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Anytime computation algorithms for stochastically parametric
approach-evasion differential games

Erich Mueller2, Sze Zheng Yong'?, Minghui Zhu'2, Emilio Frazzoli?

Abstract— We consider an approach-evasion differential
game where the inputs of one of the players are upper bounded
by a random variable. The game enjoys the order preserving
property where a larger relaxation of the random variable
induces a smaller value function. Two numerical computation
algorithms are proposed to asymptotically recover the expected
value function. The performance of the proposed algorithms is
compared via a stochastically parametric homicidal chauffeur
game. The algorithms are also applied to the scenario of
merging lanes in urban transportation.

I. INTRODUCTION

Most autonomous robots must operate in the presence of
uncertainties in the decisions of non-communicating robots
or humans. Thus, an autonomous robot can at best plan
based on its “belief” of how likely different outcomes are.
Assuming the worst case scenario can result in a very conser-
vative solution, while stochastic approaches lack guarantees
of success because there is some probability, however small,
of failure. Hence we propose a class of stochastically pa-
rameterized differential games that balances conservativeness
with system performance. In this approach, we take the belief
into account by using a stochastic model to represent the
probability of the upper bound on the disturbance inputs.
Given the probability density function, we can evaluate the
expected minimum time, which is naturally shorter than in
the robust case.

Literature review. Differential games provide a quantita-
tive framework to study strategic interconnections among
competing decision makers whose actions are constrained
by dynamic systems. There have been a limited number of
deterministic differential games whose analytic solutions are
known, including the homicidal chauffeur and the lady-in-
the-lake games [6]. Numerical methods must be employed
to determine solutions to more complicated games including
those based on partial differential equations; e.g., in [2],
viability theory; e.g., in [4] and level-set methods; e.g.,
in [13]. Stochastic differential games have been studied from
both analytical and numerical points of view as well. The
technical approaches in [8], [9] rely upon the celebrated
Markov chain approximation method; e.g., in [10].

Another relevant set of references is that of robotic motion
planning, since approach-evasion differential games can be
viewed as robotic motion planning involving multiple agents.
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Thus, the same challenges of planning a feasible, collision-
free path through a cluttered environment are present. But,
this also means that sampling based algorithms, such as the
Rapidly-exploring Random Tree (RRT) [11], and its asymp-
totically optimal variant (RRT*) [7] provide a means of solv-
ing such games efficiently. Note, however, that RRT-based
algorithms only provide open loop strategies, while strate-
gies for approach-evasion differential games are closed-loop.
For stochastic motion planning, a sampling-based algorithm
that employs chance constraints to guarantee probabilistic
feasibility in the presence of motion and sensing noises is
proposed in [12], and extended to be asymptotically optimal
in [3]. Similarly, chance constraints are applied in [18] where
the environment is stochastically parameterized.

Contributions. We consider an approach-evasion differen-
tial game where the inputs of one of the players are upper
bounded by a random variable. The game enjoys the order
preserving property where a larger relaxation of the random
variable induces a smaller value function. We propose an
extension of the algorithms in [14], namely the coupled-
iGame algorithm, which exploits the order preserving game
structure. Inspired by incremental sampling in [11], [7], the
coupled-iGame algorithm incrementally samples the range
of the random variable, constructs a family of discrete
games parameterized by the samples where each new game
is initialized by utilizing the latest estimates of previously
generated games, and incrementally updates the value func-
tions of the discrete games. We show that the weighted
sums of the discrete value functions asymptotically recover
the expected value function. In order to demonstrate the
advantage of exploiting the order preserving property, we
propose the decoupled-iGame algorithm where the discrete
games are independently updated and use a stochastically
parametric homicidal chauffeur game to numerically com-
pare two proposed algorithms. We also apply the coupled-
iGame algorithm to merging lanes.

