane, where
ξ∗ = argminξ ‖V − (Ṽ + ξφf )‖, x′ = x sin(ω).3 As
shown above, α ≤ arcsin(γ) and 0 ≤ α + β < π

2 ,
thus sin(α + β) ≤ sin(arcsin γ + β) = γ cos(β) +

sin(β)
√

1− γ2, Hence,

x′ ≤ x
(
γ cos(β) +

√
1− γ2 sin(β)

)

x− x′ ≥ x
(

1− γ cos(β)−
√

1− γ2 sin(β)
)
≡ ζx

Looking at Figure 2(a), it is easy to verify that x−x′ =
‖V −Ṽ ‖−‖V −(Ṽ +ξφf )‖, which completes the proof

for the case T(Ṽ ) 6= V .

Case T(Ṽ ) = V : This means that α = 0. If φf
crosses V , it means β = 0 and Ṽ + ξ∗φf = V . Hence

3Note that ξ can take negative values as well, rendering
φf important only as a line but not as a vector.



ζ = 1 − γ cos(β) −
√

1− γ2 sin(β) = 1 − γ and ‖V −
Ṽ ‖−‖V − (Ṽ + ξ∗φf )‖ = ‖V − Ṽ ‖ = x ≥ ζx. When
φf does not cross V , together they form a plane in

which ‖V − Ṽ ‖− ‖V − (Ṽ + ξ∗φf )‖ = x (1− sin(β)).
In order to complete the proof, a lower bound for the
above error reduction is derived:

0 < β < arccos(γ) = π/2− arcsin(γ), 0 ≤ γ < 1

⇒ 0 < β + arcsin(γ) < π/2

⇒ sin(β) ≤ sin(β + arcsin(γ))

= γ cos(β) +
√

1− γ2 sin(β)

(1− sin(β))x ≥ (1− γ cos(β)−
√

1− γ2 sin(β))x ≡ ζx
Now we extend the proof to the linear function ap-

proximation case with Ṽ = Φθ. Since the first part of
the proof holds for any approximation, let us consider
the case where Ṽ = ΠV . Showing Ṽ + ξ∗φf = Π′V
completes the proof as it turns Inequality 3 into In-
equality 5. To proceed, we decompose φf into two

vectors φ
‖
f ∈ span(Φ) and φ⊥f ⊥ span(Φ). First,

consider the case where φf = φ⊥f , Figure 2(b) pro-
vides a geometric view of the situation. The blue line
and the green plane highlight span(Φ) and span(Φ′)
respectively. Both Π and Π′ are orthogonal pro-
jections into these subspaces. Hence, for any given
value function V , Π′V = ΠV + σ∗φf , where, σ∗ ,
argminσ ‖(V −ΠV )− σφf‖.

The extension to the case where φ
‖
f 6= 0 is straightfor-

ward. Consider a subspace defined by two representa-
tion matrices Φ1 and Φ2 (i.e., span(Φ1) = span(Φ2)),
and corresponding orthogonal projection operators Π1

and Π2. Since both operators provide the solution to
the same convex optimization (i.e., minθ ||V − Ṽ ||),
where both domain and target space are identical,
their outputs are equal (i.e., Ṽ 1 = Π1V = Π2V =

Ṽ 2).4 Hence if φ
‖
f is added as the last column of Φ′,

it does not change span(Φ′) and the result of the pro-
jection remains intact.

The next theorem specializes the above result to the
case of binary features, where new features are built
using the conjunction operator.

Theorem 3.5 Given Assumptions A1-A3, χ ⊆
Fn, Ṽ = Φχθ, δ = T(Ṽ )− Ṽ , and ‖V − Ṽ ‖ = x > 0,
then ∀f ∈ pair(χ), if

ηf =
|∑s∈S,φf (s)=1 d(s)δ(s)|

√(∑
s∈S,φf (s)=1 d(s)

)(∑
s∈S d(s)δ2(s)

) > γ

4While the corresponding coordinates, θ, in each case
can be different, the resulting Ṽ are identical.

∃ξ ∈ R : ‖V − Ṽ ‖ − ‖V − (Ṽ + ξφf )‖ ≥ ζx,(6)

‖V −ΠV ‖ − ‖V −Π′V ‖ ≥ ζx,(7)

where 1− γηf −
√

1− γ2
√

1− η2
f = ζ (8)

Proof Theorem 3.4 provides a general rate of con-
vergence for the error bound when arbitrary feature
vectors are added to the feature matrix. Hence it is
sufficient to show that the conditions of Theorem 3.4
holds in this new theorem, namely: 1) β = ∠(φf , δ) <
arccos(γ) and 2) φf /∈ span(Φχ) . The latter is al-
ready shown through Theorem 3.2. As for the former:

cos(β) =
|〈φf · δ〉|
‖φf‖.‖δ‖

(9)

=
|∑s∈S,φf (s)=1 d(s)δ(s)|

√(∑
s∈S,φf (s)=1 d(s)

)(∑
s∈S d(s)δ2(s)

) .

