
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2015-015 May 4, 2015

Non-Essential Communication in Mobile Applications
Julia Rubin, Michael I. Gordon, Nguyen Nguyen,
and Martin Rinard

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78062136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Non-Essential Communication in Mobile Applications

Julia Rubin1, Michael I. Gordon1, Nguyen Nguyen2, and Martin Rinard1

1Massachusetts Institute of Technology
2Global InfoTek, Inc

ABSTRACT
This paper studies communication patterns in mobile applications.
Our analysis shows that 65% of the HTTP, socket, and RPC com-
munication in top-popular Android applications from Google Play
have no effect on the user-observable application functionality. We
present a static analysis that is able to detect non-essential commu-
nication with 84% -90% precision and 63%-64% recall, depending
on whether advertisement content is interpreted as essential or not.
We use our technique to analyze the 500 top-popular Android ap-
plications from Google Play and determine that more than 80% of
the connection statements in these applications are non-essential.

1. INTRODUCTION
Mobile applications enjoy almost permanent connectivity and

the ability to exchange information with their own back-end, third-
party servers and other applications installed on the same device.
This paper shows that much of this communication delivers no
value to the user of the application – disabling such communication
leaves the delivered application experience completely intact. But
this communication comes with costs such as bandwidth charges,
power consumption on the device, potential privacy and analytic
data release, and the unsuspected presence of continued communi-
cation between the device and remote organizations. We have even
observed applications that silently spawn services that communi-
cate with third-party servers even when the application itself is no
longer active, with the user completely unaware that the spawned
services are still running in the background.

This paper takes the first steps towards automatically identifying
and disabling these kinds of non-essential communications. We
start by identifying and disabling non-essential communication in
widely used mobile applications such as ten of the top fifteen most
popular applications in the Google Play App Store (twitter, Wal-
Mart, Spotify, Pandora, CandyCrush, etc.). Motivated by the sig-
nificant amount of non-essential communication we found in these
applications, we next developed a static analysis that can automat-
ically identify non-essential communication and used this analysis
in our further investigation of this unfortunate phenomenon. The
following research questions drive this investigation:

RQ1: How frequently does non-essential communication oc-
cur in widely used mobile applications? To estimate the signifi-
cance of the problem, we conduct an empirical study that focuses
on identifying and investigating the nature of non-essential commu-
nication in ten top-popular applications in Google Play. We focus
on the three most common connection types: HTTP, socket and
RPC. The former two are used to communicate with various back-
end servers – the application’s own and third parties’; the latter one

is used to communicate with other applications and services run-
ning on the same device.

Baseline Behavior: We first establish baseline application behav-
ior. Towards this end, we record a script triggering the application
functionality via a series of interactions with the application’s user
interface. After each interaction, we capture a screenshot of the
device to record the application state.

Instrumentation: We next instrument the application to log infor-
mation about triggered connection statements. The instrumented
version of the application is then installed and executed on a mo-
bile device using the recorded script.

Disable Connections: We disable each triggered connection in turn
by replacing the statement that establishes the connections with a
statement that throws an exception that indicates that the connec-
tion failed because the device was in a disconnected mode.

Run Modified Application: We install the modified application and
run it using the previously recorded script. Similarly to the ap-
proach in [18], the screenshots documenting the execution of the
modified application are compared to those of the original one. We
consider executions as equivalent if they result in screenshots that
differ only in the content of advertisement information, messages in
social network applications such as twitter, and the device’s status
bar. We also separately note connections that contribute to present-
ing advertisement content, if the analyzed application has any.

Result Summary: Our study reveals that around 65% of the ex-
ercised connection statements are not essential — disabling them
has no noticeable effect on the observable application functionality.
Slightly more than 25% of these correspond to HTTP and socket
communication. The rest correspond to RPC calls to internal ser-
vices installed on the device: notably, but not exclusively, Google
advertising and analytics, which further communicate with external
services. Moreover, in applications that present advertisement ma-
terial, about 60% of the connections that do affect the observable
application behavior are used for advertising purposes only.

RQ2: Can non-essential communication be detected statically?
Inspired by our findings, we develop a novel static application anal-
ysis that can detect connection failures that are “silently” ignored
by the application, i.e., when information about a connection failure
is not propagated back to the end user. The static analysis classifies
each connection call by inspecting the execution of the application
during failure handling of the connection call. Failure handling be-
gins when the exception is propagated to the connection call and
ends when the execution exits the exception handler of the excep-
tion or the handlers of all rethrown exceptions that are raised during
handling. If a failure handling exception could affect the user inter-
face through a call to a predefined set of API calls, we classify the

1

connection call to be essential. We classify it as essential also if
there is a failure handing path that could exit the program, because
a thrown exception propagates back into the Android runtime.

