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Abstract—We consider a multi-channel communication system
in which a transmitter has access to two channels, but does not
know the state of either channel. We model the channel state
using an ON/OFF Markovian model, and allow the transmitter
to probe one of the channels at predetermined probing intervals
to decide over which channel to transmit. For models in which
the transmitter must transmit over the probed channel, it has
been shown that a myopic policy that probes the channel most
likely to be ON is optimal. In this work, we allow the transmitter
to select a channel over which to transmit that is not necessarily
the one it probed. We show that in the case where the two
channels are i.i.d, all probing policies yield equal reward. We
extend this problem to dynamically choose when to probe based
on the results of previous probes, and characterize the optimal
policy, as well as provide a LP in terms of state action frequencies
to find the optimal policy.

I. INTRODUCTION

Consider a communication system in which a transmitter
has access to multiple channels over which to communicate.
The state of each channel evolves independently of the others,
and the transmitter has no knowledge of the channel states
a priori. The transmitter probes a single channel after a
predefined time interval to learn the channel state at the current
time, which is either ON or OFF. Using the information
obtained from the channel probes, the transmitter selects a
channel in each time-slot over which to transmit, with the
goal of maximizing throughput, or the number of successful
transmissions.

This framework applies broadly to many opportunistic com-
munication systems, in which there exists a tradeoff between
overhead and performance. It is often impractical to learn
the channel state information (CSI) of the channels before
scheduling a transmission; consequently, the transmitter must
make a transmission decision with only partial channel state
information. The transmitter must decide how much infor-
mation, and which information is needed in order to make
efficient scheduling decisions.

Several works have studied channel probing policies in
multichannel communication problems [1], [2], [3], [4], [5],
[6], [7]. Of particular interest is the work in [8] and [9], in
which the authors assume that after a channel is probed, the
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Fig. 1. Markov Chain describing the channel state evolution of each
independent channel. State 0 corresponds to an OFF channel, while
state 1 corresponds to an ON channel.

transmitter must transmit on that channel. They show that the
optimal probing policy is a myopic policy, which probes the
channel most likely to be ON.

In this work, we consider the special case of a system with
two channels. We show that when the transmitter is able to
transmit over a channel other than that which was probed, the
choice of which channel to probe does not affect the expected
throughput. Additionally, we identify scenarios such that when
the probability distribution of the channel state differs between
the two channels, it is optimal to always probe one of the
channels. We extend the problem of optimizing the probing
epochs dynamically, by formulating a Markov Decision Pro-
cess for which the optimal policy can be characterized. Lastly,
we provide a linear programming formulation in terms of state
action frequencies that can be used to solve for an arbitrarily
good approximation of the optimal policy.

The remainder of this paper is organized as follows. We
describe the model and problem formulation in detail in
Section II. In Section III, we prove that all probing policies
have equal throughput. In Section IV, we consider a scenario
in which the two channels are statistically different. In Section
V, we solve for the optimal probing intervals when a fixed cost
is associated with probing. Lastly, we conclude in Section VI.

II. SYSTEM MODEL

Consider a transmitter and a receiver that communicate
using two independent channels. At every time slot, each
channel is either in an OFF state or an ON state. Channels
are i.i.d. with respect to each other, and evolve across time
according to a discrete time Markov process described by
Figure 1.

At each time slot, the transmitter chooses a channel over
which to transmit. If that channel is in the ON state, then
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the transmission is successful; otherwise, the transmission
fails. We assume the transmitter does not receive feedback
regarding previous transmissions1. Furthermore, at predefined
epochs of T slots, the transmitter probes the receiver for
the state of one of the channels at the current time, which
is delivered instantaneously. The transmitter then uses the
history of channel probes to make a scheduling decision. The
objective is to choose a channel probing strategy to maximize
the expected sum-rate throughput, equal to the number of
successful transmissions over time.

