
Gradient-based stochastic optimization methods in
Bayesian experimental design

Xun Huan, Youssef M. Marzouk∗

December 30, 2014

Abstract

Optimal experimental design (OED) seeks experiments expected to yield the most useful
data for some purpose. In practical circumstances where experiments are time-consuming or
resource-intensive, OED can yield enormous savings. We pursue OED for nonlinear systems from
a Bayesian perspective, with the goal of choosing experiments that are optimal for parameter
inference. Our objective in this context is the expected information gain in model parameters,
which in general can only be estimated using Monte Carlo methods. Maximizing this objective
thus becomes a stochastic optimization problem.

This paper develops gradient-based stochastic optimization methods for the design of experi-
ments on a continuous parameter space. Given a Monte Carlo estimator of expected information
gain, we use infinitesimal perturbation analysis to derive gradients of this estimator. We are then
able to formulate two gradient-based stochastic optimization approaches: (i) Robbins-Monro
stochastic approximation, and (ii) sample average approximation combined with a determinis-
tic quasi-Newton method. A polynomial chaos approximation of the forward model accelerates
objective and gradient evaluations in both cases. We discuss the implementation of these opti-
mization methods, then conduct an empirical comparison of their performance. To demonstrate
design in a nonlinear setting with partial differential equation forward models, we use the prob-
lem of sensor placement for source inversion. Numerical results yield useful guidelines on the
choice of algorithm and sample sizes, assess the impact of estimator bias, and quantify tradeoffs
of computational cost versus solution quality and robustness.

1 Introduction
Experimental data play a crucial role in the development of models—and the advancement of
scientific understanding—across a host of disciplines. Some experiments are more useful than
others, however, and a careful choice of experiments can translate to enormous savings of time
and financial resources. Traditional experimental design methods, such as factorial and composite
designs, are largely used as heuristics for exploring the relationship between input factors and
response variables. Optimal experimental design, on the other hand, uses a model to guide the
choice of experiments for a particular purpose, such as parameter inference, prediction, or model
discrimination. Optimal design has seen extensive development for linear models endowed with

∗Corresponding author: ymarz@mit.edu, http://web.mit.edu/aeroastro/labs/uqlab/index.html, 77 Mas-
sachusetts Avenue, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

1

ar
X

iv
:1

21
2.

22
28

v3
 [

st
at

.C
O

]
 2

6
D

ec
 2

01
4

mailto:ymarz@mit.edu
http://web.mit.edu/aeroastro/labs/uqlab/index.html

Gaussian distributions [1]. Extensions to nonlinear models are often based on linearization and
Gaussian approximations [2, 3, 4], as analytical results are otherwise impractical or impossible
to obtain. With advances in computational power, however, optimal experimental design for
nonlinear systems can now be tackled directly using numerical simulation [5, 6, 7, 8, 9, 10, 11].

This paper pursues nonlinear experimental design from a Bayesian perspective (e.g., [12]).
The Bayesian statistical approach [13, 14] provides a rigorous foundation for inference from noisy,
indirect, and incomplete data and a natural mechanism for incorporating physical constraints and
heterogeneous sources of information. We focus on experiments described by a continuous design
space, with the goal of choosing experiments that are optimal for Bayesian parameter inference. A
useful objective function for this purpose is the expected information gain in model parameters [15,
16]—or equivalently, the mutual information between parameters and observables, conditioned
on the design variables. This objective can be derived in a decision theoretic framework, using the
Kullback-Leibler divergence from posterior to prior as a utility function [4]. From the numerical
perspective, however, it is a complicated quantity. In general, it must be approximated using a
Monte Carlo method [6, 17]. Consequently, only noisy estimates of the objective function are
available and the optimal design problem becomes a stochastic optimization problem.

There are many approaches for solving continuous optimization problems with stochastic ob-
jectives. While some do not require the direct evaluation of gradients (e.g., Nelder-Mead [18],
Kiefer-Wolfowitz [19], and simultaneous perturbation stochastic approximation [20]), other algo-
rithms can use gradient evaluations to great advantage. Broadly, these algorithms involve either
stochastic approximation (SA) [21] or sample average approximation (SAA) [22], where the latter
approach must also invoke a gradient-based deterministic optimization algorithm. Hybrids of the
two approaches are possible as well. In either case, for model-based experimental design, one must
employ gradients of the information gain objective described above. This objective function itself
involves nested integrations over possible model outputs and over the input parameter space,
where the model output may be a functional of the solution of a partial differential equation.
In many practical cases, the model may be essentially a black box; while in other cases, even if
gradients can be evaluated with adjoint methods, using the full model to evaluate the expected
information gain or its gradient is computationally prohibitive. Previous work [11] has addressed
these difficulties by constructing polynomial surrogates for the the model output, i.e., polyno-
mial chaos expansions [23, 24, 25, 26, 27, 28, 29] that capture dependence on both uncertain
parameters and design variables.

The main contributions of this paper are as follows. First, we show how to use infinitesimal
perturbation analysis to derive gradients of a Monte Carlo estimator of the expected informa-
tion gain. When the estimator incorporates a polynomial surrogate, we show how this surrogate
can be readily extended to provide analytical gradient estimates. We then conduct a systematic
empirical comparison of two gradient-based stochastic optimization approaches for nonlinear ex-
perimental design: (1) Robbins-Monro (RM) stochastic approximation, and (2) sample average
approximation combined with a deterministic quasi-Newton method. The comparison is per-
formed in the context of a physics-based sensor placement application, where the forward model
is given by a partial differential equation. From the numerical results, we are able to assess the
impact of estimator bias, extract useful guidelines on the choice of algorithm and sample sizes,
and quantify tradeoffs of computational cost versus solution quality and robustness.

The RM algorithm [30] is the original and perhaps most widely used stochastic approxi-
mation method, and has become a prototype for many subsequent algorithms. It involves an
iterative update that resembles steepest descent, except that it uses stochastic gradient informa-
tion. Sample average approximation (SAA) (also known as the retrospective method [31] or the
sample-path method [32]) is a more recent approach, with theoretical analysis initially appearing
in the 1990s [22, 32, 33]. Convergence rates and stochastic bounds, although useful, do not nec-

2

essarily reflect empirical performance under finite computational resources and with imperfect
numerical optimization schemes. To the best of our knowledge, extensive numerical testing of
SAA has focused on stochastic programming problems with special structure (e.g., linear pro-
grams with discrete design variables) [34, 35, 36, 37, 38]. While numerical improvements to SAA
have seen continual development (e.g., estimators of optimality gap [39, 40] and sample size adap-
tation [41, 42]), the practical behavior of SAA in more general optimization settings is largely
unexplored. The numerical assessment of SAA conducted here, in a nonlinear and continuous
variable design setting, is thus expected to be of practical interest.

SAA is frequently compared to stochastic approximation methods such as RM. For example,
[43] suggests that SAA is more robust than SA because of sensitivity to step size choice in
the latter. On the other hand, variants of SA have been developed that, for certain classes of
problems (e.g., [44]), reach solution quality comparable to that of SAA in substantially less time.
The comparison of SA and SAA presented here focuses on their performance in the Bayesian
experimental design problem. We do not aim to identify one approach as superior to the other;
instead, we will simply illustrate the differences between the two algorithms in this context and
provide some selection guidelines based on their properties.

This paper is organized as follows. Section 2 introduces optimal Bayesian experimental design
(§2.1) and extracts the underlying stochastic optimization problem (§2.2), then presents the RM
(§2.2.1) and SAA-BFGS (§2.2.2) algorithms. The challenge of evaluating gradient information
appropriate to each of these algorithms is described in Section 2.3. Section 3 and Section 4
describe how to obtain gradients (or gradient estimators) for the experimental design objective
using polynomial chaos expansions and infinitesimal perturbation analysis. Section 5 then ana-
lyzes the numerical performance of RM and SAA-BFGS on an optimal sensor placement problem
involving contaminant diffusion. Conclusions on the algorithms and the relative strengths of SA
and SAA for optimal experimental design are provided in Section 6.

2 Optimal Bayesian Experimental Design

2.1 Background
We are interested in choosing the “best” experiments1 from a continuously parameterized design
space, for the purpose of inferring model parameters from noisy and indirect observations. In other
words, we seek experiments that are optimal for parameter inference (in a sense to be precisely
defined below), with inference performed in a Bayesian setting. In the problems considered here,
the mean observations are nonlinear functions of the model parameters, and the observations and
model parameters are continuous random variables.

Bayes’ rule describes the parameter update process:

fΘ|Y,d(θ|y,d) =
fY|Θ,d(y|θ,d)fΘ|d(θ|d)

fY|d(y|d)
. (1)

Here Θ represents the uncertain parameters of interest, Y the observations, and d the design
variables. Like the observations and parameters, the design parameters are continuous. Also
fΘ|d is the prior density, fY|Θ,d is the likelihood function, fΘ|Y,d is the posterior density, and
fY|d is the evidence. It is reasonable to assume that prior knowledge on Θ does not vary with
the design choice, leading to the simplification fΘ|d(θ|d) = fΘ(θ).

1These design choices will be made all-at-once; this setup corresponds to batch or open-loop design. In contrast,
sequential or closed-loop design allows the results of one set of experiments to guide the next set. Rigorous approaches
to optimal closed-loop design are more challenging, and will not be tackled in this paper.

3

Taking the decision theoretic approach proposed by Lindley [15, 16], we use the Kullback-
Leibler (KL) divergence [45, 46] from the posterior to the prior as a utility function, and take its
expectation under the prior predictive distribution of the data to obtain an expected utility U(d):

U(d) =

∫
Y

∫
H
fΘ|Y,d(θ|y,d) ln

[
fΘ|Y,d(θ|y,d)

fΘ(θ)

]
dθ fY|d(y|d) dy (2)

= EY|d
[
DKL

(
fΘ|Y,d(·|Y,d)||fΘ(·)

)]
.

Here H is the support of fΘ(θ) and Y is the support of fY|d(y|d). Because the observation
Y cannot be known before the experiment is performed, taking the expectation over the prior
predictive fY|d lets the resulting utility function reflect the information gain on average, over all
anticipated outcomes of the experiment. The KL divergence may be understood as information
gain: larger KL divergence from posterior to prior implies that the data Y decrease entropy in
Θ by a larger amount, and hence are more informative for parameter inference. The expected
utility U(d) is thus the expected information gain due to an experiment performed at conditions
d, which is equivalent to the mutual information between the parameters θ and the observables
y conditioned on d. A more detailed derivation and discussion can be found in [11].

Typically, the expected utility in (2) has no closed form (even if the predictive mean of the
data is, for example, a polynomial function of θ). Instead, it must be approximated numerically.
By applying Bayes’ rule to the quantities inside and outside the logarithm in (2), and then
introducing Monte Carlo approximations for the resulting integrals, we obtain the nested Monte
Carlo estimator proposed by Ryan [6]:

U(d) ≈ ÛN,M (d,θs,ys) ≡
1

N

N∑
i=1

ln
[
fY|Θ,d(y(i)|θ(i),d)

]
− ln

 1

M

M∑
j=1

fY|Θ,d(y(i)|θ̃(i,j),d)

 , (3)

where θs ≡
{
θ(i)
}
∪
{
θ̃(i,j)

}
, i = 1 . . . N , j = 1 . . .M , are i.i.d. samples from the prior fΘ;

and ys ≡
{
y(i)
}
, i = 1 . . . N , are independent samples from the likelihoods fY|Θ,d(·|θ(i),d). The

variance of this estimator is approximately A(d)/N+B(d)/NM and its bias is (to leading order)
C(d)/M [6], where A, B, and C are terms that depend only on the distributions at hand. While
the estimator ÛN,M is biased for finite M , it is asymptotically unbiased.

