
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 1

Bayesian Nonparametric Methods for
Partially-Observable Reinforcement Learning

Finale Doshi-Velez, David Pfau, Frank Wood, and Nicholas Roy, Member, IEEE

Abstract—Making intelligent decisions from incomplete information is critical in many applications: for example, robots must choose
actions based on imperfect sensors, and speech-based interfaces must infer a user’s needs from noisy microphone inputs. What makes
these tasks hard is that often we do not have a natural representation with which to model the domain and use for choosing actions; we
must learn about the domain’s properties while simultaneously performing the task. Learning a representation also involves trade-offs
between modeling the data that we have seen previously and being able to make predictions about new data.
This article explores learning representations of stochastic systems using Bayesian nonparametric statistics. Bayesian nonparametric
methods allow the sophistication of a representation to scale gracefully with the complexity in the data. Our main contribution is
a careful empirical evaluation of how representations learned using Bayesian nonparametric methods compare to other standard
learning approaches, especially in support of planning and control. We show that the Bayesian aspects of the methods result in
achieving state-of-the-art performance in decision making with relatively few samples, while the nonparametric aspects often result in
fewer computations. These results hold across a variety of different techniques for choosing actions given a representation.

Index Terms—Artificial intelligence, machine learning, reinforcement learning, partially-observable Markov decision process, hierar-
chial Dirichlet process hidden Markov model.

✦

Many sequential decision-making problems occur in
domains where the agent must choose actions with little
or no information about how the world works. A robot
without a prior map may be tasked with finding its
way to a goal. Similarly, recommender systems must
be able to make useful recommendations with no prior
knowledge of the user. However, by using data ac-
quired over time and refining the agent’s predictions,
the performance of the system can quickly improve.
While searching for a path to a goal, the robot can
incrementally build a map and improve its navigation
performance. When making recommendations based on
a limited purchasing history, recommender systems can
start with items that are generally popular and then
refine their knowledge about user’s preferences.
Partially-observable reinforcement learning [1] formal-

izes this sequential decision-making problem as a series
of exchanges between an agent and an environment
(fig. 1). At each time step, the agent interacts with
the environment through an action a. The environment
returns an observation o and a reward r. Given a history
ht = {a0, o0, r0, ...at, ot, rt} of length t, the agent’s goal is
to choose the next action at+1 such that it will maximize
the discounted sum of its expected rewards E[

∑
t γ

trt],
where γ ∈ [0, 1) trades off current and future rewards.
A fundamental question in partially-observable rein-

forcement learning is how the agent should represent

• F. Doshi-Velez and N. Roy are with the Computer Science and Artificial
Intelligence Laboratory, MIT, Cambridge, MA, 02139.
E-mails: finale@alum.mit.edu, nickroy@mit.edu

• D. Pfau is with the Center for Theoretical Neuroscience, Columbia Uni-
versity, New York, NY 10032.
E-mail: pfau@neurotheory.columbia.edu

• F. Wood is with the Department of Engineering, University of Oxford,
Oxford, OX1 3PJ, UK.
E-mail: fwood@robots.ox.ac.uk

Fig. 1: Reinforcement learning framework. At each
time-step, the agent sends an action to the environ-
ment and receives an observation and reward.

the knowledge that it derives from its interactions from
the environment. Of course, the agent could simply just
store the history ht, but making decisions from such
a high-dimensional variable is challenging, and most
approaches compact histories into a lower-dimensional
knowledge representation. These compact “models” of
the environment can then be used by decison-making al-
gorithms to choose future actions. However, the “right”
knowledge representation is not always clear: for exam-
ple, can all the information about a patient be summa-
rized by their symptoms? Their genetic sequence?
We argue that the “right” representation is ultimately

the one that allows the agent to maximize the discounted
sum of its expected rewards E[

∑
t γ

trt] (combined with
an action-selection strategy). Specifically, let Kt be the
agent’s knowledge representation at any time t and
define a function Kt+1 = f(Kt, at, ot, rt) that describes
how to transform the knowledge representation given
new data (at, ot, rt). Paired with a policy at+1 = π(Kt),
another function which describes what action to take
given the knowledge representation, we can then em-
pirically evaluate our objective E[

∑
t γ

trt].
We use Bayesian nonparametric methods to ad-

dress this fundamental question of representation
choice. We divide the knowledge representation for the
reinforcement-learning problem into two parts Kt =
(μ, ξt) : a static part μ and a dynamic part ξt ∈ Ξ that

Digital Object Indentifier 10.1109/TPAMI.2013.191 0162-8828/13/$31.00 © 2013 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78062257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 2

changes with each action at. We can think of the static
part μ as a set of parameters that encode a set of rules
of how the environment responds in different situations,
and think of the dynamic part ξt as our current situation.
While the parameters μ are static, in most real-world

systems, they are rarely known exactly and must be
inferred from data (such as via system identification).
Even worse, it is not always clear what are the “right”
representations of μ and Ξ. An overly simple represen-
tation may not allow the agent to understand the effect
of its actions. An overly complex representation may
require a large amount of data to train.
Unlike more traditional approaches to learning in

decision-making problems, which often try to recover
the parameters of some assumed “actual” environment
[2], [3], [4], [5], [6], [7], our emphasis is on inferring a
representation (μ, ξ) from data that simply allows us
to make good predictions. Specifically, we posit that
an infinite number of parameters μ are required to
completely describe the effect of every possible action
a in every possible situation ξ. Thus, unlike with para-
metric approaches, we never have to worry whether
our representation is “large enough” to explain the
data. However, given a finite set of interactions with
the environment, Bayesian nonparametric approaches
guarantee that the agent can only gather information
about a finite number of these parameters. Thus, the
agent never has to perform inference over an infinite
number of parameters. Drawing on concepts from [8],
[9], and [10], Bayesian nonparametric methods allow us
to think of our representation not as an approximation
of the physical environment, but as information needed
to make the underlying system Markovian. By focusing
our efforts on prediction, we ignore aspects of the “ac-
tual” environment that are irrelevant for our sequential
decision-making problem.
In this article, we present two Bayesian nonparamet-

ric representations for partially-observable reinforcement
learning. The infinite partially-observable Markov deci-
sion process (iPOMDP)1 is a hidden-state representation
in which the observations and rewards are emitted from
a hidden state that evolves based on the agent’s actions
[12]. In contrast, the states in our infinite determinis-
tic Markov model (iDMM) transition deterministically
given the most recent action and observation.
Our main contribution is a careful empirical compari-

son of the iPOMDP and the iDMM to other standard ap-
proaches to partially-observable reinforcement learning
on a series of benchmark domains. These models had
different expected strengths. Robust inference methods
exist for Bayesian nonparametric models over hidden
state representations. In contrast, history-based represen-
tations require no latent variables, potentially providing
more efficient learning.
We compare our approaches to Bayesian parametric

approaches, non-Bayesian parametric approaches, and

1. The abbreviation iPOMDP is consistent with abbreviations for
other infinite models such as the infinite HMM (iHMM). However, the
iPOMDP model should not be confused with the interactive POMDP
[11], which has the same abbreviation.

non-Bayesian nonparametric approaches. We find that
the Bayesian aspect of the iPOMDP results in strong
performance with relatively few samples, while the non-
parametric aspect often result in fewer computations.
These results hold across a variety of different tech-
niques to choose actions given a representation. Finally,
although iDMM-like models have outperformed HMM-
like models on prediction tasks [13], we find that the
iPOMDP is superior to the iDMM in all of our experi-
mental settings, leaving interesting questions for future
work on appropriate choices of knowledge representa-
tions in reinforcement learning settings.

1 REPRESENTATIONS FOR PARTIALLY-
OBSERVABLE REINFORCEMENT LEARNING
Given a history ht = {a0, o0, r0, ...at, ot, rt} of length
t, the problem we address is choosing the next action
at+1 such that it will maximize the discounted sum of
its expected rewards E[

∑
t γ

trt]. Our goal is to choose
a representation Ξ and μ that allows us to infer the
current value of ξt, the parameters of μ from the history.
By choosing the representation and inferring μ, we can
predict the effect of actions given the current state ξt and
compute a policy that maximizes the objective function.
Following the definition of state described in [9], [14],

we define the information state ξt = g(ht) as any statis-
tic of the history ht which is sufficient to predict the
distribution of future rewards and observations. More
formally, let ft be the random variable representing
the agent’s future after time t: {at+1, ot+1, rt+1, ...}. If
the state ξt = g(ht) is a sufficient statistic for the
history ht, then the conditional probability of the future
conditioned on the state and history does not depend
on the history at all: Pr(ft|ξt, ht) = Pr(ft|ξt), and if
two histories ht and h′

t have the same statistic ξ, then
Pr(ft|ht) = Pr(ft|h

′
t). (Equivalently, the mutual infor-

mation between the current and future states is equal
to the mutual information between past and future:
I(ht; ft) = I(g(ht), ft).) This information state is known
to be sufficient for making optimal decisions [15].
Approaches for inferring a representation Ξ of the

information state and the corresponding prediction rep-
resentation μ fall into two broad categories: implicit
representations using hidden variables and explicit rep-
resentations using features of histories. In this section,
we provide an overview of methods in each category;
sections 2 and 3 present Bayesian nonparametric ver-
sions of each representation.

