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Rapid Transfer Of Controllers Between UAVs Using
Learning-Based Adaptive Control

Girish Chowdhary, Tongbin Wu, Mark Cutler, Jonathan P. How

Abstract— Commonly used Proportional-Integral-Derivative
based UAV flight controllers are often seen to provide ade-
quate trajectory-tracking performance, but only after extensive
tuning. The gains of these controllers are tuned to particular
platforms, which makes transferring controllers from one UAV
to other time-intensive. This paper formulates the problem of
control-transfer from a source system to a transfer system and
proposes a solution that leverages well-studied techniques in
adaptive control. It is shown that concurrent learning adaptive
controllers improve the trajectory tracking performance of a
quadrotor with the baseline linear controller directly imported
from another quadrotor whose inertial characteristics and
throttle mapping are very different. Extensive flight-testing,
using indoor quadrotor platforms operated in MIT’s RAVEN
environment, is used to validate the method.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been heavily
investigated recently for aerial robotics with several potential
applications. The research focus is shifting to developing
teams of smaller networked UAVs capable of robustly out-
performing a single, larger, and more expensive UAV. Fueled
by speedy manufacturing techniques, several small UAV plat-
forms that are specifically outfitted for a particular mission
are being developed. Due to their simplicity and reliability,
the autopilots for these vehicles are often designed using
Proportional-Integral-Derivative (PID) based techniques (see
e.g. [1]–[5]). Well tuned PID controllers have been shown to
yield excellent flight performance on quadrotors and other
UAVs. Notably, PID based quadrotor UAVs have been used
to perform aggressive maneuvers by various groups [5]–[8].
PID based controllers however, need significant tuning of the
gains for extracting good performance. Furthermore, since
the gains of such controllers are tuned to particular platforms,
therefore transferring controllers from one UAV to another
becomes time-intensive. This paper tackles the problem of
efficiently transferring controllers between different UAV
platforms using ideas from adaptive control.

The problem of control transfer is rigorously framed using
ideas from feedback linearization and adaptive control, and
it is shown that techniques similar to those employed in
the widely studied framework of Model Reference Adaptive
Control (MRAC) can be used to transfer controllers between
systems that have “similar” control structure. The notion
of similarity is formalized through two assumptions. The
first assumption requires the existence of an isomorphic
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control law on the source system that can be inverted w.r.t.
the control input of the transfer system, and the second
assumption requires that the sign of control effectiveness
be same on both source and transfer systems. It is further
argued that for true control transfer, the adaptive controller
must learn the model of the transfer system over the long-
term to improve the controller’s predictive ability. This
motivates the use of learning-focused MRAC techniques
such as concurrent learning MRAC. The theoretical results
are complimented by extensive experimental demonstration.
It is shown that a concurrent learning adaptive controller
and a budgeted nonparametric adaptive control technique
improves the trajectory tracking performance of a smaller
quadrotor whose controller has been directly imported (with-
out changing gains) from a larger quadrotor whose inertial
characteristics and throttle mapping are very different (but
satisfy the two above mentioned assumptions). The flight-test
results are presented on indoor quadrotor platforms operated
in MIT’s RAVEN environment.

A. Related Work

Motivated by the fact that it is difficult or costly to obtain
an exact model of system dynamics, the widely studied
field of adaptive control has investigated several methods for
mitigating modeling error in control design. In the context
of flight vehicle control, Calise [9], Johnson and Kannan
[10] and others have developed model reference adaptive
controllers for both fixed wing and rotary wing UAVs by em-
ploying Neural Network adaptive elements. Cao, Yang, Hov-
aykiman, and others have developed the L1 adaptive control
method [11]. Lavretsky [12], Nguyen [13], Steinberg [14],
Jourdan et al. [15] and others have extended direct adaptive
control methods to fault tolerant control and developed
techniques in composite/hybrid adaptation. Chowdhary and
Johnson developed concurrent learning adaptive controllers,
which use online selected and recorded data concurrently
with current data for adaptation for guaranteeing improved
learning and stability properties. Their methods have been
tested on fixed- and rotary-wing UAVs [16,17]. Kingravi et
al. further extended Concurrent Learning to accommodate
unknown domains of operation [18] by using ideas from
reproducing kernel Hilbert spaces to maintain and update a
dictionary of kernels online, so that the internal parameters
of the kernel based adaptive element are changed according
to the domain of operation. However, the problem of using
adaptive-control like techniques for control transfer has not
been explicitly studied, although it is clear in the litera-
ture that this application has been envisioned. One notable
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exception is [19], authors of which noted in passing that
controllers were transferred between two aircraft with little
modification. However, a formal transfer technique was not
pursued. This paper contributes to the field by formulating
the control-transfer problem and rigorously incorporating
techniques from adaptive control for its solution.