Finally, the expected utility must be maximized over the design space D to find the optimal
experiment(s):

d∗ = arg max
d∈D

U(d). (4)

Since U can only be approximated by Monte Carlo estimators such as ÛN,M , optimization meth-
ods for stochastic objective functions are needed.

2.2 Stochastic optimization
In this section we describe two gradient-based stochastic optimization approaches: Robbins-
Monro stochastic approximation, and sample average approximation with the Broyden-Fletcher-
Goldfarb-Shanno method. Both approaches require some flavor of gradient information, but they
do not use the exact gradient of U(d). Calculating the latter is generally not possible, given that
we only have a Monte Carlo estimator (3) of U(d).

For simplicity, in this section only (§2.2), we will use a more generic notation to describe
the stochastic optimization problem at hand. This will allow the essential ideas to be presented

4

before tackling the additional complexities of the expected information gain estimator above.
The problem to be solved is of the form

x∗ = arg min
x∈X

{
h(x) = EW

[
ĥ(x,W)

]}
, (5)

where x is the design variable, W is the (generally design-dependent) “noise” random variable,
and ĥ(x,w) is an unbiased estimator of the unavailable objective function h(x).

2.2.1 Robbins-Monro (RM) stochastic approximation

The iterative update of the Robbins-Monro method is

xk+1 = xk − akĝ(xk, w
′), (6)

where k is the iteration index and ĝ(xk, w
′) is an unbiased estimator of the gradient (with respect

to x) of h(x) evaluated at xk. In other words, EW ′ [ĝ(x,W ′)] = ∇xh(x), but ĝ is not necessarily
equal to ∇ĥ. Also, W ′ andW may, but need not, be related. The gain sequence ak should satisfy
the following properties:

∞∑
k=0

ak =∞ and

∞∑
k=0

a2
k <∞. (7)

One natural choice, used in this study, is the harmonic step size sequence ak = β/k, where β
is some appropriate scaling constant. For example, in the diffusion problem of Section 5, β is
chosen to be 1.0 since the design space is [0, 1]2. With various technical assumptions on ĝ and g,
it can be shown that RM converges to the exact solution of (5) almost surely [21].

Choosing the sequence ak is often viewed as the Achilles’ heel of RM, as the algorithm’s
performance can be very sensitive to step size. We acknowledge this fact and do not downplay the
difficulty of choosing an appropriate gain sequence, but we will try to show that there exist logical
approaches to selecting ak that yield reasonable performance. More sophisticated strategies,
such as search-then-converge learning rate schedules [47], adaptive stochastic step size rules [48],
and iterate averaging methods [21, 49], have been developed and successfully demonstrated in
applications. For simplicity, however, we will use only the harmonic step size sequence in this
paper.

We will also use relatively simple stopping criteria for the RM iterations: the algorithm will
be terminated when changes in xk stall (e.g., ‖xk − xk−1 ‖ falls below some designated tolerance
for 5 successive iterations) or when a maximum number of iterations has been reached (e.g., 50
iterations in the numerical experiments of Section 5.2.2.)

2.2.2 Sample average approximation (SAA)

Transformation to design-independent noise. The central idea of sample average ap-
proximation is to reduce the stochastic optimization problem to a deterministic problem, by
fixing the noise throughout the entire optimization process. In practice, if the noise W is design-
dependent, it is first transformed to a design-independent random variable by moving all the
design dependence into the function ĥ. (An example of this transformation is given in Sec-
tion 4.) The noise variables at different x then share a common distribution, and a common set
of realizations is employed at all values of x.

Such a transformation is always possible in practice, since the random numbers in any com-
putation are fundamentally generated from uniform random (or really pseudorandom) numbers.
Thus one can always transform W back into these uniform random variables, which are of course

5

independent of x.2 For the remainder of this section (§2.2.2) we shall, without loss of generality,
assume that W is independent of x.

Reduction to a deterministic problem. SAA approximates the true optimization prob-
lem in (5) with

x̂s = arg min
x∈X

{
ĥN (x,ws) ≡

1

N

N∑
i=1

ĥ(x,wi)

}
, (8)

where x̂s and ĥN (x̂s, ws) are the optimal design and objective values under a particular set of N
realizations of the random variable W , ws ≡ {wi}Ni=1. The same set of realizations is used for
different values of x during the optimization process, thus making the minimization problem in
(8) deterministic. (One can view this approach as an application of common random numbers.)
A deterministic optimization algorithm can then be chosen to find x̂s as an approximation to x∗.

Estimates of h(x̂s) can be improved by using ĥN ′(x̂s, ws′) instead of ĥN (x̂s, ws), where ĥN ′(x̂s, ws′)
is computed from a larger set of realizations ws′ ≡ {wj}N

′
j=1 with N ′ > N , in order to attain a

lower variance. Finally, multiple (say T) optimization runs are often performed to obtain a sam-
pling distribution for the optimal design values and the optimal objective values, i.e., x̂ts and
ĥN (x̂ts, w

t
s), for t = 1 . . . T . The sets wts are independently chosen for each optimization run, but

remain fixed within each run. Under certain assumptions on the objective function and the design
space, the optimal design and objective estimates in SAA generally converge to their respective
true values in distribution at a rate of 1/

√
N [22, 33].3

For the solution of a particular deterministic problem x̂ts, stochastic bounds on the true optimal
value can be constructed by estimating the optimality gap h(x̂ts)−h(x∗) [39, 40]. The first term can
simply be approximated using the unbiased estimator ĥN ′(x̂ts, w

t
s′) since EWs′

[
ĥN ′(x̂ts,Ws′)

]
=

h(x̂ts). The second term may be estimated using the average of the approximate optimal objective
values across the T replicate optimization runs (based on wts, rather than wts′):

h̄N =
1

T

T∑
t=1

ĥN (x̂ts, w
t
s). (9)

This is a negatively biased estimator and hence a stochastic lower bound on h(x∗) [39, 40, 50].4,5

The difference ĥN ′(x̂ts, w
t
s′) − h̄N is thus a stochastic upper bound on the true optimality gap

h(x̂ts) − h(x∗). The variance of this optimality gap estimator can be derived from the Monte
Carlo standard error formula [34]. One could then use the optimality gap estimator and its
variance to decide whether more runs are required, or which approximate optimal designs are
most trustworthy.

2One does not need to go all the way to the uniform random variables; any higher-level “transformed” random
variable, as long as it remains independent of x, suffices.

3More precise properties of these asymptotic distributions depend on properties of the objective and the set of
optimal solutions to the true problem. For instance, in the case of a singleton optimum x∗, the SAA estimates
ĥN (x̂s, ·) converge to a Gaussian with variance VarW [ĥ(x∗,W)]/N . Faster convergence to the optimal objective value
may be obtained when the objective satisfies stronger regularity conditions. The SAA solutions x̂s are not in general
asympotically normal, however. Furthermore, discrete probability distributions lead to entirely different asymptotics
of the optimal solutions.

4Short proof from [50]: For any x ∈ X , we have that EWs

[
ĥN (x,Ws)

]
= h(x), and that ĥN (x,wt

s) ≥

minx′∈X ĥN (x′, wt
s). Then h(x) = EWs

[
ĥN (x,Ws)

]
≥ EWs

[
minx′∈X ĥN (x′,Ws)

]
= EWs

[
ĥN (x̂ts,Ws)

]
= EWs

[
h̄N
]
.

5The bias decreases monotonically with N [39].

6

Pseudocode for the SAA method is presented in Algorithm 1. At this point, we have reduced
the stochastic optimization problem to a series of deterministic optimization problems; a suitable
deterministic optimization algorithm is still needed to solve them.

Algorithm 1: SAA method in pseudocode.
Set optimality gap tolerance η and number of replicate optimization runs T ;
t = 1;
while optimality gap estimate > η and t ≤ T do

Sample the set wts = {wti}Ni=1;
Perform a deterministic optimization run and find x̂ts (see Algorithm 2);
Sample the larger set wts′ = {wtj}N

′
j=1 where N ′ > N ;

Compute ĥN ′(x̂ts, w
t
s′) =

1
N ′

∑N ′

j=1 ĥ
(
x̂ts, w

t
j

)
;

Estimate the optimality gap and its variance;
t = t+ 1;

end
Output the sets {x̂ts}Tt=1 and {ĥN ′(x̂ts, w

t
s′)}Tt=1 for post-processing;

BFGS method. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [51] is a gradient-
based method for solving deterministic nonlinear optimization problems, widely used for its ro-
bustness, ease of implementation, and efficiency. It is a quasi-Newton method, iteratively up-
dating an approximation to the (inverse) Hessian matrix from objective and gradient evaluations
at each stage. Pseudocode for the BFGS method is given in Algorithm 2. In the present im-
plementation, a simple backtracking line search is used to find a stepsize that satisfies the first
(Armijo) Wolfe condition only. The algorithm can be terminated according to many commonly
used criteria: for example, when the gradient stalls, the line search stepsize falls below a pre-
scribed tolerance, the design variable or function value stalls, or a maximum allowable number
of iterations or objective evaluations is reached. BFGS is shown to converge super-linearly to a
local minimum if a quadratic Taylor expansion exists near that minimum [51].

The limited memory BFGS (L-BFGS) [51] method can also be used when the design dimension
becomes very large (e.g., more than 104), such that the dense inverse Hessian cannot be stored
explicitly.

2.3 Application to optimal design
The main challenge in applying the aforementioned stochastic optimization algorithms to optimal
Bayesian experimental design is the lack of readily-available gradient information. For RM, we
need an unbiased estimator of the gradient of the expected utility, i.e., ĝ in (6). For SAA-BFGS,
we need the gradient of the finite-sample Monte Carlo approximation of the expected utility, i.e.,
∇ĥN (·, wts).

We address these needs by introducing two concepts:

1. A simple surrogate model, based on polynomial chaos expansions (see Section 3), replaces
the often computationally-intensive forward model. The purpose of the surrogate is twofold.
First, it allows the nested Monte Carlo estimator (3) to be evaluated in a computationally
tractable manner. Second, its polynomial form allows the gradient of (3), ∇ĥN (·, wts), to
be derived analytically. These gains come at the expense of introducing additional error
via the polynomial approximation of the original forward model, however. In other words,

7

Algorithm 2: BFGS algorithm in pseudocode. In this context, ĥN(x,wts) is the deterministic
objective function we want to minimize (as a function of x).
Initialize starting point x0, inverse Hessian approximation H0, gradient termination tolerance ε;
Initialize any other termination conditions and parameters;
k = 0;
while ‖∇ĥN(xk, wts) ‖ > ε and other termination conditions are not met do

Compute search direction pk = −Hk∇ĥN(xk, wts);
Find acceptable stepsize αk via line search;
Update position xk+1 = xk + αkpk;
Define vectors sk = xk+1 − xk and uk = ∇ĥN(xk+1, w

t
s)−∇ĥN(xk, wts) ;

Update inverse Hessian approximation Hk+1 =
(
I − sku

T
k

sTk uk

)
Hk

(
I − uks

T
k

uTk sk

)
+

sks
T
k

sTk uk
;

k = k + 1;
end
Output x̂ts = xk;

given a surrogate for the forward model and the resulting expected information gain, we can
derive exact gradients of a Monte Carlo approximation of this expected information gain,
and use these gradients in SAA.