1.1 States using Hidden Variables
Hidden-variable approaches to defining state introduce
a set of hidden variables s that, if known, would them-
selves be a sufficient statistic for the history2. Then,
the distribution over possible world-states ξt = bt(s) =
p(s|ht) is a sufficient statistic for the history [16]. Histor-
ically, hidden-variable representations are derived from

2. We refer to the hidden “world-state” as s and the sufficient statistic
for the history (the “information-state”) as ξ.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 3

application areas in which it was natural to think of the
agent being in some “true” world-state that was made
ambiguous by inadequate sensing [16], [17], [18], [19].
The partially-observable Markov decision process

(POMDP) provides a very general formulation of this
hidden-variable approach (fig. 2). A POMDP is a 7-
tuple {T,Ω, R,A, S,O, γ} where S, A, O are sets of
world-states, actions, and observations, respectively; the
transition function T (s′|s, a) is the probability of the next
world-state s′ given the current world-state s and action
a; the observation function Ω(o|s, a) is the probability
of receiving observation o after taking action a and
arriving at state s; the reward function r = R(s, a) is the
immediate reward; and γ is the discount factor. Given
the transition, observation, and reward parameters, a
variety of sophisticated techniques exist for solving for
the optimal policy π∗(a|bt(s)) [20], [21], [22]. A fixed
choice of S determines the representation ξ = p(s|ht);
many partially observable techniques assume that S (and
hence Ξ) is known ahead of time, focusing on learning
the corresponding R,A and O defining μ.

Fig. 2: Graphical model showing a time-slice of a
POMDP. The world-state st is a hidden variable.

Learning POMDPs is a hard problem [23], but a
variety of methods exist for inferring the transition,
observation, and reward functions. Parametric methods
such as expectation-maximization [24], Bayesian model
learning [2], [3], [4], [25], [26], [27], and system iden-
tification [28] all assume that the number of world-
states is known, but the transition, observation, and
reward parameters are not. For example, when modeling
a pendulum, one might know that the mass and length
of the arm are the relevant parameters but not know their
values. Parametric techniques allow expert knowledge
about the underlying system to be encoded directly into
the representation; in some cases parts of the represen-
tation may even be trained or calibrated separately.
However, in many applications, the concept of a “true”

or “real” world-state S is ambiguous. For example, in
a medical setting, the definition of a patient’s state
could range from a set of symptoms to their their com-
plete molecular make-up. Our Bayesian nonparametric
hidden-variable approaches circumvent this issue by first
positing that the full state space S is infinite but then
trying to explain finite history with as few visited-states
as possible. The Bayesian aspect of these approaches
also allows us to begin with informed expert biases
but allows the agent’s interactions with the environment
to ultimately dictate what notion of states are useful

for future predictions. In uncontrolled settings, spec-
tral techniques have been used to learn hidden-variable
models [29]. Bayesian nonparametric models, such as
the hierarchical Dirichlet process hidden Markov model
(HDP-HMM), and their precursors have been used to
find predictive structure in a variety of dynamical sys-
tems [8], [9], [10], [30], [31], [32], [33].

1.2 States from Features of Histories
Another approach to summarizing the history ht into
a statistic ξt = g(ht) is to directly search for certain pat-
terns in that history: a sub-sequence of elements, a suffix,
or some more complex feature. For example, knowing a
customer bought the first two books in a trilogy may be
sufficient for inferring whether to recommend the third
book, regardless of his other purchasing history. A chess
player’s most recent moves may be sufficient to infer the
her current strategy, regardless of her initial moves.
History-based approaches have the advantage of oper-

ating directly on the data. There are no hidden variables
to to be defined, inferred, or controlled. Instead, states
are simply aspects of the history that are useful for pre-
dicting future rewards or future observations. However,
it is often harder to incorporate direct knowledge, such
as a sensor calibration, into the representation. Further-
more, because histories are so general, large amounts of
experience may be required to discover the aspects of
the histories that are valuable for making decisions.
States as History Sub-sequences: Finite Automata.

One approach to grouping sub-sequences of the history
together is to use finite automata [34]. Finite automata
consist of a set of nodes n; while the transitions between
nodes may be deterministic or stochastic, the current
node is always observed (see fig. 3). The deterministic
Markov model (DMM) is a specific finite automaton de-
scribed by the 6-tuple (S,A,Ω, δ, R, s0), where S, A, and
Ω are discrete sets of nodes, actions, and observations;
the node s0 is the initial node; δ : S x A x Ω → S
describes which node which follows the current state,
action, and observation. The reward function R(r|s, a)
gives the probability of receiving reward r after doing
action a in node s.

Fig. 3: Graphical model showing a time-slice of the
DMM. Note that variables are observed at all times.

Because the nodes are observed, the information state
ξ is simply the node-state s. Learning a DMM cor-
responds to finding reward distributions R(r|s, a) and
transition mappings s′ = δ(s, a, o) so that rewards can
reliably be predicted. While also an NP-hard problem,
several approximation techniques have been developed

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 4

using PAC [35], information-theoretic [36], and Bayesian
methods [13], [37]. Solving a DMM for an optimal policy
is relatively simple since the nodes are observed.
By conditioning transitions on both actions and ob-

servations, the DMM decouples learning the transition
model from learning the stochasticity of the observa-
tions. While finite automata are a strictly smaller class of
models than POMDPs, they can be made arbitrary close
to—and thus their nodes can be sufficient statistics for—
any RL environment (similar to uncontrolled automata
of [38]). In uncontrolled settings, simpler models—such
as PDFAs rather than HMMs—have had superior per-
formance because the are easier to learn [13], and recent
work has suggested that this may also be true for the
reinforcement learning setting [13], [37]. In sec. 3, we
extend the work of [13] to create an infinite deterministic
Markov model which posits that there are an infinite
number of possible nodes s.
States as History-Suffixes: U-Tree Another related ap-

proach to grouping sub-sequences of the history together
is the U-Tree algorithm [39], which builds a suffix tree of
the agent’s histories h1, h2, ...ht. Each branch of the tree
is trimmed to a particular depth, corresponding to how
large a window of recent recent history is relevant. The
state ξ = g(ht) in U-Tree is the leaf-node to which the
history ht corresponds. If the depth of that leaf-node is
d, then all histories h sharing the same d-length suffix
will be grouped together into a single state.
Given a particular suffix tree, planning is simple: the

agent always knows its current state s = ξ (that is, the
leaf-node associated with its history h), and that state is
always a discrete scalar. By tracking how often it sees
various state transitions T (s′|s, a) and rewards R(s, a),
the agent can build a Markov decision process (MDP)
model of the dynamics of these node states; choosing
actions is simply a matter of solving the MDP. However,
robustly learning the suffix tree is an area of continuing
research [40], [41], [42]. Related approaches that use
windows of history as state have also been applied to
learning the dynamics of uncontrolled systems [9], [43].

2 THE INFINITE PARTIALLY-OBSERVABLE
MARKOV DECISION PROCESS
The infinite partially-observable Markov decision pro-
cess (iPOMDP) is a Bayesian nonparametric hidden-state
representation for reinforcement learning. A standard
POMDP can be constructed from a hidden Markov
model (HMM)—4-tuple {T,Ω, S, O} where S is the set
of world-states, O is the set of observations, T (s′|s) is
the transition function, and Ω(o|s) is the observation
function—by adding actions and rewards. The infinite
POMDP is constructed from the HDP-HMM, a Bayesian
nonparametric model that places a prior over HMMs
with countably infinite discrete world-states. The time-
dependent aspect of the knowledge representation ξt is
therefore given as the posterior p(m, s|ht) over infinite
POMDP models m and their internal world-states s.
We describe the iPOMDP prior with a generative

model over infinite POMDPs. We take a Monte Carlo

approach to inference, which means we approximate
the posterior distribution by a set of samples. The
distribution over states in the ensemble of samples at
each time step represents the information state ξt. The
transition functions, observation and reward functions
in the samples give the distribution over μ.
We first describe the process of sampling the prior

iPOMDP, and then the process of inferring the posterior
given a history, and lastly the process of choosing actions
given the inferred state ξt.