Therefore, β = arccos(ηf ). By the assumption made
earlier, ηf > γ. Hence β < arccos(γ). Satisfying the
preconditions of Theorem 3.4, both Equations 3 and 5
are obtained. Switching cos(β) with ηf in Equation 4
completes the proof.

Theorem 3.5 provides sufficient conditions for a guar-
anteed rate of convergence in the error bound of the
value function approximation by adding conjunctions
of existing features. It leads directly to Theorem 3.1.

Corollary 3.6 An algorithm that selects features
based on Equation 2, which maximizes Equation 9, is
by our definition in Section 2.2 an MP algorithm.

Insight: Equation 2 shows how feature coverage is
a double-edged sword; while greater coverage includes
more weighted Bellman error (i.e., the numerator) re-
sulting in a higher convergence rate, it also contributes
negatively to the rate of convergence (i.e., the denom-
inator). The ideal feature would be active in a sin-
gle state with all of the Bellman error. Intuitively,
this conclusion is expected, because adding this ideal
feature makes the approximation exact. When the
weighted sum of Bellman errors is equal for a set of
features, the feature with the least coverage is prefer-
able. On the other hand, when all features have the
same coverage, the one with the highest weighted Bell-
man error coverage is ideal. Another interesting obser-
vation is the relation between the difficulty of finding
features that give the guaranteed error-bound conver-
gence rate and the value of γ. In general, larger val-
ues of γ render the MDP harder to solve. Here we
can observe the same trend for finding good features
as higher values of γ reject more features in the set
pair(χ) due to the constraint ηf > γ. Finally, we
note that our theoretical results can be interpreted as



a mathematical rationale for moving from a coarse to a
fine representation, explaining empirical observations
in both computer science [Whiteson et al., 2007] and
brain/cognitive science [Goodman et al., 2008].

4 Empirical Results

Here we provide experimental evidence of Batch-
iFDD’s efficiency at policy evaluation, a crucial step in
many reinforcement learning algorithms such as Pol-
icy Iteration. Policy evaluation is also the traditional
setting for comparing feature expansion techniques
[e.g., Mannor and Precup, 2006; Painter-Wakefield and
Parr, 2012]. We ran our experiments using the RLPy
framework, which is available online [Geramifard et
al., 2013]. Results are presented in three classical RL
domains: Mountain Car, Inverted Pendulum, and Sys-
tem Administrator. The last domain has more than
one million states. Our ability to handle such a large
domain is a direct consequence of the added efficiency
and targeted search in Batch-iFDD.

On each iteration the best weights were found by run-
ning LSTD on 104 samples gathered using the under-
lying policy. The A matrix in LSTD was regularized
by 10−6. Then the best feature was added to the rep-
resentation using the corresponding expansion tech-
nique. All results were averaged over 30 runs and on
each run all algorithms were exposed to the same set
of samples. Standard errors are shown as shaded areas
highlighting 95% confidence intervals.

We compared two approximations of Equation 2,
shown in Equations 10 and 11. The first one comes
from our theoretical analysis, where the steady state
distribution is approximated by the collected sam-
ples. The second one is borrowed from previous
work [Geramifard et al., 2011]. In this section, we
drop the implicit “Batch-” term and refer to these al-
gorithms as iFDD+ and iFDD[ICML-11] respectively.

δi = ri + [γφ(s′i)− φ(si)]
>θ.

f̃∗1 = argmax
f∈pair(χ)

|∑i∈{1,··· ,m},φf (si)=1 δi|√∑
i∈{1,··· ,m},φf (si)=1 1

, (10)

f̃∗2 = argmax
f∈pair(χ)

∑

i∈{1,...,m},φf (si)=1

|δi| (11)

We also implemented and compared against variants
of OMP-TD [Painter-Wakefield and Parr, 2012], the
previous state of the art MP algorithm in RL. Since
this algorithm requires a set of potential features at
initialization, we tested several different sizes of po-
tential feature sets, each built by including features in
increasingly finer levels of the concept lattice until the
cap was reached. Note that in two dimensional prob-
lems (where only one layer of conjunction is available),

if the OMP-TD potential feature pool contains every
possible feature then the results of running OMP-TD
and iFDD+ will be identical, since both algorithms run
the same optimization on the same set of features.