2. Infinitesimal perturbation analysis (see Section 4) applied to (2), along with the estimator
in (3) and the polynomial surrogate model, allows the analytical derivation of an unbiased
gradient estimator ĝ, as required for the RM approach.

3 Polynomial chaos surrogates

3.1 Background
This section introduces the first of two computational tools used to address the challenges de-
scribed in Section 2.3. Polynomial expansions will be used to mitigate the cost of repeated for-
ward model evaluations. Later (see Section 4) they will also be used to help evaluate appropriate
gradient information for stochastic optimization methods.

Mathematical models of the experiment enter the inference and design formulation through
the likelihood function fY|Θ,d. For example, a simple likelihood function might allow for an
additive discrepancy E between experimental observations and model predictions

Y = G(Θ,d) + E. (10)

Here G(θ,d) is the “forward model” describing the experiment; it is a function that maps
both the design variables and the parameters into the data space. The discrepancy E is of-
ten taken to be a Gaussian random variable, but is by no means limited to this; we will use fE

to denote its probability density. Computationally intensive forward models can render Monte
Carlo estimation of the expected information gain impractical. In particular, drawing a sam-
ple from fY|Θ,d(y|θ,d) requires evaluating G at a particular (θ,d). Evaluating the density
fY|Θ,d(y|θ,d) = fE(y −G(θ,d)) again requires evaluating G.

To make these calculations tractable, one would like to replace G with a cheaper “surrogate”
model that is accurate over the entire prior support H and the entire design space D. Many

8

options exist, ranging from projection-based model reduction [52, 53] to spectral methods based
on polynomial chaos (PC) expansions [23, 24, 25, 26, 27, 28, 29, 54]. The latter approaches do
not reduce the internal physics of the deterministic model; rather, they exploit regularity in the
dependence of model outputs on uncertain input parameters and design variables.

Polynomial chaos has seen extensive use in a range of engineering applications (e.g., [55, 56, 57,
58]) including parameter estimation and inverse problems (e.g., [59, 60, 61]). More recently, it has
also been used in open-loop optimal Bayesian experimental design [10, 11], with excellent accuracy
and multiple order-of-magnitude speedups over direct evaluations of forward model. Unlike the
present work, however, our earlier study [11] used only gradient-free stochastic optimization
methods (Nelder-Mead and simultaneous perturbation stochastic approximation).

3.2 Formulation
Any random variable Z with finite variance can be represented by an infinite series

Z =

∞∑
|i|=0

aiΨi(Ξ1,Ξ2, . . .), (11)

where i = (i1, i2, . . .) , ij ∈ N0, is an infinite-dimensional multi-index; |i| = i1 + i2 + . . . is the l1
norm; ai ∈ R are the expansion coefficients; Ξi are independent random variables; and

Ψi(Ξ1,Ξ2, . . .) =
∞∏
j=1

ψij (Ξj) (12)

are multivariate polynomial basis functions [25]. Here ψij is an orthogonal polynomial of order
ij in the variable Ξj , where orthogonality is with respect to the density of Ξj ,

EΞ [ψm(Ξ)ψn(Ξ)] =

∫
F
ψm(ξ)ψn(ξ)fΞ(ξ) dξ = δm,nEΞ

[
ψ2
m(Ξ)

]
, (13)

and F is the support of fΞ(ξ). The expansion (11) is convergent in the mean-square sense [62].
For computational purposes, the infinite sum in (11) must be truncated to some finite stochastic
dimension ns and a finite number of polynomial terms. A common choice is the “total-order”
truncation |i| ≤ p, but other truncations that retain fewer cross terms, a larger number of cross
terms, or anisotropy among the dimensions are certainly possible [54].

In the optimal Bayesian experimental design context, the model outputs depend on both the
parameters and the design variables. Constructing a new polynomial expansion at each value of d
encountered during optimization is generally impractical. Instead, we can construct a single PC
expansion for each component of G, depending jointly on Θ and d [11]. To proceed, we assign
one stochastic dimension to each component of Θ and one to each component of d. Further, we
assume an affine transformation between each component of d and the corresponding Ξi; any
realization of d can thus be uniquely associated with a vector of realizations ξi. Since the design
variables will usually be supported on a bounded domain (e.g., inside some hyper-rectangle), the
corresponding Ξi are endowed with uniform distributions. The associated univariate ψi are thus
Legendre polynomials. These distributions effectively define a uniform weight function over the
design space D that governs where the L2-convergent PC expansions should be most accurate.6

6In the present context, it is appropriate to view d as a deterministic design variable. Since the stochastic optimiza-
tion algorithms used later all involve some level of randomness, however, the d values encountered during optimization
may also be viewed as realizations from some probability distribution. This distribution, if known, could replace the
uniform distribution and define a more efficient weighted L2 norm; however, it is almost always too complex to extract
in practice.

9

Constructing the PC expansion involves computing the coefficients ai. This computation
generally can proceed via two alternative approaches, intrusive and nonintrusive. The intrusive
approach results in a new system of equations that is larger than the original deterministic system,
but it needs be solved only once. The difficulty of this latter step depends strongly on the character
of the original equations, however, and may be prohibitive for arbitrary nonlinear systems. The
nonintrusive approach computes the expansion coefficients by directly projecting the quantity of
interest (e.g., the model outputs) onto the basis functions Ψi. One advantage of this method
is that the deterministic solver can be reused and treated as a black box. The deterministic
problem then needs to be solved many times, but typically at carefully chosen parameter and
design values. The nonintrusive approach also offers flexibility in choosing arbitrary functionals
of the state trajectory as observables; these functionals may depend smoothly on Ξ even when
the state itself has a less regular dependence. Here, we will employ a nonintrusive approach.

Applying orthogonality, the PC coefficients are simply

Gc,i =
EΞ [Gc(Θ(Ξ),d(Ξ))Ψi(Ξ)]

EΞ

[
Ψ2

i (Ξ)
] =

∫
F Gc(θ(ξ),d(ξ))Ψi(ξ)fΞ(ξ) dξ∫

F Ψ2
i (ξ)fΞ(ξ) dξ

, (14)

where Gc,i is the coefficient of Ψi for the cth component of the model outputs. Analytical
expressions are available for the denominators EΞ

[
Ψ2

i (Ξ)
]
, but the numerators must be evaluated

numerically. When the evaluations of the integrand (and hence the forward model) are expensive
and ns is large, an efficient method for numerical integration in high dimensions is essential.

To evaluate the numerators in (14), we employ Smolyak sparse quadrature based on one-
dimensional Clenshaw-Curtis quadrature rules [63]. Care must be taken to avoid significant
aliasing errors when using sparse quadrature to construct polynomial approximations, however.
Indeed, it is advantageous to recast the approximation as a Smolyak sum of constituent full-
tensor polynomial approximations, each associated with a tensor-product quadrature rule that is
appropriate to its polynomials [54, 64]. This type of approximation may be constructed adaptively,
thus taking advantage of weak coupling and anisotropy in the dependence of G on Θ and d. More
details can be found in [54].

At this point, we may substitute the polynomial approximation of G into the likelihood func-
tion fY|Θ,d, which in turn enters the expected information gain estimator (3). This enables fast
evaluation of the expected information gain. The computation of appropriate gradient informa-
tion is discussed next.

4 Infinitesimal Perturbation Analysis
This section applies the method of infinitesimal perturbation analysis (IPA) [65, 66, 67] to con-
struct an unbiased estimator ĝ of the gradient of the expected information gain, for use in RM.
The same procedure yields the gradient ∇ĥN,M (·, wts) of a finite-sample Monte Carlo approxi-
mation of the expected information gain, for use in SAA. The central idea of IPA is that under
certain conditions, an unbiased estimator of the gradient of a function can be obtained by simply
taking the gradient of an unbiased estimator of the function. We apply this idea in the context
of optimal Bayesian experimental design.

The first requirement of IPA is the availability of an unbiased estimator of the function.
Unfortunately, as described in Section 2.1, ÛN,M in (3) is a biased estimator of U for finiteM [6].

10

To circumvent this technicality, let us optimize the following objective function instead of U :

ŪM (d) ≡ EΘs,Ys|d

[
ÛN,M (d,Θs,Ys)

]
=

∫
Ys

∫
Hs
ÛN,M (d,θs,ys)fΘs,Ys|d(θs,ys|d) dθs dys

=

∫
Ys

∫
Hs
ÛN,M (d,θs,ys)

(N,M)∏
(i,j)=(1,1)

fY|Θ,d(y(i)|θ(i),d)fΘ(θ(i))fΘ(θ̃(i,j)) dθs dys,(15)

where Hs×Ys is the support of the joint density fΘs,Ys|d(θs,ys|d). Our original estimator ÛN,M
is now unbiased for the new objective ŪM by construction! The tradeoff, of course, is that the
function being optimized is no longer the true U . But it is consistent in that ŪM (d)→ U(d) as
M →∞, for any N > 0. (To illustrate this convergence, realizations of ÛN,M , i.e., Monte Carlo
approximations of ŪM , are plotted in Figure 2 for varying M .)

The second requirement of IPA comprises conditions allowing an unbiased gradient estimator
to be constructed by taking the gradient of the unbiased function estimator. Standard conditions
(see, for example, [67]) require that the random quantity (e.g., ÛN,M) be almost surely continuous
and differentiable. Here, because ÛN,M is parameterized by continuous random variables that
have densities with respect to Lebesgue measure, we can take a perspective that relies on Leibniz’s
rule with the following conditions:

1. ÛN,M and∇d

(
ÛN,M

)
are continuous over the product space of design variables and random

variables, D ×Hs × Ys;
2. the density of the “noise” random variable is independent of d.

The first condition supports the interchange of differentiation and integration according to
Leibniz’s rule. This condition might be difficult to verify in arbitrary cases, but the use of finite-
order polynomial forward models and continuous distributions for the prior and observational
noise ensures that we meet the requirement.

The second condition is needed to preserve the form of the expectation. If it is violated, differ-
entiation with respect to d must be performed on the fΘs,Ys|d(θs,ys|d) term as well via the prod-
uct rule, in which case the additional term

∫
Ys

∫
Hs ÛN,M (d,θs,ys)∇

[
fΘs,Ys|d(θs,ys|d)

]
dθs dys

would no longer be an expectation with respect to the original density. The likelihood-ratio
method may be used to restore the expectation [68, 67], but it is not pursued here. Instead,
it is simpler to transform the noise to a design-independent random variable as described in
Section 2.2.2.