Our static analysis is designed to scale to large Android appli-
cations and to conservatively approximate the behavior of dynamic
constructs such as reflection and missing semantics such as native
methods. The analysis also reasons about application code reach-
able through Android API calls and callbacks by analyzing each
application in the context of a rich model of the Android API [16].

There are two special cases that our technique is not designed to
handle: (1) optional behaviors, for which failing connections are
silently ignored, but successful connections result in presenting ad-
ditional information to the user; advertisement content usually falls
into that category. (2) stateful communication, for which failures
leave the connection target in a state different from the one it has
after a successful communication, and further communication is
influenced by the server’s state. Our experiments show that such
cases are rare.

RQ3: How well does static detection perform? To assess the
quality of our technique, we evaluate it on the “truth set” estab-
lished during our empirical analysis of applications from Google
Play. The results show that it features a high precision – 83% of the
identified connection (64 out of 82) are indeed classified as non-
essential during the manual analysis. Even though it is designed to
be conservative, it is still able to identify 64% of all non-essential
connection (64 out of 106). There are 18 connections in total that
are miss-classified as non-essential. Out of these, 16 correspond
to optional application behaviors and the remaining 2 – to stateful
communication. Counting advertisement content as non-essential
gives the overall precision and recall of 90% and 65%, respectively.

RQ4: How often does non-essential communication occur in
real-life applications and what are its most common destina-
tions? Applying the analysis on the top 500 popular applications
from Google Play reveals that 84% of connection sites encoded
in these applications can be deemed non-essential. Most common
target of non-essential communication are various Google services
for mobile developers. We conjecture that applications commonly
register for various such services without eventually using them.
Additional common targets are advertisement, analytics and gam-
ing services.

Significance of the Work. Our work focuses on benign mobile ap-
plications that can be downloaded from popular application stores
and that are installed by millions of users. By identifying and high-
lighting application functionality hidden from the user, the goal is
to encourage application developers to produce more transparent
and trustworthy applications. The identification of potential pri-
vacy violations in previous versions of popular Android applica-
tions [13, 11, 28] followed by the elimination of these violations in
current Android applications provides encouraging evidence that
such an improvement is feasible.

Contributions. The paper makes the following contributions:

1. It sets a new problem of distinguishing between essential and
non-essential release of information by mobile applications in
an automated manner. The goal is to improve the transparency
and trustworthiness of mobile applications.

2. It proposes a semi-automated dynamic approach for detecting
non-essential releases of information in Android applications
which does not require access to the application source code.
The approach relies on interactive injection of connection fail-
ures and identification of cases in which the injected failures do
not affect the observable application functionality.

3. It provides empirical evidence for the prevalence of such non-
essential connections in real-life applications. Specifically, it
shows that 65% of the connections attempted by ten top-popular
free applications on Google Play fall into that category.

4. It proposes a static technique that operates on application bi-
naries and identifies non-essential connections – those where
failures are not propagated back to the application’s user. The
precision and recall of the technique is 83% and 63%, respec-
tively, when evaluated against the empirically established truth
set. The precision and recall increases to 90% and 64%, re-
ceptively, when considering the advertisement content as non-
essential.

5. It provides quantitative evidence for the prevalence of non-
essential connections in the 500 top-popular free applications
on Google Play, showing that 84% of connections encoded in
these applications can be deemed as non-essential.

2. COMMUNICATION IN ANDROID
In this section, we describe the design of the study that we con-

ducted to gain more insights into the nature of communication per-
formed by Android applications. We then discuss the study results.

2.1 Design of the Study
Connection Statements. The list of the connection statements that
we consider in our study is given in Table 1. The first three are re-
sponsible for establishing HTTP connections with backend servers,
the forth one provides socket-based communication and the last one
allows RPC communication with other applications and services
installed on the same mobile device.

Column 4 of the table lists exceptions indicating connection fail-
ures that occur when the desired server is unavailable, or when a
device is put in the disconnected or airplane mode. When investi-
gating the significance of a connection on the overall behavior of
an analyzed application, we inject connection failures by replacing
connection statements with statements that throw exceptions of the
appropriate type. This approach was chosen as it leverages the ap-
plications’ native mechanism for dealing with failures, thus reduc-
ing side-effects introduced by our instrumentation to a minimum.