II. MOTIVATING EXAMPLE

To motivate the problem discussed in this paper, we
consider the scenario of merging lanes (see Figure 1) with a
white accelerating human-driven vehicle in the main traffic
lane and a blue (semi-)autonomous vehicle in the merge lane.
The dynamics of both vehicles are assumed to be decoupled:

tq = folzg,u),
]T

Ep = fp(2p, w),
AT .
where 2, :== [p p| and z, := [¢ ¢] are the states
of the human-driven vehicle and of the (semi-)autonomous
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Fig. 1: Merging lanes scenario (modified from [15]).

vehicle, respectively. The control input of the autonomous
vehicle has a known bound, v € [ur,up]|, whereas the
unknown input of the human-driven vehicle is bounded as
|w| < 7, where r is a parameter, representing, e.g., the
allowable deviation from a nominal behavior. The value of
this parameter is modeled as a random variable with a known
probability density function, that represents the likelihood
for a certain maximum deviation r, obtained either through
experiments, or customized as a setting of risk preference,
with a risk-averse driver skewing the density to a larger value,
and a dare-devil to a smaller value.

This lane merging scenario is an instance of the stochas-
tically parametric differential game which will be defined in
Section III-B, where the human-driven vehicle can be seen
as the demon and the (semi-)autonomous vehicle the angel.
The driver desires to steer the system from the initial state
l‘(to) = (pO,pO,QO,QO) to a goal set Xgoal = {(p7pa q, Q) €
R* | ¢ > ngal} in minimum time while maintaining the
system states outside the “bad” set Xpaq := {(p,D,q,q) €
R* | (p,q) € [L1,U1] x [La,Us]}, where collision is
inevitable. Both vehicles must also adhere to speed limits,
ie. X = {(p,p,0,4) € R* | P, € [Umin, Umaz]}, hence the
constraint set is given by Xyee = cl(X \ Xpaa), where cl(.)
denotes the closure of a set. Conversely, the demon aims to
steer the system towards X},aq quickly and away from o1

ITI. PROBLEM FORMULATION
A. Ordered differential game
Consider a dynamic system, in which two players, say the
angel and the demon, simultaneously control the system:

x(t) :f(x(t),u(t),w(t))7 CL‘(O) = Zo, (1
where the vector z(t) € X C R represents the system state
and the vector u(t) € U (resp. w(t) € W(r)) the control
of the angel (resp. the demon). For system (1), the set of
admissible control strategies of the angel is given by:

U= {u(-) : [0,400) — U, measurable},

where U C R™<; and the admissible set of strategies for the
demon is parameterized by the scalar > 0 as follows:

W(r) £ {w() :

with the parametric set W(r) £ {w € R™ | ||lw|| <
r}. Given the initial state zo and controls of u € U
and w € W(r), we denote the solution to system (1) as
Or (52, us w) = {6 (t; 2, u,w) }i>0.

The interests of the angel and the demon are exact oppo-
sites of each other’s. The angel desires to drive the system

[0, +00) — W (r), measurable},

state x(t) to the open goal set Xgoa1 C RY in minimum time,
while always maintaining (¢) inside the closed constraint set
Xiree C RY, whereas the demon desires to steer (t) to leave
Xiree quickly and keep x(t) away from Xyoa1. We will refer
to the game as the time-optimal approach-evasion (TO-AE,
for short) differential game parameterized by r. To formalize
the above conflicting objectives, we define as ¢,.(z, u, w) the
first time that the trajectory ¢, (-;z,u,w) enters Xgoa While
staying in Xj,ee before ¢,.(x, u, w). More precisely, given the
trajectory ¢,.(-; x,u,w), the first hitting time is defined as:

tT(xauvw) éll’lf{t >0 | d)r(t;mvuaw) S Xgoalv
O (85, u, W) € Xree, Vs € [0, 8]}

If ¢,(-;2,u,w) leaves X before reaching Xgoa1 or never
reaches Xgoa1, then ¢,.(z,u, w) = +o00. The angel strives to
minimize the cost t,(x,u,w), while the demon desires to
maximize the same cost functional.