A. Notation

Let Si(t) be the state of channel i at time t. The trans-
mitter has an estimate of this state based on previous probes
and the channel state distribution. In particular, the trans-
mitter’s knowledge of the state is described by the tuple
s = (s1, k1, s2, k2), where s1 and s2 are the last known
states of the two channels respectively, and k1 and k2 are the
respective times since the last probe on each channel. Define
the belief of a channel to be the probability that a channel
is ON given the history of channel probes. For any channel i
that was last probed k slots ago and was in state si, the belief
xi is given by

xi(t) = P
(
Channel i is ON|probing history

)
= P

(
Si(t) = 1|Si(t− k) = si)

(1)

where the second equality follows from the Markov property
of the channel state process. The above probability is derived
from the k-step transition probabilities of the Markov chain in
Figure 1:

pk
00 =

q + p(1− p− q)k

p+ q
, pk

01 =
p− p(1− p− q)k

p+ q

pk
10 =

q − q(1− p− q)k

p+ q
, pk

11 =
p+ q(1− p− q)k

p+ q
.

(2)

Throughout this work, we assume that p ≤ 1
2 and q ≤ 1

2 ,
corresponding to channels with “positive memory.” As the CSI
of a channel grows stale, the probability π that the channel
is ON is given by the stationary distribution of the chain in
Figure 1.

lim
k→∞

pk
01 = lim

k→∞
pk
11 = π =

p

p+ q
. (3)

B. Optimal Scheduling

Since the objective is to maximize the expected sum-rate
throughput, the optimal transmission decision at each time slot
is given by the maximum likelihood (ML) rule, which is to
transmit over the channel that is most likely to be ON, i.e. the
channel with the highest belief. The expected throughput in a
time slot is therefore given by

max
i∈{1,2}

xi(t). (4)

1If such feedback exists in the form of higher layer acknowledgements,
it arrives after a significant delay and is not useful for learning the channel
state.

Following the above assumptions, the optimal scheduling
decision remains the same in between channel probes.

III. OPTIMAL CHANNEL PROBING

As described above, the transmitter chooses which channel
to probe every T slots. Our first result is that for each channel
probe, the expected throughput after probing channel 1 is the
same as probing channel 2. In fact, we prove a more general
result that when probing intervals are predetermined a priori,
the total throughput is the same regardless of which channel
is probed.

Theorem 1. For a two-user system, with independent channels
evolving over time according to Figure 1, if the probing
instances are fixed a priori, i.e. the time between probe i and
probe i + 1 is fixed at Yi slots, then for each channel probe,
the total reward from probing channel 1 is equal to that of
probing channel 2.

Proof Outline: This proof is by reverse induction over the
probing times. Consider a finite horizon problem with horizon
N . At each index n, a probing decision is made, and assume
there are Yn slots between the current probe and the next
probe. Assume the last probing decision is made at index N−
1. Let the expected reward at probing index n be J i

n if the
choice is made to probe channel i. At probing time 0 ≤ n <
N − 1, the expected reward function is given recursively, by:

Jn

(
S1, k1, S2, k2

)
= max

(
J1

n

(
S1, k1, S2, k2

)
, J2

n

(
S1, k1, S2, k2

))
(5)

J1
n

(
S1, k1, S2, k2

)
=

Yn−1∑
j=0

(
(pk1

S1,1)pj
1,1 + (pk1

S1,0)pk2+j
S2,1

)
+ (pk1

S1,1)Jn+1(1, Yn, S2, k2 + Yn)

+ (pk1
S1,0)Jn+1(0, Yn, S2, k2 + Yn) (6)

J2
n

(
S1, k1, S2, k2

)
=

Yn−1∑
j=0

(
(pk2

S2,1)pj
1,1 + (pk2

S2,0)pk1+j
S1,1

)
+ (pk2

S2,1)Jn+1(S1, k1 + Yn, 1, Yn)

+ (pk2
S2,0)Jn+1(S1, k1 + Yn, 0, Yn) (7)

and J i
N (s) = 0 as a base case. The proof follows by first

showing that J1
N−1 = J2

N−1. Then, assuming that (6) and (7)
hold for (n + 1, n + 2, . . . , N − 1), we prove that the result
holds for index n. The complete proof is omitted for brevity.
Note that the case where channel probes occur every T slots
is a special case of this Theorem.