In the context of optimal Bayesian experimental design, the outcome of the experiment Y is a
stochastic quantity that depends on the design d. From the stochastic optimization perspective,
Y is thus a noise variable. To demonstrate the transformation to design-independent noise, we
assume a likelihood where the data result from an additive Gaussian perturbation to the forward
model:

Y = G(Θ,d) + E

= G(Θ,d) + C(Θ,d)Z. (16)

Here C is a diagonal matrix with non-zero entries reflecting the dependence of the noise standard
deviation on other quantities, and Z is a vector of i.i.d. standard normal random variables. For
example, “10% Gaussian noise on the cth component” would translate to Cc,i = δci0.1|Gc(Θ,d)|,
where δci is the Kronecker delta function. For other forms of the likelihood, the right-hand side

11

of (16) is simply replaced by a generic function of Θ, d, and some random variable Z. Here,
however, we will focus on the additive Gaussian form in order to derive illustrative expressions.

By extracting a design-independent random variable Z from the noise term E ≡ C(Θ,d)Z,
we will satisfy the second condition above. The design-dependence of Y is incorporated into
ÛN,M by substituting (16) into (3):

ÛN,M (d,θs, zs) =
1

N

N∑
i=1

{
ln
[
fY|Θ,d

(
G(θ(i),d) + C(θ(i),d)z(i)

∣∣∣θ(i),d
)]

− ln

 1

M

M∑
j=1

fY|Θ,d

(
G(θ(i),d) + C(θ(i),d)z(i)

∣∣∣θ(i,j),d
) , (17)

where zs =
{
z(i)
}
. The new noise variables are now independent of d. The samples of y(i)

drawn from the likelihood are instead realized by drawing z(i) from N(0, I), then multiplying
these samples by C and adding them to the model output.

With all conditions for IPA satisfied, an unbiased estimator of the gradient of ŪM , corre-
sponding to ĝ in (6), is simply ∇dÛN,M (d,θs, zs) since

EΘs,Zs

[
∇dÛN,M (d,Θs,Zs)

]
=

∫
Zs

∫
Θs

∇dÛN,M (d,θs, zs)fΘs,Zs(θs, zs) dθs dzs

= ∇d

∫
Zs

∫
Θs

ÛN,M (d,θs, zs)fΘs,Zs(θs, zs) dθs dzs

= ∇dEΘs,Zs

[
ÛN,M (d,Θs,Zs)

]
= ∇dŪM (d), (18)

where Zs is the support of fZs(zs). This gradient estimator is therefore suitable for use in RM.
The gradient of the finite-sample Monte Carlo approximation of U(d), i.e., ∇ĥN,M (·, wts) used

in SAA, takes exactly the same form. The only difference between the two is that ĝ lets Θs and Zs
be random at every iteration of the optimization process. When used as ∇ĥN,M (·, wts), Θs and Zs
are frozen at some realization throughout the optimization process. In either case, these gradient
expressions contain derivatives of the likelihood function and thus derivatives ∇dG(θ,d). When
G is replaced with a polynomial expansion, these derivatives can be computed inexpensively.
Detailed derivations of the gradient estimator using orthogonal polynomial expansions can be
found in the Appendix.

5 Source Inversion Problem

5.1 Governing equations
We demonstrate the optimal Bayesian experimental design formulation and our stochastic op-
timization tools on a two-dimensional contaminant identification problem. The goal is to place
a single sensor that yields maximum information about the location of the contaminant source.
Contaminant transport is governed by a scalar diffusion equation on a square domain:

∂w

∂t
= ∇2w + S (xsrc,x, t) , x ∈ X = [0, 1]2 , (19)

where w(x, t; xsrc) is the space-time concentration field parameterized by the coordinate of the
source center xsrc. We impose homogeneous Neumann boundary conditions

∇w · n = 0 on ∂X , (20)

12

along with a zero initial condition

w(x, 0; xsrc) = 0. (21)

The source function has a Gaussian spatial profile

S (xsrc,x, t) =

{
s

2πh2
exp

(
−‖xsrc−x‖2

2h2

)
, 0 ≤ t < τ

0, t ≥ τ
(22)

where s, h, and τ are known (prescribed) source intensity, width, and shutoff time parameters,
respectively, and xsrc ≡ (Θx,Θy) is the unknown source location that we would ultimately like
to infer. The design variable is the location of a single sensor, xsensor ≡ (dx, dy), and the mea-
surement data {Yi}5i=1 comprise five noisy point observations of w at the sensor location and at
five equally-spaced sample times. For this study, we choose s = 2.0, h = 0.05, τ = 0.3; a uniform
prior Θx,Θy ∼ U (0, 1); and an additive error model Yi = w (xsensor, ti, ; xsrc)+Ei, i = 1 . . . 5, such
that the Ei are zero-mean Gaussian random variables, mutually independent given xsensor and
xsrc, each with standard deviation σi = 0.1 + 0.1 |w (xsensor, ti; xsrc)|. In other words, the error
associated with the data has a “floor” value of 0.1 plus an additional contribution that is 10% of
the signal. The sensor may be placed anywhere in the square domain, such that the design space
is (dx, dy) ∈ [0, 1]2. Figure 1 shows an example concentration profile and measurements.

Evaluating the forward model thus requires solving the partial differential equation (19) at
fixed realizations of θ = xsrc and extracting the solution field at the design location d = xsensor.
We discretize (19) using 2nd-order centered differences on a 25 × 25 spatial grid and a 4th-order
backward differentiation formula for time integration. As described in Section 3, we replace
the full forward model with a polynomial chaos surrogate, for computational efficiency. To this
end, we construct a Legendre polynomial approximation of the forward model output over the
4-dimensional joint parameter and design space, using a total-order polynomial truncation of
degree 12 and 106 forward model evaluations. This high polynomial degree and rather large
number of forward model evaluations were deliberately selected in order to render truncation and
aliasing error insignificant in our study. Optimal experimental design results of similar quality
may be obtained for this problem with surrogates of lower order and with far fewer quadrature
points (e.g., degree 4 with 104 forward model evaluations) but for brevity they are not included
here. The relative L2 errors of the current surrogate range from 6× 10−3 to 10−6.

The optimal Bayesian experimental design formulation now seeks the sensor location x∗sensor

such that when the experiment is performed, on average—i.e., averaged over all possible source
locations according to the prior, and over all possible resulting concentration measurements ac-
cording to the likelihood—the five concentration readings {Yi}5i=1 yield the greatest information
gain from prior to posterior.

5.2 Results
5.2.1 Objective function

Before we present the results of numerical optimization, we first explore the properties of the
expected information gain objective. Numerical realizations of ÛN,M for N = 1001 and M = 2,
11, 101, and 1001 are shown in Figure 2. These plots can be interpreted as 1-sample Monte Carlo
approximations of ŪM = E[ÛN,M], or equivalently, as l-sample Monte Carlo approximations of
ŪM = E[Û(N/l),M]. As N grows, ÛN,M becomes a better approximation to ŪM and as M grows,
ŪM becomes a better approximation to U . The figures show that values of ÛN,M increase when
M increases (for fixed N), suggesting a negative bias at finiteM . At the same time, the objective

13

becomes less flat in d; since U is certainly closer to theM = 1001 surface than theM = 2 surface,
these results suggest that U is not particularly flat in d. This feature of the current design problem
is encouraging, since stochastic optimization problems with higher curvature can be more easily
solved; in the context of SA, for example, they effectively have a higher signal-to-noise ratio.

The expected information gain objective inherits symmetries from the square, as expected
from the physical nature of the problem. The plots also suggest a smooth albeit nonconvex
underlying objective U , with inflection points lying on an interior circle and four local maxima
symmetrically located at the corners of the design space. The best placement for a single sensor
is therefore at the corners of the design space, while the worst placement is at the center. The
reason for this perhaps counterintuitive result is that the diffusion process is isotropic: a series of
concentration measurements can only determine the distance of the source from the sensor, not its
orientation. The posterior distribution thus resembles an annulus of constant radius surrounding
the sensor. A sensor placement that minimizes the area of these annuli, averaged over all possible
source locations according to the prior, tends to be optimal. In this problem, because of the
domain geometry and the magnitude of the observational noise, these optimal locations happen
to be the furthest points from the domain center, i.e., the corners.

Figure 3 shows posterior probability densities for the source location, under different sensor
placements, given data generated from a “true” source centered at xsrc = (0.09, 0.22). The pos-
terior densities are evaluated using the polynomial chaos surrogate, while the data are generated
by directly solving the diffusion equation on a denser (101 × 101) spatial grid than before and
then adding the Gaussian noise described in Section 5.1. Note that the posteriors are extremely
non-Gaussian. Moreover, they generally include the true source location, but do not center on it.
Reasons for not expecting the posterior mode to match the true source location are twofold: first,
we have only 5 measurements, each perturbed with a relatively significant random noise; second,
there is model error, due to mismatch between the polynomial chaos approximation constructed
from the coarser spatial discretization of the PDE and the more finely discretized PDE model
used to simulate the data.7,8 For this source configuration, it appears that a sensor placed at any
of the corners yields a “tighter” posterior than a sensor placed at the center. But we must keep in
mind that this result is not guaranteed for all source locations and data realizations; it depends
on where the source actually is. [Imagine, for example, if the source happened to be very close to
the center of the domain; then the sensor at (0.5, 0.5) would yield the tightest posterior.] What
the optimal experimental design method yields is the optimal sensor placement averaged over the
prior distribution of the source location and the predictive distribution of the data.

5.2.2 Stochastic optimization results

We now analyze the optimization results, first assessing the behavior of the two stochastic opti-
mization methods individually, and then comparing their performance.

Recall that the RM algorithm is essentially a steepest-ascent method (since we are maximizing
the objective) with a stochastic gradient estimate. Figures 4–6 each show four sample RM
optimization paths overlaid on the ÛN,M surfaces from Figure 2. The optimization does not
always proceed in an ascent direction, due to the noise in the gradient estimate, but even a noisy
gradient can be useful in eventually guiding the algorithm to regions of high objective value.
Naturally, fewer iterations are needed and good designs are more likely to be found when the

7Indeed, there are two levels of model error: (1) between the PC expansion and the PDE model used to construct
the PC expansion, which has a ∆x = ∆y = 1/24 spatial discretization; (2) between this PDE model and the more
finely discretized (∆x = ∆y = 1/100) PDE model used to simulate the noisy data.

8Model error is an extremely important aspect of uncertainty quantification [13], but its treatment is beyond the
scope of this study. Understanding the impact of model error on optimal experimental design is an important direction
for future work.

14

variance of the gradient estimator is reduced by increasing N and M . Note that one must be
cautious not to over-generalize from these figures, since the paths shown in each plot are not
necessarily representative. Instead, their purpose is to provide intuition about the optimization
mechanics. Data derived from many runs are more appropriate performance metrics, and will be
used later in this section.

For SAA-BFGS, each choice of the sample set wtx yields a different deterministic objective;
example realizations of this objective surface are shown in Figures 7–9. For each realization, a
local maximum is found efficiently by the BFGS algorithm, requiring only a few (usually less
than 10) iterations. For each set of results corresponding to a particular N (i.e., each of Figures
7–9), the random numbers used for smaller values of M are proper subsets of those used for
larger M . We thus expect some similarity and a sense of convergence among the subplots in each
figure. Note also that when N is low, realizations of the objective can be extremely different
from Figure 2 (for example, the plots in Figure 7 have local maxima near the center of the
domain), although improvement is observed as N is increased. In general, each deterministic
problem in SAA can have very different features than the underlying objective function. None of
the realizations encountered here has maxima at the corners, or is even symmetric. Nonetheless,
when sampling over many SAA subproblems, even a low N can provide reasonably good results.
This will be shown in Tables 1 and 2, and discussed in detail below.