The problem of transfer-learning has been investigated in
some detail in the field of machine learning, an excellent
survey in the context of reinforcement learning is [20].
Authors have explored learning through similar tasks [21],
shared features for transfer-learning [22], learning from solv-
ing multiple MDPs [23], and hierarchical Bayes approaches
[24]. However, the focus of these problems has been on
higher-level decision making problems involving discrete
state-action spaces. Because the control-transfer problem is
characterized by continuous state-spaces, and because the
generated policy is safety-critical, existing transfer learning
methods are not well suited to this task. The learning-based
direct adaptive control method pursued here can be viewed
as a subclass of fixed-policy model-based reinforcement
learning techniques for continuous MDPs [25]. Therefore,
the techniques in this paper contribute to the transfer learning
literature by providing a specific technique for solving the
control-transfer problem.

Finally, some preliminary results relating to this paper
were presented in [26]. The main differences here include
a rigorous formulation of the control transfer problem, flight
testing of the nonparametric Budgeted Kernel Restructuring
- Concurrent Learning (BKR-CL) method, and flight testing
over different flight scenarios.

II. THE CONTROL TRANSFER PROBLEM

The source-system, that is the system from which the
controller is to be transferred, is assumed to be modeled
by the following differential equation:

ẍs(t) = fs(xs(t), ẋs(t), δs(t)), (1)

while the transfer-system, that is the system to which the
controller is being transferred to, is also modeled as:

ẍt(t) = ft(xt(t), ẋt(t), δt(t)). (2)

The functions fs, ft, are assumed to be Lipschitz continuous
in x, ẋ ∈ Dx ⊂ Rn, and have an equilibrium at (0, 0, 0).
The control inputs δst ∈ Dδ ⊂ Rn are assumed to belong to
the set of admissible control inputs consisting of measurable
bounded functions, and the systems are assumed to be finite
input controllable. Therefore, existence and uniqueness of
piecewise solutions to (1) are guaranteed. In addition, a con-
dition on controllability must be assumed. These assumptions
are typically satisfied by most UAV platforms, including
quadrotors. Furthermore, note that we have assumed that
the dimension of control is equal to the dimension of the
state, this assumption is valid for most UAVs with an inner-
outer loop control structure [27] (e.g. two attitude and one
throttle commands correspond to three dimensional outerloop
position control of a quadrotor UAV).

The desired trajectory to be tracked by both the source
and the transfer system is characterized by the bounded
twice continuously differential function of time xref(t). The
following assumption characterizes the source-controller on
the source system:

Assumption 1 There exists a control law g : Dx → Dδ

such that δs = g(xs, ẋs, ẍdes) drives xs → xdes as t → ∞.
Furthermore, the control law is invertible w.r.t. δs, hence the
relation ẍdes = g−1(xs, ẋs, δs) holds.

Letting e = xref − xs, a highly succesful technique in UAV
control has been to map the tracking error to a desired
acceleration ẍdes which can then be converted to actua-
tor commands through control inversion models (see e.g.
[4,5,10,16,28]). The desired acceleration is typically found
through a linear PD feedback term and a feedforward term:
xdes = Kpe+Kdė+ ẍref . With an additional integral term,
a set of well tuned PID gains result in a controller satisfying
Assumption 1 (see e.g. [1,2,5]–[8]).

Let zt = (xt, ẋt, δt). If for the transferred system, we let
δt = g(xt, ẋt, ẍdes) (with the same PID gains as for the
source system) the following discrepancy could arise:

ẍt = ẍdes + ∆(zt) (3)

where the unknown error ∆(.) between the desired and the
actual behavior is given by

∆(xt, ẋt, δt) = ft(zt)− g−1(zt). (4)

An approximate model inversion-based MRAC approach is
leveraged here to adapt to this unknown modeling error
by directly modifying the desired acceleration ẍdest for the
transfer system as follows:

ẍdest(zt) = ẍdes(zt)− νad(zt), (5)

where νad is the output of an adaptive element designed to
cancel the modeling uncertainty in (4). Note that since ∆ is
a function of νad and νad needs to be designed to cancel ∆,
the following assumption needs to be satisfied:

Assumption 2 The existence and uniqueness of a fixed-
point solution to νad = ∆(., νad) is assumed. Sufficient con-
ditions are available for satisfying this assumption [29,30].