To define the value of each differential game, we need
the notion of nonanticipating or causal strategy in the sense
of [16]. The set I'? of such strategies for the angel is such
that v¢ : W(r) — U satisfies for any T' > 0, 72 (w(t)) =
v (w'(t)) for ¢ € [0,T] if w(t) = w'(t) for ¢ € [0,T]. The
lower value of the TO-AE differential game is given by:

Ti(x) = inf — sup (2,7 (w()), w(-)),

YECETE w()ew(r)
which we henceforth refer to as the minimum time func-
tion. We further define the discounted cost functional
Jr(z,u,w) = U o t.(r,u,w), where we considered the
Kruzkov transform of ¥(s) = 1—e™* to normalize the hitting
time, and the discounted lower value v as follows:

Ir (@, 77 (w (), w()),

which we refer to as the optimal value function for the TO-
AE differential game parameterized by r. It can be observed
that v} (z) = ¥ o T*(z) for Va € X.

Each parametric TO-AE differential game is identical to
those in [4], [14] except that the input set of the demon is
restricted to be a ball. This family of parametric differential
games consists of an ordered differential game in the sense
that v, (z) < v’(z) for any pair of 0 < v/ < r < R and
all z € X. Note that our ordering is different from that of
monotone control systems; e.g., in [1], [5] which is defined
on the state space with respect to state and input.

vi(x) = inf sup

" YEC)ETE w(-)eWw(r)

B. Stochastically parametric differential game

In this paper, we are interested in the stochastically
parametric differential game where r in W(r) is a random
variable defined on the probability space (€2, o(C([0, R])), P)
with o(C([0, R])) being the o-field generated by the intervals
within [0, R]. The distribution function of r is denoted by
G(r) which is assumed to be absolutely continuous with the
density function g(r). With this, the expected optimal value
function can be defined as follows:

R
E[v}(z)] = /M ot ()G (dr) = / vt (@)g(r)dr.



The objective of the paper is to design and analyze anytime
algorithms to asymptotically recover E[v}(x)] and further
synthesize feedback control policies for the angel.

C. Notations and assumptions

Throughout this paper, we make the following assumptions
on the dynamic system:
Assumption 3.1: The following properties hold:

(A1) The sets X and U are compact.

(A2) The function f is continuous in (x, u, w) and Lipschitz
continuous in z for any (u,w) € U x W(r) and r €
[0, R].

(A3) Given any r € [0, R], for any pair of 2 € X and
u € U, F.(z,u) is convex where the set-valued map
FT(Iv U) £ UwEW(r)f(‘T7 U, w)

Remark 3.1: Since the set W (r) is convex, a sufficient
condition for (A3) in Assumption 3.1 is that the function of
f is affine with respect to w. .

Because of (Al) and (A2) in Assumption 3.1, M(r) £
SUPyex, uer, wew (r) f (T, u, w) is well-defined. Let £(r) be
the Lipschitz constant of f with respect to z for any
(u,w) € U x W (r). We denote M £ sup,.¢(g 5 M(r) and
= sup,co,r) £(r)- Let B(z,r) be the closed ball centered
at & with radius r. Denote by || the cardinality of set (2.
Some primitive procedures are defined as follows:

Sample(S,n): return n states which are uniformly and
independently sampled from the set S.

Order(©): return the set where the elements of set © are
ordered in a non-deceasing way.

Pre(a,©): return ©(; — 1) if a = O(i) for some i > 2;
otherwise, return a.

IV. COUPLED-IGAME ALGORITHM

In this section, we will present an anytime computation
algorithm, namely coupled-iGame, to solve the stochastically
parametric differential game and study its asymptotic conver-
gence properties.