To compare the performance of RM and SAA-BFGS, 1000 independent runs are conducted for
each algorithm, over a matrix ofN andM values. The starting locations of these runs are sampled
from a uniform distribution over the design space. We make reasonable choices for the numerical
parameters in each algorithm (e.g., gain schedule scaling, termination criteria) leading to similar
run times. Histograms of the final design parameters (sensor positions) resulting from each set
of 1000 optimization runs are shown in Table 1. The top figures in each major row represent RM
results, while the bottom figures in each major row correspond to SAA-BFGS results. Columns
correspond to different values of M . It is immediately apparent that more designs cluster at
the corners of the domain as N and M are increased. For the case with the largest number of
samples (N = 101 and M = 1001), each corner has around 250 designs, suggesting that higher
sample sizes cannot further improve the optimization results. An “overlap” in quality across the
different N cases is also observed: for example, results of the N = 101, M = 2 case are worse
than those of the N = 11, M = 1001 case. A balance is thus needed in choosing samples sizes N
and M , and it is not ideal to heavily favor sampling either the inner or outer Monte Carlo loop
in ÛN,M . Overall, comparing the RM and SAA-BFGS plots at intermediate values of M and N ,
we see that RM has a slight advantage over SAA-BFGS by placing more designs at the corners.

The distribution of final designs alone does not reflect the robustness of the optimization
results. For example, if U is very flat near the optimum, then suboptimal designs need not be
very close to the true optimum in the design space to be considered good designs in practice.
To evaluate robustness, a “high-quality” objective estimate Û1001,1001 is computed for each of
the 1000 final designs considered above. The resulting histograms are shown in Table 2, where
again the top subrows are for RM and the bottom subrows are for SAA-BFGS, with the results
covering a full range of N and M values. In keeping with our previous observations, performance
is improved as N and M are increased—in that the mean (over the optimization runs) expected
information gain increases, while the variance in the expected information gain decreases. Note,
however, that even if all 1000 optimization runs produced identical final designs, this variance will
not reach zero, as there exists a “floor” corresponding to the variance of the estimator Û1001,1001.
This minimum variance can be observed in the histograms of the RM results with N = 101 and
M = 101 or 1001.

One interesting feature of the histograms in Table 2 is their bimodality. The higher mode
reflects designs near the four corners, while the lower mode encompasses all other suboptimal

15

designs. As N or M increase, we observe a transfer of probability mass from the lower mode to
the upper mode. However, the sample sizes are not large enough for the lower mode to completely
disappear for most cases; it is only absent in the two RM cases with the largest sample sizes.
Overall, the histograms are similar in shape for both algorithms, but RM appears to produce less
variability in the expected information gain, particularly at high N values.

Table 3 shows histograms of optimality gap estimates from the 1000 SAA-BFGS runs. Since
we are dealing with a maximization problem (for the expected information gain), the estimator
from §2.2.2 is reversed in sign, such that the upper bound is now h̄N and the lower bound
is ĥN ′(x̂ts, w

t
s′). The lower bound must be evaluated with the same inner-loop Monte Carlo

sample sizeM used in the optimization run in order to represent an identically-biased underlying
objective; hence, the lower bound values will not be the same as the “high-quality” objective
estimates Û1001,1001 discussed above. From the table, we observe that as N increases, values of
the optimality gap estimate decrease. This is a result of the lower bound rising with N (since
the optimization is better able to find designs in regions of large ŪM , e.g., corners of the domains
in Table 1), and the upper bound simultaneously falling (since its positive bias monotonically
decreases with N [39]). Consequently, both bounds become tighter and the gap estimates tend
toward zero. As M increases, the variance of the gap estimates increases. Since the upper bound
(h̄N) is fixed for a given set of SAA runs, the spread is only affected by the variability of the
lower bound. Indeed, from Figure 2, it is apparent that the objective becomes less flat as M
increases, with the highest gradients (considering the good design regions only) occurring at the
corners. This translates to a higher sensitivity, as a small “imperfection” in the design would lead
to larger changes in objective estimate; one then would expect the variation of ĥN ′(x̂ts, w

t
s′) to

become higher as well, leading to greater variance in the gap estimates. Finally, as M increases,
the histogram values tend to increase, but they increase more slowly for larger values of N . Some
intuition for this result may be obtained by considering the relative rates of change of the upper
and lower bounds with respect to M , given different values of N . Again referring to Figure 2,
the objective values generally increase with M , indicating an increase of the lower bound. This
increase should be more pronounced for larger N , since the optimization converges to designs
closer to the corners, where, as mentioned earlier, the objective has larger gradient. The upper
bound increases with M as well, as indicated by the contour levels in Figures 7–9. But this rate
of increase is observed to be slowest at the highest N (i.e., in Figure 9). Combining these two
effects, it is reasonable that as N increases, the gap estimate will increase with M at a slower
rate.

Can the optimality gap be used to choose values of M and N? For a fixed M , we certainly
have convergence as N increases, and the gap estimate can be a good indicator of solution quality.
However, because different values ofM correspond to different objective surfaces (due to the bias
of ÛN,M), the optimality gap is unsuitable for comparisons across different values ofM ; indeed, in
our example, even though solution quality is improved with M , the gap estimates appear looser
and noisier.

Another performance metric we extract from the stochastic optimization runs is the number
of iterations required to reach a solution; histograms of iteration number for RM and SAA, for the
same matrix of M and N values, are shown in Table 4. At low sample sizes, many of the SAA-
BFGS runs take only a few iterations, while almost all of the RM runs terminate at the maximum
allowable number of iterations (50 in this case). This difference again reflects the efficiency of
BFGS for deterministic optimization problems. As N andM are increased, the histograms show a
“transfer of mass” from higher iteration numbers to lower iteration numbers, coinciding somewhat
with the bimodal behavior described previously. The reduction in iteration number with increased
sample size implies that an n−fold increase in sample size leads to an increase in computational
time that is often much less than a factor of n. Accounting for this sublinear relationship when

16

allocating computational resources, especially if samples can be drawn in parallel, can lead to
substantial savings. Although SAA-BFGS generally requires fewer iterations, each iteration takes
longer than a step of RM. RM thus offers a higher “resolution” in run times, potentially giving
more freedom to the user in stopping the algorithm. RM thus becomes more attractive as the
evaluation of the objective function becomes more expensive.

As a single integrated measure of the quality of the stochastic optimization solutions, we
evaluate the following mean square error (MSE):

MSE =
1

T

T∑
t=1

(
Û1001,1001(dt,θts′ , z

t
s′)− U ref

)2
, (23)

where dt, t = 1 . . . T , are the final designs from a given optimization algorithm, and U ref is the
true optimal value of the expected information gain. Since the true optimum is unavailable in
this study, U ref is taken to be the maximum value of the objective over all runs. Recall that the
MSE combines the effects of bias and variance; here it reflects the variance in objective values
plus the difference (squared) between the mean objective value and the true optimum, calculated
via T = 1000 replicated optimization runs. Figure 10 relates solution quality to computational
effort by plotting the MSE against average computational time (per run). Each symbol represents
a particular value of N (×, ©, and � represent N = 1, 11, and 101, respectively), while the
four different M values are reflected through the average run times. These plots confirm the
behavior we have previously encountered. Solution quality generally improves (lower MSE) with
increasing sample sizes, although a balanced allocation of samples must be chosen. For instance,
a large N with small M can yield inferior solutions to a smaller N with larger M ; while, for any
given N , continued increases in M beyond some threshold yield minimal improvements in MSE.
The best sample allocation is described by the minimum of all the curves. We highlight these
“optimal fronts” in light red for RM and in light blue for SAA-BFGS. Monte Carlo error in the
“high-quality” estimator Û1001,1001 may also be reflected in the non-zero MSE asymptote for the
high-N RM cases.

According to Figure 10, RM outperforms SAA-BFGS by consistently achieving smaller MSE
for a given computational effort. One should be cautious, however, in generalizing from these
numerical experiments. The advantage of RM is relatively small, and other factors such as code
optimization, choices of algorithm parameters, and of course the experimental design problem
itself can affect or even reverse this advantage.

6 Conclusions
This paper has explored the stochastic optimization problem arising from a general nonlinear for-
mulation of optimal Bayesian experimental design. In particular, we employed an objective that
reflects the expected information gain in model parameters due to an experiment, and formulated
two gradient-based approaches to stochastic optimization in this context: Robbins-Monro (RM)
stochastic approximation, and sample average approximation (SAA) coupled with BFGS. Both
of these algorithms require gradient information derived from Monte Carlo approximations of the
objective: an unbiased gradient estimator in the former case, and gradients of a finite-sample
Monte Carlo estimate in the latter case. Methods for extracting this gradient information must
contend with an estimator of expected information gain that is not a simple Monte Carlo sum, but
rather contains nested Monte Carlo estimates. It is therefore expensive to evaluate, and biased
for finite inner-loop sample sizes. To circumvent these challenges, we approximate the forward
model embedded in the likelihood function with a polynomial chaos expansion, and maximize
the expected information gain computed via this approximation instead. Gradient information

17

is readily extracted from the polynomial chaos expansion, with the help of a simple perturbation
analysis.

We analyze the performance of the two stochastic optimization approaches using the problem
of sensor placement for source inversion, cast as optimal experimental design over a continuous
design space. Numerical experiments, performed over a matrix of inner- and outer-loop sample
sizes, examine the impact of bias and variance in the objective function and gradient estimates on
the efficiency of the optimization algorithms and on the quality of the resulting solutions. These
experiments suggest (unsurprisingly) that solution quality improves as sample sizes increase, but
also that optimization runs may converge in fewer iterations for larger sample sizes. Also, a
balanced allocation of computational resources between the inner and outer Monte Carlo sums
is important for computational efficiency. Arbitrarily increasing the inner-loop sample size, for
instance, yields little improvement in solution quality when the outer-loop samples are too few.
Our results also suggest that RM has a consistent performance advantage over SAA-BFGS,
but this conclusion is necessarily problem-dependent. Instead of declaring one algorithm to be
superior, our broader goal is to illustrate the differences between the two algorithms and provide
some selection guidelines based on their properties.

The SAA approach may provide more flexibility than SA, as it can be combined with any
deterministic optimization algorithm, whereas the SA approach essentially specifies the form of
each optimization iteration. SAA’s flexibility allows one to take advantage of problem structure:
if realizations of the objective surface are known to be “well-behaved” and smooth, gradient-
based algorithms such as BFGS can exploit this regularity, as in the present source inversion
example. On the other hand, if the objective is not smooth, or if gradients are not available,
some gradient-free deterministic algorithm may be more appropriate. Estimates of optimality
gap, obtained from replicate SAA solutions, can be used to adaptively adjust the outer-loop
Monte Carlo sample size, but are unsuitable for assessing the inner-loop sample size because of
bias effects. Future work could employ the common random number stream approach in [40]
to obtain a lower-variance estimate of optimality gap (along with a confidence interval), or the
jackknife technique proposed in [69] for bias reduction.