From the results in [29] it can be further argued that
this condition implicitly requires that the sign of control
effectiveness derivative is same for both the source and the
transfer system, that is sgn ∂g

∂δs
= sgn ∂g

∂δt
.

Noting that ẍref − ẍt = ẍref − (ẍdest + ∆(zt)) due to (3)
and using (5) the tracking error dyanmics can be derived as[

ė
ë

]
= A

[
e
ė

]
+B[νad(x, ẋ, δ)−∆(x, ẋ, δ)], (6)

where A =

[
0 I
−Kp −Kd

]
contains the source control PD

gains and B =

[
0
I

]
. Note that for Kp > 0 and Kd > 0 A

is Hurwitz, therefore, a unique positive definite solution P ∈
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<2n×2n exists to the Lyapunov equation 0 = ATP+PA+Q
for Q > 0.

Radial Basis Function Networks (RBFN) have been widely
used as universally approximating adaptive elements to
capture continuous modeling uncertainties [29,31,32]. One
reason RBFN have received significant popularity is because
of their linear-in-parameters structure. When using RBFN,
the adaptive element is represented by

νad(zt) = WTσ(zt), (7)

where W ∈ Rq×n2 and σ(zt) = [1, σ2(zt), ..., σq(z)]
T is a

q dimensional vector of chosen radial basis functions. For
i = 2, 3..., q let ci denote the RBF centroid and µi denote
the RBF widths then for each i the radial basis functions are
given as σi(zt) = e−‖zt−ci‖

2/µi . Appealing to the universal
approximation property of Radial Basis Function Networks
[33] we have that given a fixed number of radial basis
functions q there exists ideal parameters W ∗ ∈ Rq×n2 and a
vector ε̃ ∈ Rn such that the following approximation holds
for all z ∈ D ⊂ Rn+l where D is compact

∆(zt) = W ∗Tσ(zt) + ε̃(zt). (8)

Furthermore ε̄ = supzt∈Dx
‖ε̃(z)‖ can be made arbitrarily

small given sufficient number of radial basis functions.
Therefore, as formulated here, the control-transfer problem

can be reduced to finding a weight update law Ẇ (t) such
that xt(t) can be made to follow xref(t). The design of such
adaptive laws is a well-studied problem in the framework
of MRAC. The following theorem formalizes this using the
well known projection based weight update law [34]:

Ẇ (t) = −proj(W,ΓWσ(z(t))eT (t)PB), (9)

where ΓW is a positive definite learning rate matrix.

Theorem 1 Let the source and transfer systems be given
by (1),(2), and assume that the source controller satisfies
assumption 1. Assume that the desired acceleration for the
transfer system is given by 5, with the adaptive element
νad being the output of an RBFN (7), the weights of the
RBF are updated using the projection based adaptive law
in 9, Dx ⊂ D, and Assumption 2 is satisfied. Then the
control input δt obtained using the source controller g(.) with
the modified desired acceleration ẍdes: δt = g(xt, ẋt, ẍdes),
guarantees that the transfer system’s states are uniformly
ultimately bounded around the desired trajectory xref .

Proof: Let W̃ = W − W ∗ Choose a positive defi-
nite quadratic Lyapunov candidate V (e, W̃ ) = 1

2 (eTPe +

tr(W̃TΓ−1W W̃ )). The Lie derivative of the Lyapunov candi-
date is

V̇ (e, W̃ ) = −eTQe+ eTPB(νad−∆) + tr(W̃TΓ−1W Ẇ ).
(10)

Substituting the adaptive law (9), and noting that since Dx ⊂
D (8) is valid, results in

V̇ (e, W̃ ) ≤ −λmin(Q)‖e‖2 + ‖e‖‖PB‖‖ε̃(zt)‖, (11)

where λmin(Q) is the minimum eigenvalue of Q. Therefore,
the Lyapunov candidate is negative definite outside of a com-
pact set, furthermore, the adaptive weights W are bounded
due to the use of the projection operator (see [34]). Hence
(e, W̃ ) are uniformly ultimately bounded.