As a consequence of Theorem 1, it is sufficient to always
probe the same channel. Assume that every T slots, a cost of
c is incurred to probe a channel. Since it is optimal to always
probe channel 1, the belief of channel 2 equals the steady state
probability of being in the ON state π. Therefore, the average



reward less cost is given by

1
T

(
−c+π

T−1∑
i=0

pi
11+(1−π)πT

)
=
−c
T

+π+
πpT

10

T (p+ q)
. (8)

Maximizing the above equation with respect to T results in
the optimal probing interval for a fixed cost c.

Intuitively, when a channel is probed, the base station
receives information about the optimal decision to make until
the next probe. If the probed channel is ON, it is optimal to
transmit over that channel until the next probing instance. On
the other hand, if the probed channel is OFF, it is optimal
to transmit over the other channel. Therefore, the information
gathered from probing one channel is the same as that from
the other channel. This result is in contrast to the result in
[9], which proves the optimal decision is to probe the channel
with the highest belief. However, their model assumed that a
transmission must occur on the probed channel, whereas our
model allows the transmitter to choose the channel over which
to transmit based on the result of the probe. Consequently, the
myopic policy of [9] is not a uniquely optimal policy in this
setting.

Theorem 1 holds for the case of two i.i.d. channels with
fixed probing intervals. If the probing epochs are not fixed, i.e.
the decision to probe depends on the results of the previous
probe, then there is an advantage to probing one channel over
the other. This is explored in Section V. Additionally, when the
two channels differ statistically, the optimal probing decision
depends on the channel statistics, as shown in Section IV.

IV. HETEROGENEOUS CHANNELS

Now, assume the two channels differ statistically, i.e. chan-
nel 1 evolves in time according to the Markov chain in Figure 1
with parameters p1 and q1, and channel 2 evolves according to
a chain with parameters p2 and q2. Denote the k-step transition
probability of channel 1 as ak

i,j and the k-step transition
probability of channel 2 as bki,j . Additionally, let π1 and π2

be the steady state probability of channel 1 and channel 2
respectively. Intuitively, it is optimal to probe the channel with
more memory, as that probe yields more information.

For example, consider a channel that varies rapidly, with
p1 = q1 = 1

2 − ε, and a channel which rarely changes
state, with p2 = q2 = ε. Probing the low-memory channel
provides accurate information for one or two time slots, but
that information quickly becomes stale, and the transmitter
must guess which channel is ON. On the other hand, probing
the high-memory channel yields information that remains
accurate for many time slots after the probe. This intuition
is confirmed in the following result.

Theorem 2. Assume a two-user system with channel states
evolving as described above, and that the probing instances
are fixed to intervals of T slots. Furthermore, assume that
p1, p2, q1, q2 satisfy the following:

bi11 ≥ ai
11 ∀i. (9)

Then, the optimal probing strategy is to probe channel 2 at
all probing instances.

Proof Outline: We assume a finite horizon of N probes. We
can write expected reward functions J1

n and J2
n recursively

similarly to the proof of Theorem 1. The proof follows by
reverse induction on probing indices n to show that for all
states, we have J2

n ≥ J1
n. Again, the detailed proof is omitted

for brevity. To clarify the significance of this theorem, we have
the following corollaries.

Corollary 1. Assume the two channels satisfy π1 = π2, and
that p1 + q1 ≥ p2 + q2. Then, the optimal policy is to always
probe channel 2.

Proof: We can rewrite the k-step transition probability of
the second chain from (2) as follows.

bi11 =
p2 + q2(1− p2 − q2)i

p2 + q2
= π2 + (1− π2)(1− p2 − q2)i (10)

= π1 + (1− π1)(1− p2 − q2)i (11)

≥ π1 + (1− π1)(1− p1 − q1)i (12)

= ai
11 (13)

where (11) follows from the assumption that π1 = π2, and
(12) follows from the assumption that p1 + q1 ≥ p2 + q2.
Therefore, bi11 ≥ ai

11, and applying Theorem 2 concludes the
proof.

Corollary 2. Assume the two channels satisfy p1 + q1 = p2 +
q2, and that π1 ≤ π2. Then, the optimal policy is to always
probe channel 2.