The first domain was Mountain Car [Sutton and Barto,
1998], with base features defined as discretizations of
position and velocity into 20 partitions each, leading
to 40 base features. The policy evaluated was to ac-
celerate in the direction of the car’s current velocity.
Figure 3(a)-top shows the ‖TD-Error‖2 over the sam-
ple set for the iFDD and OMP-TD methods versus the
number of feature-generating iterations. Since all the
techniques start with the same set of features, their er-
rors are identical at iteration zero. OMP-TD with pool
sizes up to 250 did not capture the value function well.
With 440 = 20× 20 + 40 potential features, OMP-TD
had access to all possible features, and as predicted it
performed identically to iFDD+. iFDD[ICML-11] per-
formed similar to the best results. Figure 3(a)-bottom
depicts the same results based on the wall-clock time.
The iFDD techniques were at least 30 seconds faster
than the OMP-TD methods as they considered fewer
features on each iteration.

Next we considered the classical Inverted Pendulum
domain [See Lagoudakis and Parr, 2003]. The feature
setting was identical to the Mountain Car problem.
The fixed policy pushed the pendulum in the opposite
direction of its angular velocity. TD-error results as
described before are presented for this domain in Fig-
ure 3(b). Again OMP-TD with 100 features did not
have access to the necessary features and performed
poorly. With 250 features, OMP-TD performed much
better, but converged to a relatively less accurate rep-
resentation after about 25 iterations. With access to
the full set of features, OMP-TD(440) mirrored the
performance of iFDD+, both achieving the best re-
sults. In this domain, the less accurate approximation
of Equation 2 used by iFDD[ICML-11] caused a sig-
nificant drop in its performance compared to iFDD+.
However, it eventually exceeded the performance of
OMP-TD(250) and caught up to iFDD+ by expand-
ing important features. There is a small initial rise
in error for most of the algorithms, which we believe
is due to the use of regularization. In terms of com-
putational complexity, we see the same pattern as in
the Mountain Car domain, where the iFDD methods
were computationally more efficient (about 20% faster)
than the OMP-TD techniques.

The third experiment considered the System Admin-
istrator domain [Guestrin et al., 2001] with 20 com-
puters and a fixed network topology. Each computer
can either be up or down (following our example in
Section 2.3), so there were 40 base features. The
size of the state space is 220. Computers go up or
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Figure 3: Empirical results from the a) Mountain Car, b) Inverted Pendulum, and c) System Administrator
domains. The Y-axis depicts the `2 norm of the TD prediction error plotted against (top) the number of feature
expansions and (bottom) wall clock time. The colored shaded areas highlight the 95% confidence intervals.

down depending on the status of their neighbors [See
Guestrin et al., 2001]. Allowed actions are to reboot
one machine at each timestep or do nothing: in our
case the policy uniformly randomly rebooted one of
the down machines. Results are shown in Figure 3(c).
The general theme remains the same, except for three
observations: 1) for the first eight iterations, OMP-
TD(2000) outperformed iFDD+, 2) after 10 iterations
iFDD+ outperformed all of the OMP-TD techniques
with pool sizes up to 2000, and 3) the speed advantage
of the iFDD techniques was much more prominent.
Based on clock time iFDD[ICML-11] was comparable
to the best OMP-TD technique, while iFDD+ achieved
the final performance of OMP-TD(2000) more than 4
times faster. The reason for the initial OMP-TD suc-
cess is that it was able to add complex features (con-
junctions of several terms) early on without adding
the coarser (subsumed) conjunctions that iFDD adds
first.5 The second observation is explained by the fact
that iFDD+ expands the set of potential features in a
guided way, allowing it to discover crucial fine-grained
features. Specifically iFDD+ discovered features with
8 terms. Finally, as the size of the potential feature
pool grew, the OMP-TD techniques required signif-
icantly more computation time. iFDD techniques on
the other hand, only considered possible new pair-wise

5The feature pool for OMP-TD(2000) consisted of 760
and 1, 200 features with 2 and 3 terms respectively.

features, and scaled much better to larger MDPs.

5 Conclusions

We introduced Batch-iFDD (and Batch-iFDD+) for
feature construction in an RL setting and proved that
it is a Matching Pursuit algorithm. Unlike previous
MP techniques, Batch-iFDD expands the pool of po-
tential features incrementally, hence searching the con-
cept lattice more efficiently than previous MP tech-
niques. Our empirical results support this finding as
Batch-iFDD+ outperformed the previous state of the
art MP algorithm in three benchmarks, including a
domain with over one million states.