A. Algorithm statement

The coupled-iGame is an extension of our iGame algo-
rithm in [14] and informally stated as follows. The variable
flag(n) € {0,1} is used to determine whether a new game is
added at iteration n. If flag(n) = 1, a point r,, is uniformly
sampled from the interval [0, R]. The distinct samples are
stored in the set ©,, in an increasing way. Then we construct
a new TO-AE game for the sample r,, namely Game(r,,),
and its value function v, (-;7,) is initialized by inheriting
the current estimates of Game(Pre(r,,, ©,,)). After that, the
existing Game(O,,_; (7)) fori =1,--- ,|©,_1| are updated
in the same way as the iGame algorithm in [14]. More
specifically, a sequence of discrete set-valued dynamic sys-
tems are incrementally built to approximate the continuous
dynamic system (1) in Algorithm 2. A discrete value function
is constructed for each discrete set-valued dynamic system,
and its update rules are summarized in Algorithm 3. The
readers are referred to [14] for detailed discussion on the
iGame algorithm.

Algorithm 1 coupled-iGame()

Require: Initially, choose a (small) o > 0, ro = 0, ©9 = {ro}
and initialize Game(ro) as follows:
So + Sample(Xtee, 1), Uy < Sample(U, 1),
Wo(ro) < Sample(W (ro), 1),

Ensure: At each iterate n > 1, the following steps are executed:
1: If flag(n) = 0, let ©,, = ©,_1 and execute Algorithm 2;
2: If flag(n) = 1, execute the following steps:

On =0On_1;

Execute Algorithm 2;

rn < Sample([0, R], 1);

If r, ¢ Op_1, ©, = Order(0,_1 U {r,}) and initialize

Game(r,,) in the following way:

Wi (rn) < Sample(W (r,), 1),
Un(z;7n) = vn(z; Pre(rn, ©r)),

vo(z;m0) =0, x € So.

3: Compute the estimate E[v,(z); ©,] of E[v; ()] as follows:

E[vn(2); On] = ) _(On(i+1) — On(i))

X 9(©n (1)) ) Un (y; On(4))

min
yEB(w,dn)NSn (On (7))
1
X el o. (i ~ Y
2221 (On(i 4 1) = On () x g(On (7))
where we use ©, (|0, + 1|) = R.

(@)

Algorithm 2
I: yn + Sample(Xpee, 1);
20 Sp=5Sn-1U{yn}s
3: Up = Up—1 U Sample(U, 1);
4: Update thle dispersion d,,, generate the time discretization size
hyp = dF, and the dilation size o, = 2d,, +hndn +M€h%;
Ensure: For each ¢ € {1,---,|0,|}, the following steps are
executed for Game(©,,(7)):
1: Generate the interpolated function
On—1(yn;On (7)) = 1 and for z € Sp_1,

Tn—1(2; 05(1)) = vn-1(; On(1));

2: Update the estimate v, (-;0,(¢)) as follows: for each = €
Sn \ B(Xgoal, Mhy, + dn), execute VI’; for each x € S, N
B(Xgoah Mhn + dn)s

0n (%3 (On(7))) = Un—1(z; (On(7))).

Un—1(;On(1)):

The coupled-iGame algorithm is formally stated in Algo-
rithm 1. Some notations are defined as follows. The state
dispersion d,, is the quantity such that for any x € Afee,
there exilsts 2’ € Sy such that ||z — /|| < d,. We let

h,, = diT and k,, = by, — d,.

B. Algorithm analysis

In the coupled-iGame algorithm, the new games are gen-
erated infinitely often. This is formally stated as follows:

Assumption 4.1: The event flag(n) = 1 occurs infinitely
often.

The following theorem summarizes the asymptotic con-
vergence properties of the coupled-iGame algorithm.