Application Instrumentation. As input to our study, we assume
an Android application given as an apk file. We use the dex2jar tool
suite [10] to extract the jar file from the apk. We then use the asm
framework [5] to implement two types of transformations:

1. A monitoring transformation which produces a version of the
original application that logs all executions of the connection
statements in Table 1.

2. A blocking transformation which obtains as additional input a
configuration file that specifies the list of connection statements
to disable. It then produces a version of the original application
in which the specified connection statements are replaced by
statements that throw exceptions of the corresponding type, as
specified in Table 1.

The jar file of the transformed application is then converted back to
apk using the dex2jar tool suite and signed with the jarsigner tool
distributed with the standard Java JDK.

Table 1: Considered Connection Statements.
Class or Interface Method Indication of Failure

1. java.net.URL openConnection java.io.IOException
2. java.net.URLConnection connect java.io.IOException
3. org.apache.http.client.HttpClient execute java.io.IOException
4. java.net.Socket getOutputStream java.io.IOException
5. android.os.IBinder transact android.os.RemoteException

2

Table 2: Analyzed Applications.
Applications jar size

(MB)
Total # of

connection
statements

of triggered
connection
statements

of non-essentials
(% of trig.)

of essentials
(% of trig.)

of ads
(% of essentials)

air.com.sgn.cookiejam.gp 2.7 639 7 3 (42.9%) 4 (57.1%) -
com.crimsonpine.stayinline 3.2 842 18 13 (72.2%) 5 (27.8%) 5 (100.0%)
com.facebook.katana 0.6 3 0 - - -
com.grillgames.guitarrockhero 6.2 882 35 30 (85.7%) 5 (14.3%) 5 (100.0%)
com.king.candycrushsaga 2.6 638 4 3 (75.0%) 1 (25.0%) -
com.pandora.android 5.7 532 13 9 (69.2%) 4 (30.8%) 1 (25.0%)
com.spotify.music 5.4 181 28 21 (75.0%) 7 (25.0%) -
com.twitter.android 5.9 314 13 6 (46.2%) 7 (53.8%) -
com.walmart.android 5.8 446 10 5 (50.0%) 5 (50.0%) -
net.zedge.android 6.5 871 21 16 (76.2%) 5 (23.8%) 3 (60.0%)
Totals (average) 4.5 535 14.9 11.8 (65.8%) 4.8 (34.2%) 3.5 (71.3%)

Automated Application Execution and Comparison. Compari-
son of user-observable behavior requires dynamic execution of the
analyzed applications. The main obstacle in performing such com-
parison is the ability to reproduce program executions in a repeat-
able manner. To overcome this obstacle, we produce a script that
automates the execution of each application. As the first step, we
use the Android getevent tool [2] that runs on the device and cap-
tures all user and kernel input events to capture a sequence of events
that exercise an application behavior. We make sure to pause be-
tween user gestures that assume application response. We then en-
hance the script produced by getevent to insert a screen capturing
command after each pause and also between events of any pro-
longed sequences. We upload the produced script onto the device
and run it for each version of the application.

We deliberately opt not to use Android’s UI/Application Exer-
ciser Monkey [3] tool. While this tool is able to generates a repeat-
able sequence of pseudo-random streams of events such as clicks,
touches and gestures, in our case, it was unable to provide a rea-
sonably exhaustive coverage of application functionality. Even for
applications that do not require entering any login credentials, it
quickly locked itself out of the application by generating gestures
that the analyzed application cannot handle. We thus have cho-
sen to manually record the desired application execution scenario,
which also included any “semantic” user input required by the ap-
plication, e.g., username and password.

For the comparison of application executions, we started by fol-
lowing the approach in [18], where screenshots from two different
runs are placed side-by-side, along with a visual diff of each two
corresponding images, as shown in Figure 1, for the Walmart and
twitter applications. We used the ImageMagick compare tool [20]
to produce the visual diff images automatically. We then manually
scanned the produced output while ignoring differences in content
of advertisement messages and the status of the device, deeming
screenshots in Figures 1(a) and (b) similar. We also ignored the
exact content of widgets that are populated by applications in a dy-
namic manner and are designed to provide continuously updated
information that is expected to differ between applications runs,
such as tweets in Figures 1(d) and (e). These two figures are thus
also deemed similar.

In one out of ten analyzed cases, we had to revert to manual exe-
cution and comparison of the application runs. That case involved
interactions with a visual game that required rapid response time,
thus the automated application execution was unable to provide re-
liable results.

Execution Methodology. We performed our study in three phases.
In the first phase, we installed the original version of each ana-

(a) Screen 1. (b) Screen 2. (c) Difference for
Screens 1 and 2.