The RM algorithm and other stochastic approximation methods must use a stochastic gra-
dient estimator. This can lead to poor performance if only high-variance gradient estimates are
available. In the current context, increasing the outer-loop sample size reduces variance and the
RM algorithm performed relatively well. Note that the frequent (yet cheaper) steps of RM effec-
tively provide a finer resolution in run time than SAA, giving the user more freedom to terminate
the algorithm without losing much progress between the termination time and the previous opti-
mization iteration. Therefore, RM may become more attractive as objective evaluations become
more expensive.9

The present approach used a global polynomial chaos surrogate, constructed over the product
of the parameter space H and the design space D. In model-based methods for deterministic
derivative-free optimization, one might prefer to construct local surrogates valid over increasingly
smaller intervals of D, particularly as one approaches the optimum. Pursuing similar ideas in the
stochastic context could possibly offer additional accuracy, but sampling errors in the stochastic
optimization solution will always limit potential gains.

Finally, as we pointed out in Section 2.1, this paper has focused on batch or open-loop
experimental design, where the parameters for all experiments are chosen before data are actually
collected. An important target for future work is rigorous sequential or closed-loop design, where
the data from one set of experiments are used to guide the choice of the next set. Here we

9Even if a polynomial chaos expansion is used as a surrogate for the forward model, its evaluation can become
expensive if the stochastic dimension and polynomial order are high, though it remains much cheaper than the original
model.

18

expect stochastic optimization algorithms, for expected information gain and other objectives, to
continue playing a crucial role.

7 Acknowledgements
This work was partially supported by the Computational Mathematics Program of the Air Force
Office of Scientific Research and by the National Science Foundation under award number ECCS-
1128147.

19

8 Figures and Tables

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

t

C
o

n
ce

n
tr

at
io

n

model prediction

noisy measurements

Figure 1: Example forward model solution and realizations from the likelihood. In particular, the solid
line represents the time-dependent contaminant concentration w(x, t;xsrc) at x = xsensor = (0.0, 0.0),
given a source centered at xsrc = (0.1, 0.1), source strength s = 2.0, width h = 0.05, and shutoff
time τ = 0.3. Parameters are defined in the diffusion equation (19). The five crosses represent noisy
measurements at five designated measurement times.

20

0

0.5

1

0

0.5

1
0.2

0.3

0.4

0.5

xy

E
x

p
ec

te
d

 U
ti

li
ty

0.3

0.35

0.4

0.45

(a) N = 1001, M = 2

0

0.5

1

0

0.5

1

0.8

1

1.2

1.4

xy

E
x
p
ec

te
d
 U

ti
li

ty
0.7

0.8

0.9

1

1.1

(b) N = 1001, M = 11

0

0.5

1

0

0.5

1
0.5

1

1.5

xy

E
x
p
ec

te
d
 U

ti
li

ty

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

(c) N = 1001, M = 101

0

0.5

1

0

0.5

1
0.5

1

1.5

2

xy

E
x
p
ec

te
d
 U

ti
li

ty

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(d) N = 1001, M = 1001

Figure 2: Surface plots of independent ÛN,M realizations, evaluated over the entire design space
[0, 1]2 3 d = (x, y). Note that the vertical axis ranges and color scales vary among the subfigures.

21

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Sensor

Source Center

10

20

30

40

50

60

(a) xsensor = (0.0, 0.0)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Sensor

Source Center
0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b) xsensor = (0.0, 1.0)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Sensor

Source Center

0.5

1

1.5

2

2.5

3

(c) xsensor = (1.0, 0.0)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Sensor

Source Center

1

2

3

4

5

(d) xsensor = (1.0, 1.0)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Sensor

Source Center

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(e) xsensor = (0.5, 0.5)

Figure 3: Contours of posterior probability density for the source location, given different sensor
placements. The true source location, marked with a blue circle, is xsrc = (0.09, 0.22).

22

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.3

0.35

0.4

0.45

(a) N = 1, M = 2

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.7

0.8

0.9

1

1.1

(b) N = 1, M = 11

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.8

0.9

1

1.1

1.2

1.3

1.4

(c) N = 1, M = 101

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.8

0.9

1

1.1

1.2

1.3

1.4

(d) N = 1, M = 1001

Figure 4: Sample paths of the RM algorithm with N = 1, overlaid on ÛN,M surfaces from Figure 2
with the corresponding M values. The large � is the starting position and the large × is the final
position.

23

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.3

0.35

0.4

0.45

(a) N = 11, M = 2

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.7

0.8

0.9

1

1.1

(b) N = 11, M = 11

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.8

0.9

1

1.1

1.2

1.3

1.4

(c) N = 11, M = 101

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.8

0.9

1

1.1

1.2

1.3

1.4

(d) N = 11, M = 1001

Figure 5: Sample paths of the RM algorithm with N = 11, overlaid on ÛN,M surfaces from Figure 2
with the corresponding M values. The large � is the starting position and the large × is the final
position.

24

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.3

0.35

0.4

0.45

(a) N = 101, M = 2

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.7

0.8

0.9

1

1.1

(b) N = 101, M = 11

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.8

0.9

1

1.1

1.2

1.3

1.4

(c) N = 101, M = 101

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.8

0.9

1

1.1

1.2

1.3

1.4

(d) N = 101, M = 1001

Figure 6: Sample paths of the RM algorithm with N = 101, overlaid on ÛN,M surfaces from Figure 2
with the corresponding M values. The large � is the starting position and the large × is the final
position.

25

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) N = 1, M = 2

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) N = 1, M = 11

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1

1.5

2

2.5

(c) N = 1, M = 101

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1

1.5

2

2.5

(d) N = 1, M = 1001

Figure 7: Realizations of the objective function surface using SAA, and corresponding steps of BFGS,
with N = 1. The large � is the starting position and the large × is the final position.

26

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.3

0.35

0.4

0.45

0.5

0.55

0.6

(a) N = 11, M = 2

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

(b) N = 11, M = 11

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.8

1

1.2

1.4

1.6

1.8

(c) N = 11, M = 101

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.8

1

1.2

1.4

1.6

(d) N = 11, M = 1001

Figure 8: Realizations of the objective function surface using SAA, and corresponding steps of BFGS,
with N = 11. The large � is the starting position and the large × is the final position.

27

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.3

0.35

0.4

0.45

(a) N = 101, M = 2

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.8

0.9

1

1.1

1.2

(b) N = 101, M = 11

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.8

0.9

1

1.1

1.2

(c) N = 101, M = 101

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

(d) N = 101, M = 1001

Figure 9: Realizations of the objective function surface using SAA, and corresponding steps of BFGS,
with N = 101. The large � is the starting position and the large × is the final position.

28

HHH
HHHN
M 2 11 101 1001

1
0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

11
0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

101
0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

0

0.5

1

0

0.5

1
0

100

200

Table 1: Histograms of final search positions resulting from 1000 independent runs of RM (top
subrows) and SAA (bottom subrows) over a matrix of N and M sample sizes. For each histogram,
the bottom-right and bottom-left axes represent the sensor coordinates x and y, respectively, while
the vertical axis represents frequency.

29

H
HHH

HHN
M 2 11 101 1001

1 0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

11 0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

101 0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

Table 2: High-quality expected information gain estimates at the final sensor positions resulting from
1000 independent runs of RM (top subrows, blue) and SAA-BFGS (bottom subrows, red). For each
histogram, the horizontal axis represents values of ÛM=1001,N=1001 and the vertical axis represents
frequency.

30

HHH
HHHN
M 2 11 101 1001

1

0 0.5 1 1.5
0

50

100

150

200

250

0 0.5 1 1.5
0

50

100

150

200

250

0 0.5 1 1.5
0

50

100

150

200

250

0 0.5 1 1.5
0

50

100

150

200

250

11

0 0.5 1 1.5
0

50

100

150

200

250

0 0.5 1 1.5
0

50

100

150

200

250

0 0.5 1 1.5
0

50

100

150

200

250

0 0.5 1 1.5
0

50

100

150

200

250

101

0 0.5 1 1.5
0

50

100

150

200

250

0 0.5 1 1.5
0

50

100

150

200

250

0 0.5 1 1.5
0

50

100

150

200

250

0 0.5 1 1.5
0

50

100

150

200

250

Table 3: Histograms of optimality gap estimates for SAA-BFGS, over a matrix of samples sizes M
and N . For each histogram, the horizontal axis represents value of the gap estimate and the vertical
axis represents frequency.

31

H
HHH

HHN
M 2 11 101 1001

1 0 10 20 30 40 50
0

200

400

600

800

1000

0 10 20 30 40 50
0

200

400

600

800

1000

0 10 20 30 40 50
0

200

400

600

800

1000

0 10 20 30 40 50
0

200

400

600

800

1000

0 5 10 15 20
0

100

200

300

400

500

600

0 5 10 15 20
0

100

200

300

400

500

600

0 5 10 15 20
0

100

200

300

400

500

600

0 5 10 15 20
0

100

200

300

400

500

600

11 0 10 20 30 40 50
0

200

400

600

800

1000

0 10 20 30 40 50
0

200

400

600

800

1000

0 10 20 30 40 50
0

200

400

600

800

1000

0 10 20 30 40 50
0

200

400

600

800

1000

0 5 10 15 20
0

100

200

300

400

500

600

0 5 10 15 20
0

100

200

300

400

500

600

0 5 10 15 20
0

100

200

300

400

500

600

0 5 10 15 20
0

100

200

300

400

500

600

101 0 10 20 30 40 50
0

200

400

600

800

1000

0 10 20 30 40 50
0

200

400

600

800

1000

0 10 20 30 40 50
0

200

400

600

800

1000

0 10 20 30 40 50
0

200

400

600

800

1000

0 5 10 15 20
0

100

200

300

400

500

600

0 5 10 15 20
0

100

200

300

400

500

600

0 5 10 15 20
0

100

200

300

400

500

600

0 5 10 15 20
0

100

200

300

400

500

600

Table 4: Number of iterations in each independent run of RM (top subrows, blue) and SAA-BFGS
(bottom subrows, red), over a matrix of sample sizes M and N . For each histogram, the horizontal
axis represents iteration number and the vertical axis represents frequency.

32

10
−2

10
0

10
2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Average Time [s]

O
p

ti
m

iz
at

io
n

 R
es

u
lt

 M
S

E

N=1

N=11

N=101

(a) RM

10
−2

10
0

10
2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Average Time [s]

O
p

ti
m

iz
at

io
n

 R
es

u
lt

 M
S

E

N=1

N=11

N=101

(b) SAA-BFGS

10
−2

10
0

10
2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Average Time [s]

O
p

ti
m

iz
at

io
n

 R
es

u
lt

 M
S

E

RM

SAA−BFGS

(c) RM and SAA-BFGS “optimal fronts”

Figure 10: Mean square error, defined in (23), versus average run time for each optimization algorithm
and various choices of inner-loop and outer-loop sample sizes. The highlighted curves are “optimal
fronts” for RM (light red) and SAA-BFGS (light blue).

33

Appendix: Analytical Derivation of the Unbiased Gra-
dient Estimator
In this section, we derive the analytical form of the unbiased gradient estimator∇ÛN,M (d,θs, zs),10

following the method presented in Section 4.
The estimator ÛN,M (d,θs, zs) is defined in (17). Its gradient in component form is

∇ÛN,M (d,θs, zs) =

∂
∂d1

ÛN,M (d,θs, zs)
∂
∂d2

ÛN,M (d,θs, zs)
...