The above theorem however, does not guarantee that the
adaptive weights will approach and stay bounded within a
compact domain of the ideal weights W ∗ as given by (7)
unless the system’s states are persistently excited [31,32].
Furthermore, it is difficult to guarantee a good response in the
transient phase, potentially leading to unsafe adaptation. Safe
envelop exploration techniques similar to those experimented
with in [?] can be useful in this case. On the other hand,
it was shown in [35,36] that for linearly parameterized
uncertainties the requirement on persistency of excitation can
be relaxed if online recorded data is used concurrently with
instantaneous data for adaptation. It was further shown that
a concurrent learning adaptive controller guarantees expo-
nential tracking error and weight error convergence, thereby
providing bounded response during the learning transient. In
particular, for a linearly parameterized representations of the
uncertainty, the following theorem can be proven [35]–[37]

Theorem 2 Let the source and transfer systems be given
by (1),(2), and assume that the source controller satisfies
assumption 1. Assume that the desired acceleration for the
transfer system is given by 5, with the adaptive element νad
being the output of an RBFN (7). For each online recorded
data point i, let εi(t) = WT (t)φ(xi, δi) − ∆̂(xi, δi), with
∆̂(xi, δi) = ˙̂xi−ν(xi, δi), where ˙̂xi is the bounded estimate
of ẋi and let the weight update be given by the following
concurrent learning adaptive law:

Ẇ = −ΓWσ(z)eTPB − 1

p

p∑
j=1

ΓWb
σ(xi, δi)ε

T
j , (12)

with ΓWb
the learning rate for training on online recorded

data. Assume that Z = [φ(z1), ...., φ(zp)] and rank(Z) = l,
Dx ⊂ D, and Assumption 2 is satisfied. Then the control
input δt obtained using the source controller g(.) with the
modified desired acceleration ẍdes: δt = g(xt, ẋt, ẍdes),
guarantees that the transfer system’s tracking error e and
the weight error W̃ = W −W ∗ is exponentially uniformly
ultimately bounded and converge exponentially fast to a
compact ball around the origin with the rate of convergence
directly proportional to the minimum singular value of the
history stack matrix Z.

The proof of this theorem is avoided for brevity, it can be
formulated by using arguments similar to that of Theorem 1
and the proof of the theorems in [35]–[37].

Remark 1 The size of the compact ball around the origin
where the weight and tracking error converge is dependent
on the representation error ε̄ and the estimation error ε̆ =
maxi ‖ẋi − ˙̂xi‖. The former can be reduced by choosing an
appropriate number of RBFs across the operating domain,
and the latter can be reduced by an appropriate implementa-
tion of a fixed point smoother. A fixed point smoother uses
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Fig. 1. Two MIT quadrotors equipped to fly in the ACL Real Time
Indoor Autonomous Vehicle Test Environment (RAVEN) [40]. The baseline
controller on both quadrotors is PID. The gains have been tuned for the
bigger quadrotor. The small quadrotor uses gains from the bigger one,
resulting in relatively poor trajectory tracking performance.

data before and after a data point is recorded to form very
accurate estimates of ˙̂xi using a forward-backward Kalman
filter [16,38]. Note that ˙̂x(t) is not needed at a current
instant t. Therefore, an appropriate implementation of a fixed
point smoother alleviates the time-delay often observed in
estimating ˙̂x(t) with forward Kalman filter (or a low pass
filter) only.

Remark 2 The main limitation of the linearly parameterized
RBFN adaptive element is that the RBF centers need to be
preallotted over an estimated compact domain of operation
D, and Dx ⊂ D. However, if Dx, the operating domain of
the transfer system, is not known a-priori, then the stability
guarantees provided by the above adaptive law may not
hold. This can be addressed by evolving the RBF basis to
reflect the current domain of operation, a Reproducing Kernel
Hilbert Space (RKHS) approach for accomplishing this was
presented by Kingravi et al. in [18]. Kingravi et al. presented
the Budgeted Kernel Restructuring - Concurrent Learning
(BKR-CL) algorithm for adaptive control which uses a linear
independence test in the associated RKHS to determine when
to add/remove centers without exceeding a predefined budget
of allowable center-dictionary size. The BKR-CL approach
can be used for control transfer through a formulation similar
to that in Theorem 2.