2.1 Model
The HDP-HMM has the following generative model:

T̄ ∼ GEM(λ) (1)
T (·|s) ∼ DP(α, T̄)∀s (2)
Ω(·|s) ∼ H ∀s (3)

where the GEM distribution GEM is used to sample a
mean transition distribution T̄ with concentration pa-
rameter λ, the Dirichlet process DP is used to sam-
ple transition distributions T (·|s) from each world-state
with concentration parameter α, and the base distribu-
tion H is a prior over observation distributions Ω(·|s).
For discrete observation spaces, H is often chosen to
be Dirichlet distributions; however, the framework is
general enough to allow for any choice of prior. The
ensemble of states resulting from sampling T̄ in equation
1 implicitly defines the space S.
The GEM distribution is a stick-breaking process that

divides the unit interval into an infinite number of
segments [44]. Under the GEM distribution, T̄ (k), decays
exponentially with k based on the concentration param-
eter λ. Small values of λ place a bias toward a very
few popular world-states; large λ imply many world-
states will be likely destinations of a transition. The
concentration parameter α governs how closely T (·|s)
matches T̄ . Large α will result in transition functions
T (·|s, a) that look almost identical to T̄ . Small values will
result in near-deterministic transition functions T (·|s, a)
with mean T̄ .
The iPOMDP (fig. 4) adds actions and rewards to the

HDP-HMM.While the reward r = R(s, a) is traditionally
a deterministic function, we let R(r|s, a) be the proba-
bility of receiving reward r after performing action a in
world-state s. The full generative process is given by

T̄ ∼ GEM(λ)

T (·|s, a) ∼ DP(α, T̄)∀s, a
Ω(·|s, a) ∼ H ∀s, a

R(·|s, a) ∼ HR ∀s, a

where the base distribution HR is the prior over rewards
R(·|s, a). While any choice of prior could be used for
HR, here we choose to discretize the rewards and use
a Dirichlet distribution for the prior HR. We fix the
POMDP discount parameter γ = .95 as is standard in
many RL applications.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 5

2.2 Inference

By construction, our sufficient statistic ξt is the posterior
distribution p(s,m|ht) over current world state s and
the model m.3 The joint posterior ξt = p(s,m|ht) cannot
be represented in closed form. We factor the posterior
into p(s,m|h) into two components p(s|m,h)p(m|h). We
approximate the posterior over models p(m|h) with a
set of samples {m}. For each model m = {T,Ω, R}, the
distribution over world-states p(s|m,h) can be computed
exactly for discrete spaces using standard belief update
equations [17]. Thus, we focus in this section on describ-
ing how to draw samples m from p(m|h).
Updating {m} through Importance Sampling. The

generative process outlined in sec. 2.1 describes how
to draw samples from the prior over models m. More
generally, suppose we have a set of models m that have
been drawn from the correct posterior p(m|ht) at time
t. To represent the posterior p(m|ht+1), we can simply
assign weights to set of models {m} drawn at time t.
The importance weight w(m) on model m is:

wt+1(m) ∝ Ω(ot|m, at)R(rt|m, at)wt(m), (4)

where Ω(o|m, a)=
∑

s′∈S Ω(o|s′,m, a)bm(s′), R(r|m, a)=∑
s∈S R(r|s,m, a)bm(s), and, because the true model

does not change, T (m′|m, a) = δm(m′)
The advantage of simply reweighting the samples is

that the belief update is computationally fast. It is also
an effective way of updating the posterior if we do not
expect a large change to have happened: usually, a single
round of experience from time t to t+1 does not change
the agent’s beliefs about the model m significantly. How-
ever, over time, new experience may render all of the
current model samples unlikely. Very small likelihood
weights, which mean that none of the sampled models
are likely, indicate that the predictions made by those
models are poor and therefore unlikely to perform well
in decision-making situations. Very uneven weights—
a few likely models and many unlikely models—result
in low effective sample sizes and make it difficult to
estimate our uncertainty over models. To alleviate this
issue, we periodically resample the models mi from the
posterior.
Updating {m} through Beam Sampling.We resample

a new set of models directly from the current belief
using the beam-sampling approach of [45], with minor
adaptations to allow for observations with different tem-
poral shifts (since the reward rt depends on the world-
state st, whereas the observation ot is conditioned on
the world-state st+1) and for transitions indexed by both
the current world-state and the most recent action. The
correctness of our sampler follows directly from the
correctness of the beam sampler. The details required to
adapt the beam-sampler to the iPOMDP setting, as well
as discussion about its performance, are detailed in the
supplementary materials.

3. We will use the words posterior and belief interchangeably; both
refer to the probability distribution over the hidden state given some
initial belief (or prior) and the history of actions and observations.

2.3 Action Selection
Our belief b(s,m) is a joint distribution over the space of
world-states and models, which we represent by a set of
sampled models m with exact beliefs over world-states
b(s|m) in each. Reflecting our representation of the belief,
we divide our action-selection strategy into two parts: (1)
evaluating the value of an action a with respect to some
model m and the conditional belief b(s|m), which we
write as Qm(a, bm(s)), and (2) choosing an action given
a set of (possibly weighted) models m.
Solving Individual Models. When sampling the pos-

terior over models, we only instantiate model parame-
ters T (sj|si, a), Ω(o|si, a), and R(si, a) for world-states
si and sj that the agent believes that it has visited. The
sampled transition models encode this fact: for a visited
world-state si, the sum

∑
sj
T (sj|si, a) over all visited

world-states sj will be less than 1, reflecting the fact
that it is also possible that the agent will transition to
a new completely new world-state after taking action a
in world-state si. Because the posterior distribution for
parameters corresponding to unvisited world-states is
equal to the prior distribution, there was no reason to
instantiate those parameters. However, those (infinite)
unvisited world-states still exist. We cannot ignore them
when solving a policy for the model.
The correct Bayesian approach to handling these in-

finite unvisited, uninstantiated states during planning
would be to marginalize over them, however, integrat-
ing over the all possible visits to all possible states is
computationally intractable. Instead, we introduce a new
world-state s∗ that represents all of the unvisited world-
states. This approximation is reasonable because we have
no data to differentiate these unvisited world-states. We
set the transitions into this new world-state s∗ as the
“leftover probability” T (s∗|si, a) = 1 −

∑K

k=1
T (sk|si, a)

for all the visited world-states si, i = 1..K . We approx-
imate the remaining parameters for s∗ by using mean
values from the prior. This approximation ignores the
variation in these mean parameters but posits that the
large number of world-states encompassed by s∗ should
collectively act close to their mean. Specifically, we set
the transitions from s∗, T (·|s∗, a), to the mean transition
function T̄ , the observations Ω(·|s∗, a) to their mean from
H , and the rewards R(·|s∗, a) to their mean from HR.4

Now that the models {m} have a finite number of
world-states and well-formed transition and observation
functions, we can plan with standard approximations
(we used point-based value iteration (PBVI) [20]). Many
POMDP solution techniques allow us to compute the
action-value function Qm(a, bm(s)), which gives the ex-
pected value of performing action a under belief bm(s)
and model m and then following the optimal policy. This
action-value function fully takes into account world-state
uncertainty given a model; if there was no model uncer-
tainty then the action a = argmaxa Qm(a, bm(s)) would
be the optimal action for the agent to take. Thus, as the

4. Of course, the correct Bayesian thing to do would be to integrate
over all the (infinite) uninstantiated states in the model. Using a catch-
all state is a heuristic way of roughly achieving the smoothing effect
of the desired integration in a computationally-efficient manner.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 6

model uncertainty decreases with more experience, we
expect our agent to start behaving near-optimally.
Solving the Model-Uncertainty-POMDP. In the pre-

vious section, we summarized how we first create a finite
summary of, and then (approximately) solve, an individ-
ual model m. Now we describe how we approximate the
solution to the full model-uncertainty-POMDP, which
consists of a set of models, each individually tracking
its own world-state uncertainty. The state space of the
model-uncertainty-POMDP is too large to apply global
solutions methods (such as PBVI); instead we apply a
stochastic forward search in model space which locally
approximates the model-uncertainty-POMDP solution.
Forward search in POMDPs [22] uses a forward-

looking tree to compute action-values. Starting from the
agent’s current belief, the tree branches on each action
the agent might take and each observation the agent
might see. At each action node, the agent computes its
expected immediate reward R(a) = Em[Es|m[R(·|s, a)]].
The value of taking action a in belief b(s,m) is

Q(a, b) = R(b, a) + γ
∑

o

Ω(o|b, a)max
a′

Q(a′, bao) (5)

where bao is the agent’s belief after taking action a and
seeing observation o from belief b. The value R(b, a) is

R(b, a) =
∑

m

b(m)
∑

s

b(s|m)R(s, a) (6)

where b(m) is simply the weight w(m) on the model
m. The update to the conditional belief bao(s|m) can
be computed in closed form. To update the belief over
models bao(m), we use eqn. 4 to update the belief over
models b(m) via the weights w(m). Eqn. 5 is evaluated
recursively for each Q(a′, bao) up to some depth D.
The number of evaluations (|A||O|)D grows exponen-

tially with the depth D, so a full expansion is only feasi-
ble for tiny problems. We use a stochastic approximation
that samples a few observations from the distribution
P (o|a) =

∑
m P (o|a,m)w(m). Eqn. 5 reduces to:

Q(a, b) = R(b, a) + γ
1

NO

∑

i

max
a′

Q(a′, baoi) (7)

where NO is the number of sampled observations and
oi is the ith sampled observation.
Once we reach a prespecified depth in the tree, we

must approximate the value of the leaves Q(a, bf), where
f is the future that corresponds the actions and obser-
vations along the branches from the root b to the leaf.
For each leaf-model m, we can efficiently compute the
value Qm(a, bm(s)) from our approximate solution to the
POMDP m. We approximate the value of action a as

Q(a, bf) ≈
∑

m

w(m)Qm(a, bfm(s)). (8)

This approximation always overestimates the value, as it
assumes that the uncertainty over models—but not the
uncertainty over world-states—will be resolved in the
following time step (the proof follows directly from the
fact that eqn. 8 applies the QMDP approximation [46] in
the space of models). As the iPOMDP posterior becomes

peaked and the uncertainty over models decreases, the
approximation becomes more exact.
The quality of the action selection largely follows

from the bounds presented in [47] for planning through
forward search. The key difference is that now our be-
lief representation is particle-based; during the forward
search we approximate expected rewards over all pos-
sible models with rewards from the particles in our set.
Because our models are drawn from the true posterior
over models, this approach is a standard Monte Carlo
approximation of the expectation.