∂
∂da

ÛN,M (d,θs, zs)
...

∂
∂dnd

ÛN,M (d,θs, zs)

, (24)

where nd is the dimension of the design parameters d and da denotes the ath component of d.
The ath component of the gradient is then

∂

∂da
ÛN,M (d,θs, zs) =

1

N

N∑
i=1

{
∂
∂da

fY|Θ,d
(
G(θ(i),d) + C(θ(i),d)z(i)

∣∣θ(i),d
)

fY|Θ,d
(
G(θ(i),d) + C(θ(i),d)z(i)

∣∣θ(i),d
)

−
∑M

j=1
∂
∂da

fY|Θ,d
(
G(θ(i),d) + C(θ(i),d)z(i)

∣∣θ(i,j),d
)∑M

j′=1 fY|Θ,d
(
G(θ(i),d) + C(θ(i),d)z(i)

∣∣θ(i,j′),d
) } . (25)

Partial derivatives of the likelihood function with respect to d are required above. We assume
that each component of C(θ(i),d) is of the form αc +βc|Gc(θ(i),d)|, c = 1 . . . ny, where ny is the
dimension of the data vector Y, and αc, βc are constants. Also, let the random vectors z(i) be
mutually independent and composed of i.i.d. components, such that the data are conditionally
independent given θ and d. The derivative of the likelihood function then becomes

∂

∂da
fY|Θ,d

(
G(θ(i),d) + C(θ(i),d)z(i)

∣∣∣θ(i,j),d
)

=
∂

∂da

[ny∏
c=1

fYc|Θ,d

(
Gc(θ

(i),d) + (αc + βc|Gc(θ(i),d)|)z(i)
c

∣∣∣θ(i,j),d
)]

=

ny∑
k=1

[
∂

∂da
fYk|Θ,d

(
Gk(θ

(i),d) + (αk + βk|Gk(θ(i),d)|)z(i)
k

∣∣∣θ(i,j),d
)

ny∏
c=1
c6=k

fYc|Θ,d

(
Gc(θ

(i),d) + (αc + βc|Gc(θ(i),d)|)z(i)
c

∣∣∣θ(i,j),d
) . (26)

Introducing a standard normal density for each z(i)
c , the likelihood associated with a single com-

10Recall that this estimator is unbiased with respect to the gradient of ŪM .

34

ponent of the data vector is

fYc|Θ,d

(
Gc(θ

(i),d) + (αc + βc|Gc(θ
(i),d)|)z(i)c

∣∣∣θ(i,j),d
)

=
1√

2π
(
αc + βc|Gc(θ(i,j),d)|

)
× exp

−
(
Gc(θ

(i,j),d)− (Gc(θ
(i),d) + (αc + βc|Gc(θ

(i),d)|)z(i)c)
)2

2
(
αc + βc|Gc(θ(i,j),d)|

)2
 , (27)

and its derivatives are
∂

∂da
fYc|Θ,d

(
Gc(θ

(i),d) + (αc + βc|Gc(θ(i),d)|)z(i)
c

∣∣∣θ(i,j),d
)

=
−βc sign(Gc(θ

(i,j),d)) ∂
∂da

Gc(θ
(i,j),d)

√
2π
(
αc + βc|Gc(θ(i,j),d)|

)2
× exp

−
(
Gc(θ

(i,j),d)− (Gc(θ
(i),d) + (αc + βc|Gc(θ(i),d)|)z(i)

c)
)2

2
(
αc + βc|Gc(θ(i,j),d)|

)2

+
1√

2π
(
αc + βc|Gc(θ(i,j),d)|

)
× exp

−
(
Gc(θ

(i,j),d)− (Gc(θ
(i),d) + (αc + βc|Gc(θ(i),d)|)z(i)

c)
)2

2
(
αc + βc|Gc(θ(i,j),d)|

)2

×

−
(
Gc(θ

(i,j),d)− (Gc(θ
(i),d) + (αc + βc|Gc(θ(i),d)|)z(i)

c)
)

(
αc + βc|Gc(θ(i,j),d)|

)2
×
(

∂

∂da
Gc(θ

(i,j),d)−
(

∂

∂da
Gc(θ

(i),d)(1 + βc sign(Gc(θ
(i),d))z(i)

c)

))

+

(
Gc(θ

(i,j),d)− (Gc(θ
(i),d) + (αc + βc|Gc(θ(i),d)|)z(i)

c)
)2

(
αc + βc|Gc(θ(i,j),d)|

)3
×βc sign(Gc(θ

(i,j),d))
∂

∂da
Gc(θ

(i,j),d)

}
. (28)

In cases where conditioning on θ(i,j) is replaced by conditioning on θ(i) (i.e., for the first summa-
tion term in equation (25)), the expressions simplify to

fYc|Θ,d(Gc(θ
(i),d) + (αc + βc|Gc(θ(i),d)|)z(i)

c |θ(i),d)

=
1√

2π
(
αc + βc|Gc(θ(i),d)|

) exp

−
(
z

(i)
c

)2

2

 (29)

and
∂

∂da
fYc|Θ,d(Gc(θ

(i),d) + (αc + βcGc(θ
(i),d))z(i)

c |θ(i),d)

=
−βc sign(Gc(θ

(i),d)) ∂
∂da

Gc(θ
(i),d)

√
2π
(
αc + βc|Gc(θ(i),d)|

)2 exp

−
(
z

(i)
c

)2

2

 . (30)

35

We now require the derivative of each model output Gc with respect to d. In most cases,
this quantity will not be available analytically. One could use an adjoint method to evaluate the
derivatives, or instead employ a finite difference approximation, but embedding these approaches
in a Monte Carlo sum may be prohibitive, particularly if each forward model evaluation is com-
putationally expensive. The polynomial chaos surrogate introduced in Section 3 addresses this
problem by replacing the forward model with polynomial expansions for either Gc

Gc(θ
(i),d) ≈

∑
b∈J

gbΨb

(
ξ(θ(i),d)

)
(31)

or lnGc

Gc(θ
(i),d) ≈ exp

[∑
b∈J

gbΨb

(
ξ(θ(i),d)

)]
. (32)

Here gb are the expansion coefficients and J is an admissible multi-index set indicating which
polynomial terms are in the expansion. For instance, if nθ is the dimension of θ and nd is the
dimension of d, such that nθ + nd is the dimension of ξ, then J := {b ∈ Nnθ+nd

0 : |b|1 ≤ p} is a
total-order expansion of degree p. This expansion converges in the L2 sense as p→∞.

Consider the latter (ln-Gc) case; here, the derivative of the polynomial chaos expansion is

∂

∂da
Gc(θ

(i),d) = exp

[∑
b

gbΨb

(
ξ(θ(i),d)

)]∑
b

gb
∂

∂da
Ψb(ξ(θ(i),d)). (33)

In the former (Gc without the logarithm) case, we obtain the same expression except without the
exp [·] term.

To complete the derivation, we assume that each component of the input parameters Θ
and design variables d is represented by an affine transformation of corresponding basis random
variable Ξ:

Θl = γl + δlΞl, (34)
dl′−nθ = γl′ + δl′Ξl′ , (35)

where γ(·) and δ(·) 6= 0 are constants, and l = 1, . . . , nθ and l′ = nθ + 1, . . . , nθ + nd. This is
a reasonable assumption since Ξ can be typically chosen such that their distributions are of the
same family as the prior on θ (or the uniform “prior” on d); this choice avoids any need for
approximate representations of the prior. The derivative of Ψb(ξ(θ(i),d)) from equation (33) is
thus

∂

∂da
Ψb(ξ(θ(i),d)) =

∂

∂da

nθ∏
l=1

ψbl

(
ξl(θ

(i)
l)
) nθ+nd∏
l′=nθ+1

ψbl′ (ξl′(dl′−nθ))

=

nθ∏
l=1

ψbl

(
ξl(θ

(i)
l)
) nθ+nd∏

l′=nθ+1
l′−nθ 6=a

ψbl′ (ξl′(dl′−nθ))

 ∂

∂da
ψba+nθ (ξa+nθ(da)) ,(36)

and the derivative of the univariate basis function ψ with respect to da is

∂

∂da
ψba+nθ (ξa+nθ(da)) =

∂

∂ξa+nθ

ψba+nθ (ξa+nθ)
∂

∂da
ξa+nθ(da)

=
∂

∂ξa+nθ

ψba+nθ (ξa+nθ)
1

δa+nθ

, (37)

36

where the second equality is a result of using equation (35). The derivative of the polyno-
mial basis function with respect to its argument is available analytically for many standard
orthogonal polynomials, and may be evaluated using recurrence relationships [70]. For example,
in the case of Legendre polynomials, the usual derivative recurrence relationship is ∂

∂ξψn(ξ) =

[−bξψn(ξ) + bψn−1(ξ)] /(1− ξ2), where n is the polynomial degree. However, division by (1− ξ2)
presents numerical difficulties when evaluated on ξ that fall on or near the boundaries of the
domain. Instead, a more robust alternative that requires both previous polynomial function
and derivative evaluations can be obtained by directly differentiating the three-term recurrence
relationship for the polynomial, and is preferable in practice:

∂

∂ξ
ψn(ξ) =

2n− 1

n
ψn−1(ξ) +

2n− 1

n
ξ
∂

∂ξ
ψn−1(ξ)− n− 1

n

∂

∂ξ
ψn−2(ξ). (38)

This concludes the derivation of the analytical gradient estimator ∇ÛN,M (d,θs, zs).

References
[1] Atkinson, A. C. and Donev, A. N., Optimum Experimental Designs, Oxford Statistical Sci-

ence Series, Oxford University Press, 1992.

[2] Box, G. E. P. and Lucas, H. L., Design of experiments in non-linear situations, Biometrika,
46(1/2):77–90, 1959.

[3] Ford, I., Titterington, D. M., and Christos, K., Recent advances in nonlinear experimental
design, Technometrics, 31(1):49–60, 1989.

[4] Chaloner, K. and Verdinelli, I., Bayesian experimental design: A review, Statistical Science,
10(3):273–304, 1995.

[5] Loredo, T. J. and Chernoff, D. F., Bayesian adaptive exploration, In Statistical Challenges
of Astronomy, pp. 57–69. Springer, 2003.

[6] Ryan, K. J., Estimating expected information gains for experimental designs with applica-
tion to the random fatigue-limit model, Journal of Computational and Graphical Statistics,
12(3):585–603, September 2003.

[7] van den Berg, J., Curtis, A., and Trampert, J., Optimal nonlinear Bayesian experimental
design: an application to amplitude versus offset experiments, Geophysical Journal Interna-
tional, 155(2):411–421, November 2003.

[8] Loredo, T. J., Rotating stars and revolving planets: Bayesian exploration of the pulsating
sky, In Bayesian Statistics 9: Proceedings of the Nineth Valencia International Meeting, pp.
361–392. Oxford University Press, 2010.

[9] Solonen, A., Haario, H., and Laine, M., Simulation-based optimal design using a response
variance criterion, Journal of Computational and Graphical Statistics, 21(1):234–252, 2012.

[10] Huan, X. Accelerated Bayesian experimental design for chemical kinetic models. Master’s
thesis, Massachusetts Institute of Technology, 2010.

[11] Huan, X. and Marzouk, Y. M., Simulation-based optimal Bayesian experimental design for
nonlinear systems, Journal of Computational Physics, 232(1):288–317, 2013.