Proof: We can rewrite the k-step transition probability of
the second chain from (2) as follows.

bi10 =
q2(1− (1− p2 − q2)i)

p2 + q2
= (1− π2)(1− (1− p2 − q2)i) (14)

= (1− π2)(1− (1− p1 − q1)i) (15)

≤ (1− π1)(1− (1− p1 − q1)i) (16)

= ai
10 (17)

where (15) follows from the assumption that p1+q1 = p2+q2,
and the inequality in follows from the assumption that π1 ≤
π2. Since bi10 ≤ ai

10, then bi11 ≥ ai
11, and Theorem 2 can be

applied to complete the proof.
The above two corollaries describe scenarios where asym-

metries in the channel model result in the optimal policy of
always probing one of the two channels. This is in contrast to
Theorem 1 where the channels are homogeneous. Corollary 1
states that if the channels are equally likely to be ON in steady
state, the optimal decision is to probe the channel with the
smaller pi + qi. In this context, pi + qi is the rate at which the
channel approaches the steady state. Thus, probing the channel
with more memory is always optimal. Corollary 2 examines a
system in which the rate at which the steady state is reached



Simulation p1 = q1 = 0.1 p1 = 0.3, q1 = 0.1 p1 = q1 = 0.1
p2 = q2 = 0.1 p2 = 0.15, q2 = 0.05 p2 = 0.15.q2 = 0.05

Probe Channel 1 0.6536 0.8240 0.7899
Probe Channel 2 0.6540 0.8652 0.8027

Probe Best Channel 0.6538 0.8450 0.8030
Probe Worst Channel 0.6538 0.8402 0.7902

Round Robin 0.6532 0.8452 0.7981

TABLE I
COMPARISON OF DIFFERENT PROBING POLICIES FOR A FIXED

PROBING INTERVAL (6) AND TIME HORIZON 2,000,000.

is the same for both channels, but channel 2 is more likely to
be ON in steady state than channel 1. In this case, it is optimal
to probe the channel with the highest steady state probability
of being ON at all probing instances.

A. Simulation Results

We simulate the evolution of a two channel system over
time, and compare different fixed probing policies in terms of
average throughput. We assume a time horizon of 2,000,000
probes, and assume a probe occurs every 6 slots. We consider
five deterministic stationary channel probing policies: probe
channel 1 always, probe channel 2 always, probe the channel
with the higher belief, probe the channel with the lower belief,
and alternate between the channels (round robin). The first
column of Table I shows that for a system with two i.i.d.
channels with parameters p = q = 0.1, the choice of channel
probing policy does not affect the average reward earned by
the system, as predicted by Theorem 1.

Additionally, we simulate a system with two statistically
different channels. These results are shown in the second
and third columns of Table I. The first simulation (column
2) uses two channels with the same steady state probability
(π = 0.75), but with channel 1 approaching that steady
state at a faster rate than channel 2. By Corollary 1, the
optimal probing policy is to always probe channel 2, which is
consistent with the simulation. The second simulation (column
3) uses two channels satisfying p1 + q1 = p2 + q2 = 0.2, and
π2 > π1, as in Corollary 2. As expected, probing channel two
is optimal. In this case, probing the channel with the higher
belief is a good policy, since the channel with the higher steady
state probability has a higher belief more often.

V. DYNAMIC OPTIMIZATION OF PROBING EPOCHS

In this section, we extend the problem to allow the transmit-
ter to decide whether or not to probe in each slot for a fixed
cost c. Determining the optimal probing policy becomes a
stochastic control problem, where at each time slot, a decision
is made whether to probe channel 1, probe channel 2, or not
to probe either channel.

A. Dynamic Programming Formulation

This problem can be formulated as a Markov Decision
Process (MDP) or a Dynamic Programming problem (DP).
At each time slot, the system state is the belief vector. Let
τ(·) represent the evolution of the belief of a channel over
a time slot to the next when that channel is not probed. In
particular,

τ(xi) = xi(1− q) + (1− xi)p. (18)

We formulate a DP over a finite horizon of length N . The
expected reward function at time slot n is given by