3 INFINITE DETERMINISTIC MARKOV MODELS
The iPOMDP is a nonparametric prior over hidden-
variable representations. While all hidden-variable rep-
resentations are variants of POMDPs, there are many
kinds of history-based representations. PDFA-like mod-
els have outperformed HMMs in uncontrolled set-
tings [13], and recent work [37] has suggested that
DMMs are more succinct sufficient statistics of the his-
tory than (i)POMDPs. Motivated by these examples, we
now introduce the infinite deterministic Markov model
(iDMM), which is a nonparametric prior over DMMs
with an countably infinite number of nodes.
DMMs are an extension of probablistic-deterministic

finite automata (PDFA) to include rewards. A PDFA is
described by the 5-tuple {S,A,Ω, δ, s0}, where S, A, and
Ω are discrete sets of nodes, actions, and observations;
the node s0 is the initial node; δ : S x A x Ω → S outputs
which node which follows the current state, action, and
observation. Just as the DMM m = {S,A,R,Ω, δ, s0}
is constructed by adding rewards to the PDFA, we
extend the probabilistic-deterministic infinite automata
(PDIA) [13] to construct the iDMM5.

3.1 Model
The original PDIA prior, designed for an uncontrolled
system, has a generative process based on the hierarchi-
cal Pitman-Yor process6 (HPYP) for the transitions [49]:

G ∼ PYP(c0, d0, H)

Go ∼ PYP(c1, d1,G)∀o ∈ Ω

δ(s, o) ∼ Go ∀o ∈ Ω, s ∈ S

where, as with the HDP-HMM, the base distribution H
is the prior over observation distributions Ω(·|s), and
the constants c0, d0, c1, and d1 are the parameters of the
Pitman-Yor process7. Here, G is a general mean transition
function and Go is the mean transition function for each
observation o (encoding the bias that we expect the most
recent observation o to be the most informative when

5. In contrast, the prior work of [37] used a uniform prior over
DMMs, but restricted the search space.
6. The Pitman-Yor process (PYP) [48] is an extension of the Dirichlet

process that allows for the generation of heavy-tailed distributions.
7. Note that δ(s, o) is an element of the base space of H , which is the

space of distributions over Ω. Since samples from H are almost surely
unique, we can index states by their emission distribution, so δ(s, o)
is both the state that is transitioned to and the emission distribution
of that state.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 7

(a) iPOMDP graphical model (b) Asymmetric iDMM graphical
model

(c) Symmetric iDMM graphical model

Fig. 4: Graphical models showing the generative process for the iPOMDP and the iDMM.

predicting the next node). Since transitions in the PDIA
are deterministic, we still have to sample a deterministic
s′ = δ(s, o) ∼ Go for each state s.
Adding rewards to extend the PDIA prior to the

iDMM is straightforward: as in previous work with
DMMs [37], we assumed that each node s had some
reward emission probability R(r|s, a). However, decid-
ing how to incorporate actions requires modeling choices
of what biases should be encoded. We considered three
different ways of incorporating actions:
1) Consider observations then actions To encode an

explicit bias for the most recent observation to be
more informative than the most recent action—
such as a robot with good sensors but poor motor
control—we sample transitions with:

T̄ ∼ PYP(c0, d0, H ⊗HR)

T̄o ∼ PYP(c1, d1, T̄)∀o ∈ Ω

T̄oa ∼ PYP(c2, d2, T̄o)∀o ∈ Ω, a ∈ A

δ(s, a, o) ∼ T̄oa ∀o ∈ Ω, a ∈ A, s ∈ S

Here, all of the transition distributions T̄oa will be
similar to T̄o, and thus the observation will have
the stronger generalizing influence (see fig. 4).

2) Consider actions then observations In contrast, if
we believe that the most recent action is more infor-
mative than the most recent observation—such as
if there exist actions that reset the environment to
a reliable state, we reverse the ordering of actions
and observations in the hierarchy:

T̄ ∼ PYP(c0, d0, H ⊗HR)

T̄a ∼ PYP(c1, d1, T̄)∀a ∈ A

T̄ao ∼ PYP(c2, d2, T̄a)∀a ∈ A, o ∈ Ω

δ(s, a, o) ∼ T̄ao ∀a ∈ A, o ∈ Ω, s ∈ S

Here, all of the transition distributions T̄oa will be
similar to T̄a, and thus the action will have the
stronger generalizing effect.

3) Consider actions and observations equally Incor-
porating the actions by extending the hierarchy

forces a bias towards either actions or observa-
tions being more informative (depending on their
ordering). Our final model breaks the transition
function into two stages to remove this bias. In
the first stage, the agent takes an action, gets a
reward, and updates its node (before receiving the
observation). In the second stage, the agent receives
an observation and updates its node based only
the observation. Thus the full transition function
can be expressed as the composition of two partial-
transition functions, σ : S × A → S′ and τ :
S′×Ω → S, where S′ is the set of intermediate states,
following an action but before an observation. We
then use the original PDIA prior for both partial-
transition functions:

T̄ ∼ PYP(c0, d0, H ⊗HR)

T̄a ∼ PYP(c1, d1, T̄) ∀a ∈ A

σ(s, a) ∼ T̄a ∀a ∈ A, s ∈ S

T̄ ′ ∼ PYP(c′0, d
′
0, H

′)

T̄ ′
o ∼ PYP(c′1, d

′
1, T̄

′) ∀o ∈ Ω

τ(s′, o) ∼ T̄ ′
o ∀o ∈ Ω, s′ ∈ S′

δ(s, a, o) = τ(σ(s, a), o)

Here H ′ is any distribution such that samples are
almost surely unique, and can be thought of as
a label for intermediate states. Since nodes in S
can only transition to nodes in S′, the combined
transitions σ and τ form a symmetric graph. We
refer to this model as a symmetric iDMM (see fig. 4).

3.2 Inference
The belief-monitoring step, which requires performing
the inference over iDMMs, follows directly from the
Metropolis-Hastings sampler used in the original PDIA
work of [13]. To generate samples from the posterior
distribution over iDMMs given experience, we randomly
sample the state to which edges transition according to a
Metropolis-Hastings scheme. Given an edge δ(s, a, o), we

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 8

propose a new state for it to transition to and evaluate
the likelihood of the agent’s experience given the new
model. Since changing one edge affects the whole graph,
we may have to introduce other new edges to evaluate
the likelihood. These are sampled in a “just-in-time”
manner from the prior, and treated as if they were
already part of the model. The proposed new δ(s, a, o)
is then accepted with probability given by the ratio
of the likelihood of experience between the old and
new value of δ(s, a, o). We use an exponential prior for
concentrations and a uniform prior for discounts.

3.3 Action Selection
As with the iPOMDP, we maintain a distribution over
iDMMs with a set of weighted samples. To choose an
action, we first choose an iDMM model based on its
importance weight. While the iDMM itself does not ex-
plicitly model observation probabilities, we can use the
histories h to compute the probability of each transition
T (s′|s, a) =

∑
o I(δ(s, a, o) = s′)p(o|s, a) using empirical

observation probabilities p(o|s, a). The resulting MDP
can be solved via standard techniques.

4 EXPERIMENTS
We begin with a set of illustrations that demonstrate
the properties of the Bayesian nonparametric approach
to learning POMDP representations before providing
comparisons of the iPOMDP and the iDMM with other
learning approaches on several benchmark problems.
All of our experiments used the following settings for

any applicable priors and inference:
• Observation Prior H We used a uniform Dirichlet

prior for H with a concentration Ho = 1 for each
element, providing a bias toward smoother obser-
vation distributions.

• Reward Prior HR We assumed that rewards took
on discrete values and used a uniform Dirichlet
prior for HR with a concentration Ho = .1 for each
element. Using a low concentration encoded our
prior belief that R(r|s, a) was highly peaked.