[12] Müller, P., Simulation based optimal design, In Bayesian Statistics 6: Proceedings of the
Sixth Valencia International Meeting, pp. 459–474. Oxford University Press, 1998.

[13] Kennedy, M. C. and O’Hagan, A., Bayesian calibration of computer models, Journal of the
Royal Statistical Society. Series B (Statistical Methodology), 63(3):425–464, 2001.

37

[14] Sivia, D. S. and Skilling, J., Data Analysis: a Bayesian Tutorial, Oxford University Press,
2006.

[15] Lindley, D. V., On a measure of the information provided by an experiment, The Annals of
Mathematical Statistics, 27(4):986–1005, 1956.

[16] Lindley, D. V., Bayesian Statistics, A Review, Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, Pennsylvania, 1972.

[17] Terejanu, G., Upadhyay, R., and Miki, K., Bayesian experimental design for the active
nitridation of graphite by atomic nitrogen, Experimental Thermal and Fluid Science, 36:178–
193, 2012.

[18] Nelder, J. A. and Mead, R., A simplex method for function minimization, The Computer
Journal, 7(4):308–313, 1965.

[19] Kiefer, J. and Wolfowitz, J., Stochastic estimation of the maximum of a regression function,
The Annals of Mathematical Statistics, 23(3):462–466, 1952.

[20] Spall, J. C., An overview of the simultaneous perturbation method for efficient optimization,
Johns Hopkins APL Technical Digest, 19(4):482–492, 1998.

[21] Kushner, H. and Yin, G., Stochastic approximation and recursive algorithms and applica-
tions, Applications of mathematics, Springer, 2003.

[22] Shapiro, A., Asymptotic analysis of stochastic programs, Annals of Operations Research,
30(1):169–186, 1991.

[23] Wiener, N., The homogeneous chaos, American Journal of Mathematics, 60(4):897–936,
1938.

[24] Ghanem, R. and Spanos, P., Stochastic Finite Elements: A Spectral Approach, Springer,
1991.

[25] Xiu, D. and Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differ-
ential equations, SIAM Journal of Scientific Computing, 24(2):619–644, 2002.

[26] Debusschere, B. J., Najm, H. N., Pébay, P. P., Knio, O. M., Ghanem, R. G., and Le Maître,
O. P., Numerical challenges in the use of polynomial chaos representations for stochastic
processes, SIAM Journal on Scientific Computing, 26(2):698–719, 2004.

[27] Najm, H. N., Uncertainty quantification and polynomial chaos techniques in computational
fluid dynamics, Annual Review of Fluid Mechanics, 41(1):35–52, 2009.

[28] Xiu, D., Fast numerical methods for stochastic computations: A review, Communications
in Computational Physics, 5(2-4):242–272, 2009.

[29] Le Maître, O. P. and Knio, O. M., Spectral Methods for Uncertainty Quantification: With
Applications to Computational Fluid Dynamics, Springer, 2010.

[30] Robbins, H. and Monro, S., A stochastic approximation method, The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

[31] Healy, K. and Schruben, L. W., Retrospective simulation response optimization, In Proceed-
ings of the 1991 Winter Simulation Conference, pp. 901–906, Phoenix, Arizona, Dec. 8–11,
1991.

[32] Gürkan, G., Özge, A. Y., and Robinson, S. M., Sample-path optimization in simulation,
In Proceedings of the 1994 Winter Simulation Conference, pp. 247–254, Lake Buena Vista,
Florida, Dec. 11–14, 1994.

38

[33] Kleywegt, A. J., Shapiro, A., and Homem-de-Mello, T., The sample average approximation
method for stochastic discrete optimization, SIAM Journal on Optimization, 12(2):479–502,
2002.

[34] Ahmed, S. and Shapiro, A., The sample average approximation method for stochastic pro-
grams with integer recourse, Georgia Institute of Technology Technical Report, 2002.

[35] Verweij, B., Ahmed, S., Kleywegt, A. J., Nemhauser, G., and Shapiro, A., The sample
average approximation method applied to stochastic routing problems: A computational
study, Computational Optimization and Applications, 24(2):289–333, 2003.

[36] Benisch, M., Greenwald, A., Naroditskiy, V., and Tschantz, M., A stochastic programming
approach to scheduling in TAC SCM, In Proceedings of the 5th ACM Conference on Elec-
tronic Commerce, pp. 152–159, New York, May 17–20, 2004.

[37] Greenwald, A., Guillemette, B., Naroditskiy, V., and Tschantz, M., Scaling up the sam-
ple average approximation method for stochastic optimization with applications to trading
agents, In Agent-Mediated Electronic Commerce. Designing Trading Agents and Mechanisms,
Lecture Notes in Computer Science, pp. 187–199. Springer Berlin / Heidelberg, 2006.

[38] Schütz, P., Tomasgard, A., and Ahmed, S., Supply chain design under uncertainty using
sample average approximation and dual decomposition, European Journal of Operational
Research, 199(2):409–419, 2009.

[39] Norkin, V., Pflug, G., and Ruszczyński, A., A branch and bound method for stochastic
global optimization, Mathematical Programming, 83(1):425–450, 1998.

[40] Mak, W.-K., Morton, D. P., and Wood, R. K., Monte Carlo bounding techniques for deter-
mining solution quality in stochastic programs, Operations Research Letters, 24(1–2):47–56,
1999.

[41] Chen, H. and Schmeiser, B. W., Retrospective approximation algorithms for stochastic root
finding, In Proceedings of the 1994 Winter Simulation Conference, pp. 255–261, Lake Buena
Vista, Florida, Dec. 11–14, 1994.

[42] Chen, H. and Schmeiser, B., Stochastic root finding via retrospective approximation, IIE
Transactions, 33(3):259–275, 2001.

[43] Shapiro, A., Stochastic programming by Monte Carlo simulation methods, Georgia Institute
of Technology Technical Report, 2003.

[44] Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A., Robust stochastic approximation ap-
proach to stochastic programming, SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[45] Cover, T. M. and Thomas, J. A., Elements of Information Theory, John Wiley & Sons, Inc.,
2nd edition, 2006.

[46] MacKay, D. J. C., Information Theory, Inference, and Learning Algorithms, Cambridge
University Press, 2002.

[47] Darken, C. and Moody, J. E., Note on learning rate schedules for stochastic optimization,
In Neural Information Processing Systems, pp. 832–838, 1990.

[48] Benveniste, A., Métivier, M., and Priouret, P., Adaptive algorithms and stochastic approxi-
mations, Applications of mathematics, Springer-Verlag, 1990.

[49] Polyak, B. and Juditsky, A., Acceleration of stochastic approximation by averaging, SIAM
Journal on Control and Optimization, 30(4):838–855, 1992.

[50] Shapiro, A. and Philpott, A., A tutorial on stochastic programming, Georgia Institute of
Technology Technical Report, 2007.

39

[51] Nocedal, J. and Wright, S. J., Numerical Optimization, Springer, 2nd edition, 2006.

[52] Bui-Thanh, T., Willcox, K., and Ghattas, O., Model reduction for large-scale systems with
high-dimensional parametric input space, SIAM Journal on Scientific Computing, 30:3270–
3288, 2007.

[53] Frangos, M., Marzouk, Y., Willcox, K., and van Bloemen Waanders, B. Computational
Methods for Large-Scale Inverse Problems and Quantification of Uncertainty, chapter Surro-
gate and Reduced-Order Modeling: a Comparison of Approaches for Large-Scale Statistical
Inverse Problems. Wiley, 2010.

[54] Conrad, P. and Marzouk, Y., Adaptive Smolyak pseudospectral approximation, SIAM Jour-
nal on Scientific Computing, 35(6):A2643–A2670, 2013.

[55] Hosder, S., Walters, R., and Perez, R., A non-intrusive polynomial chaos method for un-
certainty propagation in CFD simulations, In 44th AIAA Aerospace Sciences Meeting and
Exhibit, 2006. AIAA paper 2006-891.

[56] Reagan, M. T., Najm, H. N., Ghanem, R. G., and Knio, O. M., Uncertainty quantification in
reacting-flow simulations through non-intrusive spectral projection, Combustion and Flame,
132(3):545–555, 2003.

[57] Walters, R. W., Towards stochastic fluid mechanics via polynomial chaos, In 41st Aerospace
Sciences Meeting and Exhibit, 2003. AIAA paper 2003-413.

[58] Xiu, D. and Karniadakis, G. E., A new stochastic approach to transient heat conduction
modeling with uncertainty, International Journal of Heat and Mass Transfer, 46:4681–4693,
2003.

[59] Marzouk, Y. M., Najm, H. N., and Rahn, L. A., Stochastic spectral methods for efficient
Bayesian solution of inverse problems, Journal of Computational Physics, 224(2):560–586,
June 2007.

[60] Marzouk, Y. M. and Xiu, D., A stochastic collocation approach to Bayesian inference in
inverse problems, Communications in Computational Physics, 6(4):826–847, October 2009.

[61] Marzouk, Y. M. and Najm, H. N., Dimensionality reduction and polynomial chaos ac-
celeration of Bayesian inference in inverse problems, Journal of Computational Physics,
228(6):1862–1902, April 2009.

[62] Cameron, R. H. and Martin, W. T., The orthogonal development of non-linear functionals
in series of Fourier-Hermite functionals, The Annals of Mathematics, 48(2):385–392, 1947.

[63] Clenshaw, C. W. and Curtis, A. R., A method for numerical integration on an automatic
computer, Numerische Mathematik, 2:197–205, 1960.

[64] Constantine, P. G., Eldred, M. S., and Phipps, E. T., Sparse Pseudospectral Approximation
Method, Computer Methods in Applied Mechanics and Engineering, 229–232(1):1–12, 2012.

[65] Ho, Y. C. and Cao, X., Perturbation analysis and optimization of queueing networks, Journal
of Optimization Theory and Applications, 40:559–582, 1983.

[66] Glasserman, P., Gradient Estimation via Perturbation Analysis, Springer, 1990.

[67] Asmussen, S. and Glynn, P., Stochastic Simulation: Algorithms and Analysis, Vol. 57,
Springer Verlag, 2007.

[68] Glynn, P., Likelihood ratio gradient estimation for stochastic systems, Communications of
the ACM, 33(10):75–84, 1990.

[69] Bayraksan, G. and Morton, D. P., Assessing solution quality in stochastic programs via
sampling, INFORMS Tutorials in Operations Research, 5:102–122, 2009.

40

[70] Abramowitz, M. and Stegun, I., Handbook of mathematical functions with formulas, graphs,
and mathematical tables, Dover Publications, Inc., 1964.

41

	1 Introduction
	2 Optimal Bayesian Experimental Design
	2.1 Background
	2.2 Stochastic optimization
	2.2.1 Robbins-Monro (RM) stochastic approximation
	2.2.2 Sample average approximation (SAA)

	2.3 Application to optimal design

	3 Polynomial chaos surrogates
	3.1 Background
	3.2 Formulation

	4 Infinitesimal Perturbation Analysis
	5 Source Inversion Problem
	5.1 Governing equations
	5.2 Results
	5.2.1 Objective function
	5.2.2 Stochastic optimization results

	6 Conclusions
	7 Acknowledgements
	8 Figures and Tables