Jn(x1, x2) = max{J0
n(x1, x2), J1

n(x1, x2), J2
n(x1, x2)},

(19)
where J0

n is the expected reward given that we do not probe
at the current slot, and J1

n and J2
n are the expected reward

functions given that we probe channel 1 and 2 respectively.
When a channel probe does not occur, the reward is equal
to the maximum belief. On the other hand, when a channel
is probed, a reward (throughput) of 1 is earned if the probed
channel is ON, and if it is OFF, a unit throughput is earned
only if the remaining channel is ON. Therefore, the terminal
cost at time n = N is given by

J0
N (x1, x2) = max(x1, x2), (20)

J1
N (x1, x2) = −c+ x1 + x2 − x1x2, (21)

J2
N (x1, x2) = −c+ x1 + x2 − x1x2 (22)

where c is the cost for probing a channel. For n < N , the
reward function includes the expected future rewards as well:

J0
n(x1, x2) = max(x1, x2) + Jn+1

(
τ(x1), τ(x2)

)
(23)

J1
n(x1, x2) = −c+ x1 + x2 − x1x2

+ x1Jn+1

(
1− q, τ(x2)

)
+ (1− x1)Jn+1

(
p, τ(x2)

)
(24)

J2
n(x1, x2) = −c+ x1 + x2 − x1x2

+ x2Jn+1

(
τ(x1), 1− q

)
+ (1− x2)Jn+1

(
τ(x1), p

)
(25)

Maximizing (19) yields the optimal probing policy at each
time slot as a function of the current state. Note the state space
is countably infinite, since each x1 has a one-to-one mapping
to an (S, k) pair, where S is the state at the last channel probe,
and k is the time since the last probe.

Several observations can be made about the value function
described in (19)-(25), as stated through the following lemmas.

Lemma 1 (Linearity). J1
n(x1, x2) is linear in x1 for fixed x2,

and similarly, J2
n(x1, x2) is linear in x2 for fixed x1.

Lemma 2 (Commutativity).

Jn(x1, x2) = Jn(x2, x1) (26)

The proofs of Lemma 1 and Lemma 2 are omitted for
brevity. Let Φn(0), Φn(1), Φn(2) be the values of (x1, x2)
such that it is optimal to not probe, probe channel 1, and
probe channel 2 respectively at time n.

Lemma 3 (Probe Symmetry). If (x1, x2) ∈ Φn(1), then
(x2, x1) ∈ Φn(2).

Proof: If (x1, x2) ∈ Φ(1), then J1
n(x1, x2) ≥ J2

n(x1, x2)
and J1

n(x1, x2) ≥ J0
n(x1, x2). Using Lemma 2, we can

then say that J2
n(x2, x1) ≥ J1

n(x2, x1) and J2
n(x2, x1) ≥

J0
n(x2, x1) which implies (x2, x1) ∈ Φn(2).

Lemma 4 (No-Probe Symmetry). If (x1, x2) ∈ Φn(0), then
(x2, x1) ∈ Φn(0).

Proof: If (x1, x2) ∈ Φ(0), then J0
n(x1, x2) ≥ J1

n(x1, x2)



and J0
n(x1, x2) ≥ J2

n(x1, x2). Using Lemma 2, we can
then say that J0

n(x1, x2) = J0
n(x2, x1) and J1

n(x1, x2) =
J1

n(x2, x1) which implies J0
n(x2, x1) ≥ J1

n(x2, x1). Simi-
larly, we can show J0

n(x2, x1) ≥ J2
n(x2, x1), and therefore

(x2, x1) ∈ Φn(0).
These last two lemmas show that the optimal decision regions
are symmetric about the line x1 = x2.

We can use these results to prove a convexity result on the
reward function, the proof of which follows by induction, but
is omitted for brevity.

Theorem 3 (Convexity). For all n, Jn(x1, x2) is convex in
x1 for fixed x2, and is convex in x2 for fixed x1.

Using the convexity of the expected reward function, we
can find sufficient conditions for probing to be optimal at a
certain state.