III. FLIGHT TEST RESULTS ON MIT QUADROTORS

The Aerospace Controls Laboratory (ACL) at MIT main-
tains the Real Time Indoor Autonomous Vehicle Test Envi-
ronment (RAVEN) [39,40]. RAVEN uses a motion capture
system (VICON http://www.vicon.com/) to obtain accurate
estimates of the position and attitude of autonomous vehicles.
The quadrotors shown in Figure 1 were developed in-house
and are equipped to fly within the RAVEN environment.
A detailed description of the PID-based baseline control
architecture and the corresponding software infrastructure of
RAVEN is in [5,41].
A. Hardware Details

The flight experiments in this paper were performed on
the smaller of the two quadrotors shown in Figure 1. This

vehicle weighs 96 grams without the battery and measures
18.8 cm from motor to motor. The larger quadrotor weighs
316 grams and measures 33.3 cm from motor to motor.
Both quadrotors utilize standard hobby brushless motors,
speed controllers, and fixed-pitch propellers, all mounted to
custom-milled carbon fiber frames. Onboard attitude control
is performed on a custom autopilot, with attitude commands
being calculated at 1 kHz. Due to limitations of the speed
controllers, the smaller quadrotor motors only accept motor
updates at 490 Hz. More details on the autopilot and attitude
control are in [41].

The large differences in size and mass between the two
quadrotors results in relatively poor position and velocity
tracking with the small quadrotor when it uses the gains from
the bigger quadrotor. In particular, the lack of knowledge of
the mapping from unit-less speed controller commands to
propeller thrust for the small quadrotor requires significant
input from the altitude integral PID term and leads to poor
vertical and horizontal position tracking, as is shown in
Section III-C.

B. Augmentation of baseline linear control with adaptation
The source control mapping g(.) is described in [5] and

was found to satisfy assumptions stated in Section II.
In the results presented here, the control-transfer is per-

formed only on the position and velocity controller (outer-
loop) using methods described in Section II, while the inner-
loop quaternion-based attitude controller is left unchanged.
This introduces further uncertainty due to ill-tuned inner-
loop that must be accounted for by the control-transfer
techniques. In the following discussion, baseline PID refers
to the outer-loop PID controller on the smaller quadrotors
with gains directly transferred from the larger (well-tuned)
quadrotor. MRAC refers to augmentation of the baseline
law with RBFN adaptive law of (9), CL-MRAC refers to
Concurrent Learning - MRAC of Theorem 2, and BKR-
CL refer to the Budgeted Kernel Restructuring CL adaptive
control algorithm. The limit of the projection operator (200)
was not reached in any of the flights.

The controllers were separated into three different loops
corresponding to x, y, z positions. The input to the RBF (7)
for the x loop was zt = [x, ẋ, ~q], y loop was zt = [y, ẏ, ~q],
and z loop was zt = [z, ż, ~q], where ~q is the attitude
quaternion. The separation of the position loops is motivated
by the symmetric nature of the quadrotor flight platform.
Note, however, that the controller adapts on the attitude
quaternion for all three loops. This presents the controller
with sufficient information to account for attitude based
couplings.

C. Flight-Test results
1) Figure 8 maneuvers: The quadrotor performed five

sets of three identical “figure 8” maneuvers with a pause
of 0.2 s in between. Several different values of learning
rates were analyzed through simulation and preliminary flight
testing. The results presented here correspond to values that
resulted in good performance without over-learning. The
best initial MRAC learning was found to be ΓW = 2,
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and the learning rate of the adaptive law that trains on
recorded data was found to be ΓWb

= 0.5. Theoretically,
MRAC and CL-MRAC learning rates can be kept constant
in adaptive control, as suggested by deterministic Lyapunov
based stability analysis. However, classical stochastic stabil-
ity results (e.g. [42]) indicate that driving the learning rates
to zero is required for guaranteeing convergence in presence
of noise. The problem with this approach is that the effect
of adaptation would be eventually removed. Therefore, in
practice, the learning rate is set to decay to a small constant
to avoid unstable or oscillatory behaviors. Learning rates
for MRAC and CL-MRAC were decayed by dividing it by
1.5 for ΓW and 2 for ΓWb

after each set of three figure
8 maneuvers. The decay limit of these learning rates are
ΓW = 0.5 and ΓWb