It should be noted, that OMP-TD techniques are more
general than Batch-iFDD techniques as they can work
with arbitrary feature functions rather than binary
functions. Also, Batch-iFDD is not immune to the
poor selection of base features. For instance, in con-
tinuous state spaces base features can be built by dis-
cretizing each dimension using the indicator function,
yet finding the “right” discretization for high dimen-
sional problems can be challenging.

Beyond the results of this paper, Equation 2 provides
insight as to why it is beneficial to add coarse fea-
tures in the early stages of learning and finer features
later on. In the early stages of learning, when feature
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Figure 4: a) Depiction of ΦFk+1
using ΦFk

as the
building block. Note that features are not sorted based
on their cardinality order, but it does not change the
rank of the resulting matrix. b) A 3D visualization of
d dimensional points L and Q and vector X with C as
the center. ‖PP ′‖ is maximized when ω = α+ β.

weights have not been adjusted, the Bellman error is
generally large everywhere. Therefore coarse features
with large coverage have higher chances of having good
error-bound convergence rates due to the numerator of
Equation 2. As weights are updated, the Bellman er-
ror is reduced correspondingly. The reduced Bellman
error will make the denominator of Equation 2 the de-
ciding factor, rendering coarse features with large cov-
erage ineffective. This transition may partially explain
empirical results on RL agents exploring autonomously
[Whiteson et al., 2007] and human subjects performing
classification [Goodman et al., 2008], where both ben-
efited from using coarse features at the beginning of
learning but then progressed to finer-grained features
to make better sense of a complex world.
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A Proof of Theorem 3.2

Lemma A.1 Given m,n ∈ N+ and m ≤ n, if Xm×n
and Zm×n are full column rank matrices with real el-
ements and Ym×n is arbitrary matrix, then matrix[

X 0
Y Z

]
is a full column rank matrix.

Proof The proof follows from the definition of the ma-
trix as both X and Z have linear independent columns.

Theorem A.2 Given Assumptions A1-A3, ∀n ∈
N+,ΦFn

is invertible.

Proof First note that ΦFn is a square matrix as
|Fn| = |S| = 2n. Hence it is sufficient to show that
ΦFn

has independent columns. The rest of the proof
is through induction on n:

(n = 1): The MDP has two states. Hence ΦF1
=[

1 0
0 1

]
, det(ΦF1) = 1. Notice that the first column

corresponds to the null feature (i.e., {}) which returns
1 for the single state with no active features.

(n = k): Assume that ΦFk
has independent columns.

(n = k+ 1): Based on the previous assumption, ΦFk

has linearly independent columns. Hence it is suffi-

cient to show that ΦFk+1
can be written as

[
X 0
Y Z

]
,

where X = Y = ΦFk
, and Z has linearly independent

columns. Lemma A.1 then completes the proof.

The new added dimension, k + 1, doubles the num-
ber of states because |S| = 2k+1. The new dimension
also doubles the total number of possible features, as
for any given set with size k, the total number of its
subsets is 2k. Divide states into the two following sets:

Sk+1 = {s|φ{k+1}(s) = 1}, S̄k+1 = {s|φ{k+1}(s) = 0}.
Similarly, divide features into two sets:

χk+1 = {f |f ∈ Fk+1, k + 1 ∈ f},
χ̄k+1 = {f |f ∈ Fk+1, k + 1 /∈ f}.

Construct rows and columns of ΦFk+1
, following Fig-

ure 4. The values of the top left and bottom left of the
matrix are ΦFk

, and the value of the top right of the
matrix is 0. As for the bottom right (Z), note that for
all the corresponding states, φ{k+1}(s) = 1. Hence,

(φ{k+1}(s), φ{k+1,1}(s), · · · , φ{k+1,1,··· ,k}(s))

= (1, φ{1}(s), · · · , φ{1,··· ,k}(s)).
We know from the induction assumption that except
for the first column, all other columns are linearly in-
dependent. Finally observe that the first column is the
only column within Z, with a 1 corresponding to the
state with no active features and is independent of all
other columns.

Theorem 3.2 follows from Theorem A.2.

B Proof of Lemma 3.3

Proof Let us first assume that CX /∈ L, hence
there exists a three dimensional subspace defined
by CX and L. Figure 4 depicts such a space.
Then, argmaxω ‖PP ′‖ = argmaxω ‖CP ‖ sin(ω) =
argmaxω sin(ω). Since 0 < |α − β| ≤ ω ≤ α + β < π

2 ,
then argmaxω ‖PP ′‖ = α + β, which implies that
CX ∈ L and thus is a contradiction.
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