• Updating Models Beliefs were approximated with
set of 10 models. Models were updated after every
100 interactions of experience after an initial run of
250 interactions. The beam-sampler had an initial
burn-in of 50 iterations and then took every 10th
sample as an output. Each round of MCMC was
“hot-started” with the last model from the previous
round. The initial round of MCMC was intialized
with a random sequence with 5 possible states.

• Evaluating Agent Progress Following each full up-
date over models using MCMC, we ran 50 “catch”
test episodes (not included in the agent’s experi-
ence) with the new models and policies to empiri-
cally evaluate the current value of the agents’ policy.

• Solving Models Models were solved using PBVI
[20]. The solver was run with 500 beliefs b(s|m) per
model; the number of backups was increased from
10 to 35 linearly with the interactions of experience

(so that we would spend more effort trying to solve
models in the later stages of the learning process).

• Selecting Actions Forward-search of depth 3.
• Trial Length A trial consisted of 7500 interac-

tions with the environment. Within each trial, each
episode was capped at 75 interactions of experience.

• Repeated Trials Each trial was repeated 10 times.
The hyper-parameters were not sampled. We found that
as long as the MCMC was started with a relatively small
number of initial states, the choice of hyper-parameter
had relatively little effect.

4.1 Illustrations
We begin with a pair of illustrative examples demon-
strating the properties of the iPOMDP. The first,
lineworld and loopworld, shows how the iPOMDP
learns only the structure that is needed to make predic-
tions. The second, tiger-3, shows how the infinite capac-
ity of the iPOMDP allows it to adapt when “additional
state” is added to the environment.
Avoiding unnecessary structure: Lineworld and

Loopworld. We designed a pair of simple environments
to show how the iPOMDP infers states only as it can
distinguish them. The first, lineworld, was a length-six
corridor in which the agent could either travel left or
right. Loopworld consisted of a corridor with a series of
loops (see fig. 5; now the agent could travel though the
upper or lower branches. In both environments, only the
two ends of the corridors had unique observations. Ac-
tions produced the desired effect with probability 0.95,
observations were correct with probability 0.85 (that is,
15% of the time the agent saw an incorrect observation).
The agent started on the far left and received a reward
of -1 until it reached the opposite end (reward 10).
While the agent eventually inferred that the lineworld

environment consisted of six states (by the number of
steps required to reach the goal), it intially inferred dis-
tinct states only for the ends of the corridor and groups
the middle region as one state. Trials with the loopworld
agent also showed a growth in the number of states
over time (fig. 5), but it never inferred separate states
for the identical upper and lower branches. By inferring
states as they were needed to explain its observations—
instead of relying on a prespecified number of states—
the agent avoided reasoning about irrelevant structure
in the environment. The agent (unsurprisingly) learned
optimal performance in both environments.
Adapting to new situations: Tiger-3. The iPOMDP’s

flexibility also lets it adapt to new situations. In the tiger-
3 domain, a variant of the tiger problem of [46] the agent
had to choose one of three doors to open. Two doors
had tigers behind them (r = −100) and one door had a
small reward (r = 10). At each time step, the agent could
either open a door or listen for the “quiet” door. Each
attempt at listening identified the good door correctly
with probability 0.85.
During the agent’s first 750 interactions with the en-

vironment, the reward was equally likely to be behind
doors 1 or 2. The improving rewards (averaged over

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 9

Loopworld

Lineworld

(a) Cartoon of Models

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

N
um

be
r o

f S
ta

te
s

Number of States in Lineworld POMDP

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

N
um

be
r o

f S
ta

te
s

Episode Number

Number of States in Loopworld POMDP

(b) Evolution of Number of States

Fig. 5: Both lineworld and loopworld have hallways
with a start (shaded), goal (double line) and identical
middle states (a). The plots in (b) show the number
of states inferred by the iPOMDP against the number
of times the agent has traversed the hallways over 50
repeated trials: the black line shows the mean num-
ber of inferred iPOMDP states, and boxplots show
the medians, quartiles, and outliers at each episode.
Of note is that loopworld infers only necessary states,
ignoring the more complex (but irrelevant) structure.

10 independent runs and blocks of 300 steps) in fig. 6
show the agent steadily learning the dynamics of its
world; it learned never to open door 3. The dip in
fig. 6 following iteration 750 occurred when we next
allowed the reward to be behind all three doors (the
lag is because the plot averages over time, the length of
the dip represents the time required to adjust to the new
parameters). The agent adapted to the new possible state
of its environment by instantiating new state. Thus, the
iPOMDP enabled the agent to first adapt quickly to its
simplified environment but add complexity as needed.

4.2 Results on Standard Problems
We next completed a set of experiments on POMDP
problems from the literature (listed in table 1). We com-
pared the accrued rewards for the iPOMDP agent and
iDMM variants with five baselines:
1) EM: The agent knew the “true” state count K

and used expectation-maximization (EM) [50], a
greedy maximum likelihood approach prone to
local optima, to train its model.

2) FFBS: The agent knew the “true” state count K and
that used the forward-filtering backward-sampling

0 500 1000 1500 2000 2500 3000
−10

−5

0

5
Rewards on Tiger−3

Te
st

 R
ew

ar
ds

0 500 1000 1500 2000 2500 3000
2

3

4

5

6

7
Instantiated States on Tiger−3

Iterations of Experience

In
st

an
tia

te
d

S
ta

te
s

Fig. 6: Evolution of reward from tiger-3. The agent’s
performance dips slightly after the third door is in-
troduced, but then it adapts its representation to the
new environment. The number of instantiated states
also grows to accommodate this new possibility.

TABLE 1: Summary of iPOMDP Benchmarks

Domain States Actions Observations
Tiger [46] 2 3 2
Network [46] 7 4 2
Shuttle [51] 8 3 5
Cheese [39] 23 4 8
5x5 Gridworld [46] 25 4 16
Follow (adapted from [2] 26 5 6
Hallway [46] 60 5 21
Beach [52] 100 5 2
Rocksample [53] 257 9 2
Image [52] 673 5 9
Tag [20] 870 5 30
Harvest [37] 896 8 7

(FFBS) algorithm to sample models m from the
posterior over finite models with K states. We used
the same hyperparameters as the iPOMDP. FFBS
was used in the inner loop of the iPOMDP beam-
sampler to sample state sequences once a finite
model has been sliced; thus the only difference
between FFBS and iPOMDP was that FFBS con-
sidered a class of finite models.

3) EM-Big: The agent used EM with ten times the
“true” number of states 10K . This option repre-
sented a “safe” strategy if the number of hidden
states was not initially known; by guessing too high
one could guarantee that the belief-state b(s)would
be a sufficient statistic for the history.

4) FFBS-Big: The agent used FFBS with ten times
the true number of states 10K (i.e., a truncated
iPOMDP), and

5) U-Tree: The agent used an optimized version of
the U-Tree algorithm [39]. Suffixes of the history
were used as a sufficient statistic for predicting
future rewards. Our version of U-Tree did an all-
pairs comparison when considering whether to
split the nodes. We optimized over values of the KS
hypothesis test threshold, the minimum node-size
threshold, and number of MDP backups. The tree-
depth was limited to 6 for computational reasons.

Fig. 7 plots the iPOMDP agent’s learning curve, aver-
aged over multiple trials, against all of the other base-
lines. The iPOMDP and the FFBS agents led the other

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 10

0 1000 2000 3000 4000 5000 6000 7000
−160

−140

−120

−100

−80

−60

−40

−20

0

20

40
Rewards for Gridworld

Iterations of Experience

R
ew

ar
ds

EM
EM−Big
iDMM−AO
iDMM−OA
iDMM−Bipartite
UTree
iPOMDP
FFBS
FFBS−Big

Fig. 7: Learning rates for various algorithms in the
gridworld domain. The iDMM models outperform
U-Tree, a simpler history-based learning method,
but do not outperform the hidden-variable methods.
Among the hidden-variable methods, the Bayesian
methods (iPOMDP and FFBS) outperform EM by
avoiding local optima.

methods with very similar learning curves; however,
the iPOMDP agent did so without knowledge of the
number of hidden variables needed to encode the en-
vironment. While the iDMM agents often outperformed
their history-based baseline U-tree, their learning rates
were slower than the hidden-variable approaches.8

Fig. 8 shows the rewards from “catch tests” on several
benchmark problems. The problems are organized in
order of size: tiger has only two underlying states,
while tag and harvest have over 800. All algorithms
have difficulty with the larger problems; the variations
in performance are most clear in the small and mid-
sized problems. The first major difference between the
algorithms is that the history-based representations, in-
cluding the iDMM, tend to learn more slowly than the
hidden-variable representations. (All results, of course,
depend on parameter and inference choices; we opti-
mized several parameters in U-Tree and tried several
inference approaches for the iDMM.)
The impact of the inference techniques is clear

when one compares the EM-based approaches with the
iPOMDP and FFBS-based approaches. FFBS is a clean,
robust inference technique, and the beam-sampler in-
herits many of its good properties. As a result, these
samplers are able to find high-probability samples m
and not get caught in local optima (unlike EM). This
effect is most clear in tiger, where EM quickly finds
the locally optimal greedy strategy of never opening
a door—and thus has the worst performance. FFBS
and iPOMDP often have similar performance—however,
iPOMDP achieves this performance without having to
pre-specify the number of states (which would not be
available in a real application). The advantage of using

8. While the iDMM results here are presented using the MH infer-
ence of section 3.2, we also experimented with a variety of blocked
Gibbs, tempered MH, and simulated-annealing from HMM inference
schemes—all of which resulted in similar performance.

the iPOMDP is clear when one observes the less consis-
tent performance of the “big” versions of the algorithms:
inferring the number of states (iPOMDP) does as well or
better than knowing the true number of states, whereas
guessing conservatively leads to poorer performance.
Inferring the size of the (visited) state space also has

computational benefits. In fig. 8, certain algorithms do
not appear in later plots because we were unable to run
them on Matlab with 3-GB of RAM. Fig. 9 shows the run-
ning times of all the comparison algorithms relative to
the iPOMDP. Because the iPOMDP often infers a smaller
number of hidden states than the true count, ignoring
distinctions not supported by the agent’s experience, it
has faster running times than similar-performing (and
predicting) algorithms such as FFBS.