Theorem 4.1: Suppose Assumptions 3.1 and 4.1 hold.
Then the sequence of E[v,(-); ©,] generated by the coupled-
iGame algorithm converges pointwise to E[v(-)]; i.e., for



Algorithm 3 VI

Algorithm 5

1: Implement the following step:
Wi (©n(1)) = Wi-1(0x (7)) U Sample(W (©,(4)), 1);
2: Solve the following problem:
Un(2;0,(1) =1 —e "™ +e " x

max mi

in Un—1(y; On(7)),
WEWn (O (1)) wEUn yEB(2-+h f (,1,1),0m) NS, 1436 (3))

and set uy (x; ©, (7)) to be one of the solution to wu.

Algorithm 4 decoupled-iGame()

Require: Initially, choose a (small) > 0, ro = 0, ©g = {10}
and initialize Game(ro) as follows:
So(ro) < Sample(Xee, 1), Uo(ro) < Sample(U, 1),
Wo(ro) < Sample(W (r9),1), wvo(z;r0) =0, x € So(ro).

Ensure: At each iterate n > 1, the following steps are executed:
1: If flag(n) = 0, let ©,, = ©,_1 and execute Algorithm 5;
2: If flag(n) = 1, execute the following steps:
@n = en—l;
Execute Algorithm 5;
rn < Sample([0, R], 1);
If 7, ¢ ©n_1, then ©,, = O,,_1 U {r,} and initialize
Game(r,) in the following way:
Sn(rn) < Sample(Xiee, 1), Un(rn) < Sample(U, 1),
Wy (rn) < Sample(W (r,,), 1),
x € Sn(rn);

vn(x;m0) =0,

3: Compute the estimate as (2).

any = € Xjpee, it holds that
lim Efv,(z);0,] = E[v:(x)]. 3)

n—-+oo T
V. DECOUPLED-IGAME ALGORITHM

In this section, we will present a variation, namely
decoupled-iGame, of the coupled-iGame algorithm where the
games for different samples are completely independent. In
Section VI, we will compare two algorithms and demonstrate
the advantage of exploiting the order preserving property.

Informally speaking, the decoupled-iGame algorithm sam-
ples the interval [0, R] repeatedly and constructs a TO-AE
game for each sample. Then the algorithm independently and
incrementally refines the family of parametric TO-AE games
and updates the associated value functions. The update rules
for each parametric game are the same as those of the iGame
algorithm in [14]. Here the independency means that the
parametric TO-AE games do not share the sample sets for
the state and controls as well as the estimates of their value
functions. The algorithm then produces an estimate of the ex-
pected value function by weighting the current estimates with
the probability densities. The decoupled-iGame algorithm is
formally stated in Algorithm 4. Some notations are defined as
follows. The state dispersion d,,(0,(¢)) is the quantity such
that for any x € Xy, there exists 2’ € S,,(0©,,(4)) such that
|z — 2'|| < dn(©,(7)). We let h,(0,(2)) = dn(@n(z))ﬁ
and £,(0,(1)) = hp(0n (1) — dn(On (7).

The following theorem summarizes the asymptotic con-
vergence properties of the decoupled-iGame algorithm.

Ensure: For each ¢ € {1,---,|0,]|}, the following steps are
executed for Game(©,,(7)):

1: Yn(©4(3)) < Sample(Xee, 1);

20 5,(0n(i) = Sn-1(On (1)) U{yn(On(i)};

3: Update the dispersion d, (0, (7)), generate the time discretiza-
tion size hn(On(i)) = dn(Gn(i))lﬁ, and the dilation
size @, (On(1)) = 2dn(0n(2)) + Lhn(On(i))dn(On(i)) +
M2h,(0,(i))%

4: Generate the interpolated  function  Up—_1(-; O, (7)):
Un—1(yn; On(i)) = 1 and for z € Sp—1(On (7)),

On—1(%; On (i) = vn—1(2; On(4));

5: Update the estimate v, (-;©,(z)) as follows: for each z €
Sn(On (1)) \ B(Xgoal, Mhn(0,(i)) + dn(On(7))), execute
VI, for each © € S,(0,(%)) N B(Xgoat, Mhn(0n (7)) +
dn(On(i))),

on (%3 (On (7)) = Un—-1(z; (On(2))).