Theorem 4. For all n, it is optimal to probe at state (x1, x2)
if the cost to probe c satisfies

c ≤ min(x1, x2)
(
1−max(x1, x2)

)
(27)

Proof:

J0
n(x1, x2) = max(x1, x2) + Jn+1

(
τ(x1), τ(x2)

)
(28)

≤ max(x1, x2) + x1Jn+1

(
p11, τ(x2)

)
+ (1− x1)Jn+1

(
p01, τ(x2)

)
(29)

= max(x1, x2) + J1
n(x1, x2)

+ c− x1 − x2 + x1x2 (30)

Where (29) follows from Theorem 3. Therefore, J0
n(x1, x2)−

J1
n(x1, x2) ≤ 0 if

c− x1 − x2 + x1x2 + max(x1, x2) ≤ 0 (31)

c ≤ min(x1, x2)
(
1−max(x1, x2)

)
(32)

While the convexity bound yields sufficient conditions for
probing optimality, necessary conditions do not follow directly
from this analysis. Additionally, the convexity bound used in
(29) is loose, and thus probing is often optimal even in states
which do not satisfy the statement of Theorem 4.

B. State Action Frequency Formulation

The channel probing MDP can also be formulated as an
infinite horizon, average cost problem. In this case, we write
a linear program (LP) in terms of state action frequencies, and
solve for the optimal policy. A state action frequency vector
ω(s; a) exists for each state and potential action, and corre-
sponds to a stationary randomized policy such that ω(s; a)
equals the steady state probability that at a given time slot, the
state is s and the action taken is a. Let s = (s1, k1, s2, k2),
where s1 and s2 are the last known states of the two channels
respectively, and k1 and k2 are the respective times since the
last probe on each channel. We use this notation rather than
the belief notation in Section V-A to emphasize the countable
nature of the state space. Furthermore, the action a satisfies

a ∈ {0, 1, 2}, representing the actions of not probing, probing
channel 1, and probing channel 2 respectively.

While the state space is countably infinite and the resulting
state action frequency LP is intractable, we can approximate
the optimal solution by truncating the state space to ensure it
is finite. In particular, assume that ki takes values between
0 and Kmax, where Kmax is a predefined constant. When
ki = Kmax, and channel i is not probed, then ki = Kmax at
the next slot as well. Clearly, as Kmax increases, pKmax

11 → π,
and the truncated formulation approaches the countable state
space formulation. Since the belief of each channel approaches
steady state exponentially fast, this truncation method can be
used to find a near-optimal solution to the stochastic control
problem. See [1] for details.

The state action frequency formulation is presented in (33)-
(44). Equation (33) is the objective, maximizing the average
reward, where the reward functions are defined for each pos-
sible action in (43) and (44). Equation (34) is a normalization
constraint, ensuring that the state action frequencies sum to
one. Equations (39) through (42) are balance equations for
the case when the action is to not probe. Note that we include
constraints to deal with the truncation of the state space.
Equations (35) and (37) deal with the evolution of the state
when channel 1 is probed, where equations (36) and (38) deal
with the case when channel 2 is probed.

For weakly communicating finite state and action MDP’s,
there exists a solution to the state action frequency LP that will
be a deterministic stationary policy [10]. Specifically, for all
recurrent states s in the solution, the state action frequencies
ω(s; a) > 0 for some a, and since the optimal policy is
deterministic, ω(s; a) > 0 is satisfied for only one value of a,
which is the optimal decision at that state, and ω(s; a) = 0 for
all other actions. Since transient states are only visited finitely
often, they have zero state action frequencies for every action.

The solution to the state action frequency LP for sample
parameters is shown in Figure 2. This graph plots the optimal
decision as a function of the belief of channel 1 (x1) and the
belief of channel 2 (x2). The system state can only reach a
countable subset of the points on the x1-x2 plane. Under any
policy, except for the policy where a channel is never probed,
there is a single recurrent class of states, and only states in
this class will have non-zero state action frequencies. From
any recurrent state, if the optimal decision is not to probe,
the system state will move to the next point (τ(x1), τ(x2))
on the trajectory from the current state to the point (π, π).
Based on this observation, and the results in Figure 2, we can
characterize the structure of the optimal probing algorithm.