FFBS FFBS−Big EM EM−Big iDMM−AO iDMM−OAiDMM−SymmetricUTree
10−2

10−1

100

101

102
Per−Iteration Running−Time Compared to iPOMDP

R
el

at
iv

e
R

un
ni

ng
 T

im
e

C
om

pa
re

d
to

 iP
O

M
D

P

Fig. 9: Wall-clock running time of various algorithms
on Benchmark Problems. All approaches were run
on a computer with a 2.6GHz CPU. The iPOMDP,
FFBS, and EM approaches were all coded in highly-
optimized Matlab and shared subcomputations. The
U-Tree approach was also coded in highly-optimized
Matlab. The iDMM inference was coded in Java.
Each circle in the top figure shows the running
time of each comparison algorithm compared to the
iPOMDP for a particular domain. A value greater
than 1 means that the comparison algorithm was
slower than the iPOMDP. While simple algorithms,
such as EM and U-Tree, generally run faster than
iPOMDP, they had significantly worse performance.
FFBS-Big appears faster than FFBS because it could
only be run on the six smallest domains.

4.3 Comparison of Action-Selection Approaches
Reinforcement learning consists of (1) choosing (and
learning) a representation and (2) selecting actions based
on this representation. In sec. 4.2, we saw how the learn-
ing mechanism—sampling vs. greedy optimization—can
have a large impact on an agent’s performance even
when the choice of representation is the same. We saw
sample-based inference with hidden-variable representa-
tions outperformed history-based methods on all of our
benchmarks. We now examine the impact of the action-
selection scheme on the performance of the EM, FFBS,
and iPOMDP learning algorithms.
This empirical analysis is motivated in part because

stochastic forward search, while guaranteed to be Bayes-
optimal in the limit, requires a significant amount of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 11

0 2000 4000 6000
−80

−60

−40

−20

0

20
Rewards for Tiger

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000
−1500

−1000

−500

0

500

1000

1500
Rewards for Network

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000
−4

−2

0

2

4

6

8

10
Rewards for Shuttle

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000
−70

−60

−50

−40

−30

−20

−10

0
Rewards for Cheese

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000
−200

−150

−100

−50

0

50
Rewards for Gridworld

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000
−400

−300

−200

−100

0
Rewards for Follow

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000
−0.05

0

0.05

0.1

0.15

0.2

0.25

Rewards for Hallway

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000
0

5

10

15

20
Rewards for Beach

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000
−100

−80

−60

−40

−20

0

20
Rewards for Rocksample

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000
−3000

−2500

−2000

−1500

−1000

−500

0
Rewards for Image

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000
−160

−140

−120

−100

−80

−60
Rewards for Tag

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000
−500

0

500

1000

1500

2000

2500
Rewards for Harvest

Iterations of Experience

R
ew

ar
ds

iPOMDP
FFBS
FFBS−Big
EM
EM−Big
iDMM−AO
iDMM−OA
iDMM−Symmetric
UTree

Fig. 8: Performance of various algorithms on Benchmark Problems. The Bayesian hidden-variable approaches perform
best overall, and iPOMDP matches or bests the performance of FFBS with less information about the state space.

computation to expand the search tree—even to short
depths such as five or six. However, while one may be
able to plan reasonably well in many domains by only
considering five actions into the future, it is unclear to
what extent the benefits of learning a model can be
ascertained by considering such a small amount of future
data. In this section, we test several other action-selection
heuristics on two domains, tiger and gridworld:
1) Epsilon-Greedy The QMDP heuristic of [46] takes

the action with the highest expected reward∑
m Qm(a)b(m), ignoring the future value of in-

formation (such as actions that might help the
agent distinguish between models). The epsilon-
greedy approach executes the QMDP solution 1− ε
proportion of the time, and performs a random
action otherwise. We set ε = .1 in our experiments.

2) Softmax Each model maintains an action-value
function Qm(a). Instead of taking the action which
maximizes

∑
mQm(a)b(m), the softmax algorithms

takes action a in proportion to expected future
reward: P (a) ∝ exp(λ

∑
m Qm(a)b(m)).

3) Weighted Stochastic (WS) Weighted stochastic is
another very simple but fast heuristic: when select-
ing actions, we first choose a model m according to
its weight b(m). Then we take the action a that m
believes is optimal. Choosing a model based on its
weight, rather than the most likely model, allows
for “potentially useful” actions to be tried some of
the time. However, this approach also does not take
into account the value of future information.

4) Bayesian Exploration Bonus (BEB) The original
BEB algorithm [54], designed for MDPs, inflates
rewards for state-action pairs that the agent has
rarely tried (hence “exploration bonus”). In the
POMDP setting, we apply the same bonus to state-
action visit counts based that the agent thinks it has
visited. By encouraging the agent to visit regions
that it thinks it knows less well, we hope that BEB
would help the agent discover more quickly how
world-states should be organized.

5) Best of Sampled Set (BOSS) The original BOSS
algorithm [55], also designed for MDPs, uses the
most optimistic—or the best of the sampled set—
transition model in each iteration of the iterative
process for computing the value of an action. This
optimism results in either get high rewards or a
quick discovery that the models are too optimistic.
While the original paper describes the work in the
context of value iteration, which cannot be applied
POMDPs, we find it straight-forward to implement
the concept in the context of a forward-search.

Of the three alternatives to the basic forward search,
epsilon-greedy, softmax, and weighted stochastic do not
explicitly consider the value of future information. They
ensure that the agent explores enough by introducing
various kinds of stochasticity into the action-selection
process. BOSS and BEB expand use a stochastic for-
ward search with different optimism-under-uncertainty
heuristics to encourage exploration; these heuristics help
compensate for lower search depths.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 12

Figures 10 and 11 compare the different action-
selection strategies on two problems, tiger and grid-
world, and three learning approaches, iPOMDP, FFBS,
and EM. In all the plots, the action-selection approach
makes little difference in performance; the simple, fast
heuristics (epsilon-greedy, softmax, weighted stochastic)
often do quite well compared to the more computation-
ally intensive approaches basic forward search, BEB, and
BOSS. In the tiger problem, we confirm that the poor
performance of EM was not just due to our stochastic
forward search; none of the action-selection strategies
can prevent EM from getting caught in local optima.

0 2000 4000 6000 8000 10000

−70

−60

−50

−40

−30

−20

−10

0

10
Rewards for iPOMDP

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000 8000 10000

−70

−60

−50

−40

−30

−20

−10

0

10
Rewards for FFBS

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000 8000 10000

−70

−60

−50

−40

−30

−20

−10

0

10
Rewards for EM

Iterations of Experience

R
ew

ar
ds

Weighted Stochastic
BEB
BOSS
Epsilon Greedy
Softmax
Stochastic Forward Search

Fig. 10: Action Selection Comparison on Tiger.

0 2000 4000 6000 8000 10000
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

40
Rewards for iPOMDP

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000 8000 10000
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

40
Rewards for FFBS

Iterations of Experience

R
ew

ar
ds

0 2000 4000 6000 8000 10000
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

40
Rewards for EM

Iterations of Experience

R
ew

ar
ds

WS
BEB
BOSS
Epsilon Greedy
Softmax
Forward Search

Fig. 11: Action Selection Comparison on Gridworld.
All of the action-selection strategies have similar
performance; the main differences in performance
come from the inference techniques.