Algorithm 6 VI
1: Implement the following steps:
Un(©n(i)) = Up—1(0,(7)) U Sample(U, 1),
Wn(0n(7)) = Wn—1(0n(i)) U Sample(W (©,,(z,1)),1);
2: Solve the following problem:
O (2;00(1)) =1 — e (On() 4 o=rn(On (D)

X max min
WEWn (On (1)) u€Un (On (1))

min
YEB(x+hn (On (4)) f(z,u,w),an (O (i)))NSn (On (1))
n-1(y; On (),
and set un, (x; ©,(i)) to be one of the solution to w.

Theorem 5.1: Suppose Assumptions 3.1 and 4.1 hold.
Then the sequence of E[v,(:);0,] produced by the
decoupled-iGame algorithm converges pointwise to E[vX(+)];
i.e., for any x € Ao, it holds that

i E[v,(2); O] = B[ (2)] @

VI. SIMULATION RESULTS
A. Homicidal Chauffeur

First, we consider a variant of the classic homicidal
chauffeur problem, in which a faster, but less agile pursuer
attempts to capture a slower, more maneuverable evader [14].
This problem can be reduced to 2 dimensions, in which the
dynamics are given by:

T = UpY + Ve COSUe — Uy Y= —UpT — Ve SIN U,

We take on the role of the pursuer, whose input is denoted
Uy, and attempt to capture the evader, whose input is denoted
Ue, in minimum time. In this case, the maximum speed
at which the evader moves is uncertain. This problem was
used to compare the performance of decoupled-iGame and
coupled-iGame. Figure 2 shows the value function approxi-
mation error for both, using a 300x300 fixed grid dynamic
programming solution for reference. This data represents the
mean approximation error over the points of a 50x50 uniform
grid in the region z € [—1,1] and y € [—1,1]. The pursuer
input was restricted to u, € [—1,1] and the evader input w,
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Fig. 2: Value function approximation error vs elapsed com-
putation time for the decoupled-iGame and coupled-iGame
algorithms. The error is averaged over 20 trials, with dashed
lines indicating the standard deviation. Note the logarithmic
scaling of both axes.
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Fig. 3: Probability density function of random variable r
(One-sided truncated normal distribution).

was unrestricted, however the evader speed was restricted as
|ve| € [0,7]. The random input bound r was considered to
have a uniform probability distribution between 0.1 and 0.9.
A new game was added to the collection every 300 iterations.

These results demonstrate the expected advantage of shar-
ing value function information between the different games,
as the coupled version converges more quickly to the high
resolution fixed grid solution.

B. Merging Lanes

We shall now revisit the motivational example with the
fully autonomous vehicle in Section II. We model the human-
driven vehicle as in [17], as p = 8 + yw, where 8 and ~y
are the mean acceleration and its standard deviation obtained
from experiments with human subjects, and |w| < r is an
unknown input, where the input bound r is a random variable
with probability density function g(r) on a finite support
[0, R] shown in Figure 3. For the (semi-)autonomous vehicle,
we also adopt the model in [17]: § = au—b— cq2, where a,
b and c are positive constants corresponding to input gain,
static friction and air drag coefficient terms, respectively,
while the control input is bounded, u € [ur,, ug].

For this example, we simulated the problem with the
following parameters (similar to [17]): po = 0m, po =17,
qgo = 0m, go = 1% Ggoal = dm, Ly = Ly =3m, Uy =
Uz = 4m, vmin = 0.35%, pae = 1.17, R = 2.5, 8 =
0.35057%, v = 0.13963,a = 0.7, b=0.13, c = 0.0l%,
ur, = —0.2 and ugy = 1. The state space for this problem is
chosen as X = [0,5] x [0.35,1.1] x [0, 5] x [0.35,1.1] C R*.