= 0.001. For BKR-CL, ΓW decays
from 0.5 to 0.02 and ΓWb

decays from 0.5 to 0.001.
For MRAC and CL-MRAC 50 RBF centers were gen-

erated using a uniform random distribution over a domain
where the states were expected to evolve. The centers for
the position and velocity for the x,y axes were spread across
[−2, 2]. For the vertical z axis, the position and velocity
were spread across [−0.5, 0.5] and [−0.6, 0.6] respectively.
The centers for quaternions were placed within [−1, 1]. The
bandwidth for each radial basis function is set to µi = 1. For
CL, the last-point-difference technique was used to record
all data points that satisfy ‖σ(x(t))−σ(xk)‖

σ(x(t)) ≥ 0.01, where
k is the index of the last recorded point [37]. The size of
the cyclic history stack was set to 51. For BKR-CL, an
a-priori assignment of centers is not required. The budget
for the online generated dictionary of centers was set to
20 (see [18]). The center selection tolerance was set to
εtol = 1×10−6. The history-stack for BKR-CL was updated
using the same algorithm as that for CL-MRAC.

The plots of the quadrotor’s flight performances with
baseline PID, MRAC and CL-MRAC are available in [26],
they are not presented here due to space limitations. The
baseline outer-loop PID controller had poor position track-
ing performance, in particular, the x and y positions were
more than 30 cm off from the maximum and minimum
commanded position. Even though MRAC shows improved
tracking performance over time, it was not able to track the
extremities of the reference command. Furthermore, increas-
ing the learning-rate did not seem to help and often resulted
in oscillatory behavior. Figure 2 shows the trajectory in x, y
and z of the BKR-CL controller. It can be seen that BKR-
CL’s position tracking performance improves over time. This
is a result of the BKR-CL algorithm learning a representation
of the error ∆(), unlike simply reactively suppressing it
like MRAC. The learning process is better illustrated by
Figure 3 which shows that the adaptive element’s ability to
capture the modeling uncertainty improves over time as the
algorithm learns the modeling error. This indicates that BKR-
CL is indeed driving the weights and adding RBFs online to
best capture the uncertainty. Furthermore, the good tracking
performance of CL-MRAC is in agreement with theoretical
and experimental results previously presented in [16,17,36]
on different UAV platforms. Note however that those results
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Fig. 2. Trajectory tracking performance of BKR-CL shows significant
improvement over the baseline PID and MRAC controller. BKR-CL can be
seen to learn to track the position better over time.
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Fig. 3. The estimated modeling error is compared with the output of RBFN
adaptive element when using BKR-CL. It is seen that BKR-CL finds the
correct weights and the RBF bases online required to learn the modeling
uncertainty over time in x and y axes, however, the z axis performance
suffers possibly due to unmodeled motor dynamics.

were not concerned with the control-transfer problem.
Figure 4 plots the RMS error per set of three maneuvers in

all three dimensions of the vehicle’s trajectories for baseline
PID, MRAC, CL-MRAC and BKR-CL. In x and y, BKR-
CL and CL-MRAC showed significant improvement over
PID and MRAC as their RMS errors was decreasing over
time. Despite having similar performances, BKR-CL has
an advantage over CL-MRAC because its centers can be
selected online instead of being pre-allocated manually. In z
axis however, BKR-CL had higher RMS error than the other
three controllers. One reason for this could be unmodeled
uncertainties or time delays in the z axis. Another reason
could be that because the position command in the vertical
direction was constant, BKR-CL selected RBFs close to
one another. This may have caused the adaptive controller’s
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Fig. 4. RMS error in x, y, and z while tracking figure 8 maneuvers.
MRAC, and CL-MRAC control transfer techniques outperform the baseline
PID transferred directly from the source controller in x and y axes. The
BKR-CL performance in z axis is poor. However, the BKR-CL controller
needs very little domain knowledge and assigns RBF centers online.

learning to be less effective than MRAC and CL-MRAC.
Future work will involve training the vehicle on a larger state-
space than the commanded position to render better learning
performance in the z direction. The video accompanying this
paper depicts a flight-test scenario comparing control transfer
with CL-MRAC and MRAC.