We have several hypotheses for why the action-
selection strategy seems to have little impact. First, we
note that all of the strategies above are only trying to
make decisions in the face of model uncertainty b(m).
For each sampled model m, we can and do maintain
the belief b(s|m) in closed form and compute the value
of each action Qm(b(s|m), a). If the model uncertainty is
small compared to the state uncertainty, it is possible
that the models are almost always in agreement; if
all models m from b(m) are in agreement, then there
is little value in trying to differentiate them. We find
that all the action-selection strategies chose the greedy
action 70-80% of the time, suggesting that the models
were often in agreement. Thus, even solving the model-
uncertainty POMDP offline—as done in [25] for a set of
four extremely different possible models—may not result
in better performance.
The model uncertainty may appear to be small either

because the posterior b(m) is truly peaked or because of
artifacts in the MCMC sampler. We know that Dirichlet
priors are fairly smooth, and, in practice, our samplers

often give us similar models. We experimented with
using multiple restarts to help alleviate potential mixing
issues, still ending up with models that make very
similar predictions. Thus, it seems plausible that there
may not be enough information to be discovered in our
crude forward search. Our models took hundreds of
interactions with the environment to learn; our forward
search had a depth of 4 to 6 actions. A deeper forward
search may have resulted in more optimal learning, but
the depth required for an effective forward search may
be too large to be practical (of course, a deep forward
search would also require a discount factor larger than
0.95 to make far-future rewards attractive).
Finally, we might ask if the forward search is not really

exploring, how is the learning happening? We hypoth-
esize that all of the domains are relatively “friendly”
in the sense that many policies will provide enough
information about the domain for the agent to learn a
model without explicitly selecting actions to do so. Even
action-selection strategies that do not have an explicit
stochastic component, such as BOSS or BEB, still rely
on sampled models which introduce some randomness
into the policy. This randomness, combined with spaces
where just acting may provide much information, may
be sufficient for simple techniques to perform well.

5 DISCUSSION AND CONCLUSION
Past work in learning POMDP models include [4], which
uses a set of Gaussian approximations to allow for
analytic value function updates in the POMDP space,
and [2], which reasons over the joint space of Dirichlet
parameters and world-states when planning in discrete
POMDPs. Sampling-based approaches include Medusa
[3] and [25], which learn using state and policy queries,
respectively. All of these approaches assume a known
number of world-states; all but [25] focus on learning
only the transition and observation models.
In contrast, the iPOMDP provides a principled frame-

work for an agent to refine more complex models of its
world as it gains more experience. By linking the number
of instantiated parameters to the agent’s experience, the
agent is not forced to consider uncertainties in large
numbers of parameters at the beginning of the planning
process, but it can still infer accurate models of the world
as it has data to do so. We show that it outperforms both
basic history-based approaches, such as U-Tree, and our
own iDMM alternative.
We were surprised to find that the iPOMDP outper-

formed the iDMM in all environments. Prior work in
uncontrolled environments [13] showed that the PDIA
model, on which the iDMM is based, outperformed EM-
trained HMMs on predictive tasks. In these settings,
using a simpler model allowed for more robust infer-
ence and less over-fitting. The reinforcement learning
setting is more complex than the uncontrolled setting,
and dramatic innovations in iDMM inference—akin to
the recent development of the beam-sampler—may be
needed to improve the iDMM’s performance on these
more complex tasks. Learning models of controlled en-
vironments may also differ from learning models of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 13

uncontrolled environments in fundamental ways not
addressed by any of the iDMM variants presented here.
We do note, however, that while it is true that many
of the benchmarks were created with “hidden states” in
mind, the Harvest [37] and Cheese tasks [39] were first
introduced as demonstrations of history-based methods.
More generally, there appear to be certain problem

characteristics for which Bayesian nonparametric repre-
sentations such as the iPOMDP are well-suited:

• Representations Must Be Built Online, and Train-
ing Time Performance Matter. The iPOMDP had
the fastest per-iteration computational time among
all of the well-performing models (fig. 9). Most of
the computational wins were early in the training
phase, when instantiating fewer parameters resulted
in both faster inference and faster planning. These
wins became less significant as the model was re-
fined, but the iPOMDP models often still used fewer
instantiated parameters than the “true” model.

• Data is Limited or Fundamentally Sparse. When
gathering experience is easy, such as with a game-
playing AI, almost any representation will discover
reasonable structures: long suffix-trees or many-
node DMMs can be trained without overfitting,
statistics can be precisely computed for PSRs, and
sufficient data exists to train the many parame-
ters in a POMDP. In figure 8, all the approaches
improved with time; if we were given a batch of
trajectory data, we could have just chosen a model
via standard model comparison methods such as
cross-validation. What distinguished the iPOMDP’s
performance is that it did well early on by quickly
discovering gross structure in the dynamics.

• The “Right” Representation is Non-Obvious. All
of the benchmark problems had one thing in com-
mon: even when the domain had a very spe-
cific structure—such as the gridworld—none of the
structure was given to the agent (unlike previous
work like [56]). In reality, of course, if the domain
structure is well-understood, then it makes sense to
use models calibrated to the task. For example, if we
know there’s only one “listen” parameter to learn in
tiger, we found learning occurs much faster.

• Predictive Accuracy is the Priority. Bayesian non-
parametric approaches instantiate parameters to
make accurate predictions about the future, and in
general, hidden variables cannot be thought of as
“real” world-states. These approaches cannot over-
come fundamental non-identifiability questions—
such as the identical parallel tracks in loopworld.
Instead, the iPOMDP finds a representation that
allow it to make good predictions.

By giving the agent an unbounded state space—but
strong locality priors—the iPOMDP provides one princi-
pled framework to learning POMDP structure. Natural
directions for extensions include expanding the HDP-
based construction described in sec. 2.1 to include deeper
hierarchies, which can be used to encode structurre in
the state transitions (for example, clusters of states might
behave similarly). Infinite dynamic bayes nets [57] could

provide a more structured hidden-variable representa-
tion. More radical alternatives include infinite probabilis-
tic context-free grammars or probabilistic programs.
However, our negative results with the iDMM and

our action-selection results in sec. 4.3 emphasize that
the one must think carefully when choosing knowledge
representations. We hypothesize that one reason why
the choice of action-selection strategies had little effect
was that the posterior b(m) was too smooth, making it
difficult to discover the value of differentiating models.
Even the HPYP prior in the iDMM did not truly en-
courage diversity. “Spiky” models with biases toward
multimodal posteriors might make it easier to quickly
explore the space of possible models. However, as seen
with the iPOMDP and iDMM, a model is only as good
as its inference: unless these posterior modes can be
reliably found, the models will have little value for
reinforcement-learning applications.

ACKNOWLEDGMENTS
The authors thank David Hsu for insightful discussions
on action-selection in Bayesian reinforcement learning.

REFERENCES
[1] R. S. Sutton and A. G. Barto, “Reinforcement learning: An intro-

duction,” 1998.
[2] S. Ross, B. Chaib-draa, and J. Pineau, “Bayes-adaptive POMDPs,”

in Neural Information Processing Systems, 2008.
[3] R. Jaulmes, J. Pineau, and D. Precup, “Learning in non-stationary

partially observable Markov decision processes,” in European
Conference on Machine Learning Workshop, 2005.

[4] P. Poupart and N. Vlassis, “Model-based Bayesian reinforcement
learning in partially observable domains,” in ISAIM, 2008.

[5] R. Dearden, N. Friedman, and D. Andre, “Model based Bayesian
exploration,” in Proceedings of the Fifteenth Conference on Uncer-
tainty in Artificial Intelligence, 1999, pp. 150–159.

[6] M. O. Duff, “Optimal learning: computational procedures for
Bayes-adaptive markov decision processes,” Ph.D. dissertation,
University of Massachusetts Amherst, 2002.

[7] D. J. MacKay, “Ensemble learning for hidden Markov models,”
Cambridge University, Tech. Rep., 1997.

[8] A. Stolcke and S. Omohundro, “Hidden Markov model induction
by Bayesian model merging,” in Advances in Neural Information
Processing Systems. Morgan Kaufmann, 1993, pp. 11–18.

[9] C. R. Shalizi and K. L. Klinkner, “Blind construction of optimal
nonlinear recursive predictors for discrete sequences,” in Uncer-
tainty in Artificial Intelligence: Proceedings of the Twentieth Conference,
M. Chickering and J. Y. Halpern, Eds. Arlington, Virginia: AUAI
Press, 2004, pp. 504–511.

[10] G. L. Drescher, Made-up minds: a constructivist approach to artificial
intelligence. Cambridge, MA, USA: MIT Press, 1991.

[11] P. J. Gmytrasiewicz and P. Doshi, “Interactive POMDPs: Proper-
ties and preliminary results,” in Proceedings of Automonous Agents
and Multi-Agent Systems, 2004, pp. 1374–1375.

[12] F. Doshi-Velez, “The infinite partially observable Markov decision
process,” in Advances in Neural Information Processing Systems 22,
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and
A. Culotta, Eds., 2009, pp. 477–485.

[13] D. Pfau, N. Bartlett, and F. Wood, “Probabilistic deterministic
infinite automata,” in Advances in Neural Information Processing
Systems 23, J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta, Eds., 2010, pp. 1930–1938.