This problem was first used to demonstrate the effect of
erroneous estimation of the uncertain parameter r. Several
fixed grid solutions were generated using different values
for r. Each solution was used by the merging car to play the
game from a set of initial conditions, against a non-merging
car who used a fixed grid solution based on the correct value
of r. Figure 4 shows a slice in position space of the set of
initial conditions from which collision results, for several

Game Outcomes Game Outcomes

20 50 a0

q
(b)r=3.0

Analytic Qutcomes

(r=10

Game Outcomes

20 a0 40

q
(d) analytic, r = 3.0

©r i 5.0
Fig. 4: Safe (white) and unsafe (red) sets resulting from
the use of different values of r. The merging car uses the
specified value, while the other car uses the correct value
r = 3. The analytically computed safe and unsafe regions
with the correct value of r are shown in 4d. p = 0.75 and
¢ = 0.75 for all points.

Mean Time to Goal

L 1s12s
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L 1202

00 10 20 0 40 =0
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Fig. 5: Mean time to reach the goal across initial states safe
for all estimates of r, as shown and described in Figure 4,
versus the estimated value of r.

estimated values of r. These plots can be compared to the
analytically computed sets, shown in Figure 4d. Figure 5
shows the mean time to reach the goal for the same set of
tests, with the mean taken over all initial conditions from
which the goal was safely reached for all tested estimates
of r. These results show that it is indeed beneficial to use a
more accurate estimate of the unknown parameter, as the size
of the unsafe set is seen to shrink as the estimate becomes
more conservative, while an overly conservative estimate can
lead to an increase in the mean time to reach the goal. These
results seem to show that it may be possible for an overly
conservative estimate to be better than an accurate estimate.
This should not be possible theoretically, and is most likely
a result of the numerical discretization used for computation.

The merging lanes problem was also used to show con-
vergence of the mean value function approximation gen-
erated by coupled-iGame to a high resolution fixed grid
solution. Figure 6 shows the progression of the value function
approximation and the fixed grid approximation. Here, 10
20x20x20x20 fixed grid solutions were used to compute the
reference mean value function, seen in Figure 6d. A new
game was added to the set used by coupled-iGame every
200 iterations. To compute the mean, the value functions for
the different games were weighted according to their asso-
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Fig. 6: Value function approximations for the lane merging
problem, generated by the coupled-iGame algorithm, in com-
parison to a 160000 point fixed grid solution. The mean value
function, taken across variation in the unknown parameter r,
is shown. p = 0.75 and ¢ = 0.75 for all points. Results are
shown for different numbers of iterations.

TABLE I: False and missing warning rates

q
(a) 400 iterations, 6.3s
Warning Set

q
(b) 800 iterations, 43s
Warning Set

Iterations | Elapsed Time (s) || False Warnings | Missing Warnings
200 1.3 0.197 0.021
400 6.3 0.103 0.009
800 43 0.072 0.015
1600 354 0.053 0.003

ciated probability mass, as given in (2), with the probability
density function shown in Figure 3. In a semi-autonomous
application, the mean value function computed by coupled-
iGame could be used by a warning system to trigger an alarm
if an unsafe state is entered. One way to achieve this is to
warn the driver if the mean value function at the current
state exceeds some threshold. Figure 7 shows the result of
imposing a warning threshold of 0.998 on the mean value
function approximation computed by coupled-iGame and on
a fixed grid. This threshold was selected to correspond to
the latest possible time that the goal region can be reached
by the merging car. Here we can see, as in Figure 6, that
the solution generated by coupled-iGame converges to the
much more accurate solution. Table I shows the mean over
20 trials of the fraction of safe states deemed unsafe by
coupled-iGame (false warnings) and of unsafe states deemed
safe (missing warnings) for this test, excluding states in the
collision region, using the fixed grid solution shown in figure
6d as truth.
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