2) Random waypoints with PID: In this set of maneuvers,
the UAV tracks a set of eight trajectories generated from
random waypoints created using the spline based trajectory
generator [5]. The last four sets are a repetition of the first
four and are used for evaluating long-term learning. The
purpose of executing random paths is to validate that control-
transfer techniques over generic paths representative of the
UAV’s typical operation.

The parameters of the different controllers for this set of
maneuvers are similar to the Figure 8 case. Additionally,
the PID controller’s integrator term was manually tuned to
render the smallest RMS errors in the x, y and z directions.
This PID controller will be referred to as the tuned PID
as opposed to the un-tuned PID (directly imported source
controller); although it should be noted that the PD gains
were not tuned because the adaptive control formulation in
Section II assumes the same PD gains for both the augmented
adaptive controller and the linear PD controller. The goal
of this effort was to compare the adaptive control-transfer
approach with a manual tuning of gains.

Figure 5 clearly illustrates the discrepancy between source
PID’s position and the reference command. This controller
took over 100 seconds before the integral term became
effective and the vehicle began to track the position in x
accurately. On the other hand, with the tuned PID, the initial
tracking performance of the vehicle was good. However,
neither PID controllers could track sharp changes in the
position, indicating the presence of nonlinearities not well
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Fig. 5. Un-tuned PID controller’s trajectory in x, y and z is compared with
the reference command. The quad-rotor was unable to track the command
closely in x and y in the first 100 seconds, indicating that the integral term
was slow in becoming effective.

handled by the linear PID control law. CL-MRAC on the
other hand tracked the commanded trajectory better, and
was able to capture most sudden changes. MRAC’s tracking
performance was comparable to tuned PID but remained
inferior to CL-MRAC. Furthermore, MRAC’s performance
did not improve over time, as is visible through Figure 8,
which shows that MRAC adaptive output does not learn
the model uncertainty ∆(.). Furthermore, increasing MRAC
learning rate did not seem to help. Figure 9 shows that
CL-MRAC once again was able to demonstrate long-term
learning as characterized by better ability of the adaptive
element to predict and correct for the uncertainty ∆(.). Fig-
ure 10 compares the RMS performance of all the controllers
discussed above for this set of maneuvers. It can be seen
that CL-MRAC based control-transfer approach outperforms
all other approaches, clearly indicating the power of learning
based control-transfer approaches.

In summary, these results indicate that adaptation can be
used to improve tracking performance of UAVs whose con-
trollers have been transferred from other UAVs with similar
control assignment but different inertial and force generation
properties. Furthermore, these results together confirm that
the long term learning ability in adaptive controllers such
as CL-MRAC and BKR-CL aids in improving performance
of the transferred controller. Furthermore, to the best of
our knowledge, the BKR-CL results presented in this paper
represent the first time a budgeted nonparametric adaptive
control approach has been tested in flight.

IV. CONCLUSION

The problem of control-transfer was defined as the task of
transferring controllers from one UAV to another without
sacrificing tracking performance. A rigorous formulation
using dynamical systems theory was developed, and it was
shown that ideas from adaptive control and feedback lin-
earization could be used for transferring controllers between
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Fig. 6. Tuned PID controller showed significant improvement over un-tuned
PID. It was able to track the position command better within 20 seconds
from beginning of the flight. However, it could not track sharp changes in
position commands.
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Fig. 7. CL-MRAC demonstrated long-term learning as characterized by
better tracking over time. Furthermore, it could track most sharp changes
in the position command.

systems that have “similar” control structure. Existence of
an isomorphic control law on the source system that can be
inverted w.r.t. the control input of the transfer system, and
the same sign of control effectiveness on both source and
transfer systems were shown to guarantee similarity. Three
adaptive control-transfer laws were evaluated, including two
learning based MRAC laws: Concurrent Learning MRAC,
and Budgeted Kernel Restructuring CL (BKR-CL). These
results indicate the feasibility of transferring controllers
between UAVs using learning-based control.
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Fig. 8. MRAC’s adaptive output is compared against the estimated model
error. It can be seen that MRAC does not learn the modeling uncertainty.
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Fig. 9. CL-MRAC’s ability to learn the transfer system modeling
uncertainty over the long-term is characterized by improvement in its ability
to predict the uncertainty resulted due to control transfer.
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