[14] N. Z. Tishby, F. Pereira, and W. Bialek, “The information bot-
tleneck method,” in Proceedings of the 37th Allerton Conference on
Communication, Control, and Computing, 1999.

[15] D. Blackwell and M. Girshick, Theory of Games and Statistical
Decisions. Wiley, 1954.

[16] E. J. Sondik, “The optimal control of partially observable Markov
processes,” Ph.D. dissertation, Stanford University, 1971.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, AUGUST 2012 14

[17] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning
and acting in partially observable stochastic domains,” Artificial
Intelligence, vol. 101, pp. 99–134, 1995.

[18] J. Williams and S. Young, “Scaling up POMDPs for dialogue
management: The ”summary POMDP” method,” in Proceedings
of the IEEE ASRU Workshop, 2005.

[19] J. Pineau, N. Roy, and S. Thrun, “A hierarchical approach to
POMDP planning and execution,” in Workshop on Hierarchy and
Memory in Reinforcement Learning (International Conference in Ma-
chine Learning), June 2001.

[20] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration:
An anytime algorithm for POMDPs,” IJCAI, 2003.

[21] H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-
based POMDP planning by approximating optimally reachable
belief spaces,” in RSS, 2008.

[22] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online planning
algorithms for POMDPs,” Journal of Artificial Intelligence Research,
vol. 32, pp. 663–704, July 2008.

[23] R. Sabbadin, J. Lang, and N. Ravoanjanahry, “Purely epistemic
Markov decision processes.” in AAAI Conference on Artificial Intel-
ligence, 2007, pp. 1057–1062.

[24] L. R. Rabiner, “A tutorial on hidden Markov models and se-
lected applications in speech recognition,” Proceedings of the IEEE,
vol. 77, no. 2, pp. 257–286, 1989.

[25] F. Doshi, J. Pineau, and N. Roy, “Reinforcement learning with
limited reinforcement: Using Bayes risk for active learning in
POMDPs,” in International Conference on Machine Learning, 2008.

[26] M. Strens, “A Bayesian framework for reinforcement learning,”
in International Conference in Machine Learning, 2000.

[27] J. Veness, K. S. Ng, M. Hutter, and D. Silver, “A monte carlo aixi
approximation,” CoRR, vol. abs/0909.0801, 2009.

[28] P. S. Maybeck, Stochastic models, estimation, and control, ser. Math-
ematics in Science and Engineering. Academic Press, Inc., 1979.

[29] L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and A. J. Smola,
“Hilbert space embeddings of hidden Markov models,” in 27th
International Conference on Machine Learning, 2010.

[30] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, “An
HDP-HMM for systems with state persistence,” in Proceedings of
International Conference on Machine Learning, 2008.

[31] T. Stepleton, Z. Ghahramani, G. Gordon, and T. S. Lee, “The block
diagonal infinite hidden Markov model,” in AI and Statistics, 2009.

[32] M. Johnson and A. Willsky, “The hierarchical Dirichlet process
hidden semi-Markov model,” in Uncertainty in Artificial Intelli-
gence, 2010.

[33] J. Huggins and F. Wood, “Infinite structured hidden semi-markov
models,” Transactions of Pattern Analysis and Machine Intelligence,
vol. (same issue).

[34] M. Rabin, “Probabilistic automata,” Information and control, vol. 6,
no. 3, pp. 230–245, 1963.

[35] J. Castro and R. Gavalda, “Towards feasible PAC-learning of
probabilistic deterministic finite automata,” Grammatical Inference
Algorithms and Applications, pp. 163–174, 2008.

[36] F. Thollard, P. Dupont, and C. De La Higuera,
Probabilistic DFA Inference using Kullback-Leibler Divergence and
Minimality. Morgan Kaufmann, San Francisco, CA, 2000,
vol. pages, pp. 975–982. [Online]. Available: www.sfs.nphil.uni-
tuebingen.de/ thollard/Recherches/Icml2k/icml2k.html

[37] M. M. H. Mahmud, “Constructing states for reinforcement learn-
ing,” in 27th International Conference on Machine Learning, 2010.

[38] P. Dupont, F. Denis, and Y. Esposito, “Links between probabilistic
automata and hidden Markov models: probability distributions,
learning models and induction algorithms,” Pattern recognition,
vol. 38, no. 9, pp. 1349–1371, 2005.

[39] A. R. McCallum, “Overcoming incomplete perception with utile
distinction memory,” in Proceedings of the Tenth International Con-
ference on Machine Learning, 1993, pp. 190–196.

[40] L. Breslow, “Greedy utile suffix memory for reinforcement learn-
ing with perceptually-aliased states,” Navy Center for Research
Laboratory, Tech. Rep., 1996.

[41] R. I. Brafman and G. Shani, “Resolving perceptual aliasing in
the presence of noisy sensors,” in Neural Information Processing
Systems 17, 2004.

[42] L. Zheng and S.-Y. Cho, “A modified memory-based reinforce-
ment learning method for solving POMDP problems,” Neural
Processing Letters, vol. 33, pp. 187–200, 2011.

[43] C. Dimitrakakis, “Bayesian variable order Markov models,” in AI
and Statistics, vol. 9, 2010, pp. 161–168.

[44] J. Sethuraman, “A constructive definition of Dirichlet priors,”
Statistica Sinica, vol. 4, pp. 639–650, 1994.

[45] J. van Gael, Y. Saatci, Y. W. Teh, and Z. Ghahramani, “Beam
sampling for the infinite hidden Markov model,” in International
Conference in Machine Learning, vol. 25, 2008.

[46] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning
policies for partially observable environments: scaling up,” Inter-
national Conference in Machine Learning, 1995.

[47] D. McAllester and S. Singh, “Approximate planning for factored
POMDPs using belief state simplification,” in Uncertainty in Arti-
ficial Intelligence: Proceedings of the Fifteenth Conference, 1999.

[48] J. Pitman and M. Yor, “The two-parameter Poisson-Dirichlet dis-
tribution derived from a stable subordinator,” Annals of Probability,
vol. 25, no. 2, pp. 855–900, 1997.

[49] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical
Dirichlet processes,” Journal of the American Statistical Association,
vol. 101, no. 476, pp. 1566–1581, 2006.

[50] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,” Journal
of the Royal Statistical Society, vol. 39, pp. 1–38, 1977.

[51] L. Chrisman, “Reinforcement learning with perceptual aliasing:
The perceptual distinctions approach,” in Proceedings of the Tenth
National Conference on Artificial Intelligence. AAAI Press, 1992.

[52] F. Doshi-Velez, D. Wingate, N. Roy, and J. Tenenbaum, “Non-
parametric Bayesian policy priors for reinforcement learning,” in
Neural Information Processing Systems, 2010.

[53] T. Smith and R. Simmons, “Heuristic search value iteration for
POMDPs,” in Uncertainty in Artificial Intelligence: Proceedings of the
Twentieth Conference, Banff, Alberta, 2004.

[54] J. Z. Kolter and A. Ng, “Near-Bayesian exploration in polynomial
time,” in International Conference on Machine Learning, 2009.

[55] J. Asmuth, L. Li, M. Littman, A. Nouri, and D. Wingate, “A
Bayesian sampling approach to exploration in reinforcement
learning,” in Uncertainty in Artificial Intelligence, 2009.

[56] S. Ross, B. Chaib-draa, and J. Pineau, “Bayesian reinforcement
learning in continuous POMDPs with application to robot navi-
gation,” in ICRA, 2008.

[57] F. Doshi-Velez, D. Wingate, N. Roy, and J. Tenenbaum, “Infinite
dynamic Bayesian networks,” in International Conference in Ma-
chine Learning, 2011.

Finale Doshi-Velez is a research associate at
the Harvard. Her PhD dissertation (MIT Com-
puter Science, 2012) focused on Bayesian non-
parametric approaches for reinforcement learn-
ing in partially-observable domains. Her re-
search interests include Bayesian nonparamet-
ric models, sequential decision-making, and
health informatics.

David Pfau is a PhD candidate at the Center for
Theoretical Neuroscience at Columbia Univer-
sity. He received his BS in Physics from Stanford
in 2007. His research interests are in machine
learning for complex, structured time series such
as natural language, music or neural recordings,
as well as neural decoding and neural rehabilita-
tion.

Frank Wood is a lecturer in Information Engi-
neering at Oxford University. He earned a Ph.D.
in Computer Science from Brown University in
2007. He conducts research at the intersection
of neuroscience, computer science, and statis-
tics; particularly models and algorithms that
shed light on the path towards artificial intelli-
gence. Dr. Wood is also an accomplished en-
trepreneur.

Nicholas Roy is an Associate Professor of
Aeronautics and Astronautics at the Mas-
sachusetts Institute of Technology. He received
his PhD from Carnegie Mellon University in
2003. His research interests include robotics,
machine learning, autonomous systems, plan-
ning and reasoning, human-computer interac-
tion, and micro-air vehicles.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