For a given set of parameters, there exists a probing-region,
e.g. the dotted convex region in Figure 2, and a point (π, π),
denoted by the star in Figure 2. At each time slot, if the current
state lies outside of the probing region, the optimal decision is
to not probe, and the state moves along the trajectory to (π, π).
When the state reaches the probing region, the controller
probes one of the channels, and the state resets to one of the
four sides of the box in Figure 2, depending on which channel
is probed and the result of that probe. Then the process repeats,



Max.X
a

X
s1,s2,k1,k2

ω(s1, k1, s2, k2; a)r(s1, k1, s2, k2; a) (33)

s.t.X
a

X
s1,s2,k1,k2

ω(s1, k1, s2, k2; a) = 1 (34)

X
a

ω(s1, 1, s2, k2; a) =

KmaxX
k1=1

X
s′
1

ω(s′
1, k1, s2, k2 − 1; 1)pk1

s′
1,s1

∀s1, s2, 2 ≤ k2 ≤ Kmax − 1 (35)X
a

ω(s1, k1, s2, 1; a) =

KmaxX
k2=1

X
s′
2

ω(s1, k1 − 1, s′
2, k2; 2)pk2

s′
2,s2

∀s1, s2, 2 ≤ k1 ≤ Kmax − 1 (36)X
a

ω(s1, 1, s2, Kmax; a)

=

KmaxX
k1=1

X
s′
1

pk1
s′
1,s1

`
ω(s′

1, k1, s2, Kmax − 1; 1)

+ ω(s′
1, k1, s2, Kmax; 1)

´
∀s1, s2 (37)X

a

ω(s1, Kmax, s2, 1; a)

=

KmaxX
k2=1

X
s′
2

pk2
s′
2,s2

`
ω(s1, Kmax − 1, s′

2, k2; 2)

+ ω(s1, Kmax, s
′
2, k2; 2)

´
∀s1, s2 (38)X

a

ω(s1, k1, s2, k2; a) = ω(s1, k1 − 1, s2, k2 − 1; 0)

∀s1, s2, 2 ≤ k1, k2 ≤ Kmax (39)X
a

ω(s1, Kmax, s2, k2; a) = ω(s1, Kmax − 1, s2, k2 − 1; 0)

+ ω(s1, Kmax, s2, k2 − 1; 0) ∀s1, s2, 2 ≤ k2 ≤ Kmax
(40)X

a

ω(s1, k1, s2, Kmax; a) = ω(s1, k1 − 1, s2, Kmax − 1; 0)

+ ω(s1, k1 − 1, s2, Kmax; 0) ∀s1, s2, 2 ≤ k1 ≤ Kmax
(41)X

a

ω(s1, Kmax, s2, Kmax; a) = ω(s1, Kmax, s2, Kmax; 0)

+ ω(s1, Kmax − 1, s2, Kmax − 1; 0)

+ ω(s1, Kmax − 1, s2, Kmax; 0)

+ ω(s1, Kmax, s2, Kmax − 1; 0) ∀s1, s2 (42)

r(s1, k1, s2, k2; a) = −c + pk1
s1,1 + pk2

s2,1 − pk1
s1,1p

k2
s2,1

∀a ∈ {1, 2} (43)

r(s1, k1, s2, k2; 0) = max
`
pk1

s1,1, p
k2
s2,1

´
(44)

and the state will follow a new trajectory to the point (π, π).
If the point (π, π) lies outside of the probing region, then
there exists a trajectory to (π, π) that does not intersect the
probing region. Consequently, the system eventually reaches
a state in which it never probes, in which case all states will
be transient under the optimal policy. In summary, the optimal
time between probes is given by the distance between the state
immediately following a probe and the state on the border of
the probing region, lying on the line between the current state
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Fig. 2. Optimal decisions based on SAFs. White space corresponds
to transient states under the optimal policy, and green, red, and blue
dots correspond to recurrent states where the optimal action is to not
probe, probe channel 1, and probe channel 2 respectively.

and (π, π). To find the probing region, and the decisions to
make at each point on the probing regions, the SAF LP in
(33)-(44) must be solved.

VI. CONCLUSION

In this paper, we studied the channel probing problem in a
system of two channels. For fixed probing intervals, we proved
that if the channels between users are i.i.d., the choice of which
channel to probe is irrelevant. However, when the channels are
non-identical, we characterized scenarios in which it becomes
optimal to always probe one channel over the other. We then
formulated the general problem of dynamic channel probe
optimization, and described the form of the optimal solution
as well as provided an LP to approximate the optimal solution.
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