(d) Screen 3. (e) Screen 4. (f) Difference for
Screens 3 and 4.

Figure 1: Visual differences.

lyzed application on a Nexus 4 mobile device running Android
version 4.4.4. We manually exercised the application, exploring
all its functionality visible to us, and recorded the execution script
that captured all triggered actions, as described above. We then re-
installed the application to recreate a “clean” initial state and ran
the produced execution script. We used screenshots collected dur-
ing this run as the baseline for further comparisons.

In the second phase, we used the Monitoring Transformation to
produce a version of the original application that logs information
about all existing and triggered connection statements. We ran the
produced version using the execution script and collected the statis-
tics about its communication patterns.

In the third phase, we iterated over all triggered connection state-
ments, disabling them one by one, in order to assess the necessity
of each connection for preserving the user-observable behavior of

3

Table 3: Communication Types.
HTTP and Socket RPC

Triggered 35 (30.7%) 79 (69.3%)
Non-essential (total) 18 (25.5%) 53 (74.6%)
Non-essential (Google and
Known A&A Services) 8 (17.7%) 37 (82.2%)

the application. That is, we arranged all triggered connection state-
ments in a list, in a lexical order and then applied the Blocking
Transformation to disable the first connection statement in the list.
We ran the produced version of the application using the recorded
execution script and compared the obtained screenshots to the base-
line application execution. If disabling the connection statement
did not affect the behavior of the application, we marked it as non-
essential, kept it disabled for the subsequent iterations and proceed
to the next connection in the list. Otherwise, we marked the exer-
cised connection as essential and kept it enabled in the subsequent
iterations. We continued with this process until all connections in
the list were explored.

As the final quality measure, we manually introspected the exe-
cution of the version in which all non-essential connections were
blocked, to detect any possible issues missed by the automated
analysis.

Subjects. As the subjects of our study, we downloaded 15 top-
popular applications available on the Google Play store in Novem-
ber 2014. We excluded from this list three chat applications, as our
evaluation methodology does not allow assessing the usability of
a chat application without a predictably available chat partner. We
also excluded two applications whose asm-based instrumentation
failed, most probably become they use language constructs that are
not supported by that framework.

The remaining ten applications are listed in the first column of
Table 2; their corresponding sizes are given in the second column of
the table. We did not extend our dynamic analysis beyond these ten
applications because the inspection of our findings indicated that
we reached saturation: while it is clearly infeasible to explore all
possible scenarios, we observed similar trends in all analyzed ap-
plications. As such, inclusion of additional ones was not expected
to provide substantially new insights.

2.2 Results
The quantitative results of the study are presented in columns 3–

7 of Table 2. Column 3 and 4 of the table show that only a small
number of connection statements encoded in the applications are, in
fact, triggered dynamically. While some of the non-triggered state-
ments can correspond to execution paths that were not explored
during our dynamic application traversal, the vast majority of the
statements originate in third-party libraries included in the applica-
tion but only partially used, e.g., various Google services for mo-
bile developers, advertising and analytics libraries and more. In
fact, we identified nine different advertising and analytics libraries
used by the ten applications that we analyzed, and many times a
single applications uses multiple such libraries.

An interesting case is the facebook application (row 3 in Ta-
ble 2), where most of the application code is dynamically loaded
at runtime from resources shipped within the apk file. Our analysis
was unable to traverse this dynamically loaded code, and we thus
excluded the application from the further analysis, noting that the
only three connection statements that existed in the application jar
file are never triggered.

Classification of the Triggered Statements. Column 5 of Table 2
shows the number of connection statements that we determined as
non-essential during our study. Averaged for all applications, 65%
of the connections fall in that category. This means that only 35%
of the connection statements triggered by an application affect its
observable behavior, when executed for the exact same scenario
with the connection being either enabled or disabled (see column 6
of Table 2).

Four of the analyzed applications contained advertisement mate-
rial. For these applications, 71% of the connections deemed essen-
tial were used for advertising purposes, as shown in the last column
of Table 2.

To answer RQ1, we conclude that non-essential communica-
tion often occur in real-world applications: 65% of the trig-
gered connection statements can be deemed non-essential.

Table 3 shows the distribution of the triggered connection state-
ments into external communication performed via HTTP and sock-
ets, and internal RPC communication. Overall, 30% of all triggered
connection statements correspond to external communication while
70% – to internal ones, as shown in the second row of the table. The
breakdown is similar for the connection statements that we deemed
non-essential: slightly more than 25% correspond to external com-
munication and the remainder – to the internal communication with
services installed on the same device, as shown in the third row of
Table 3.

The last row of the table present statistic considering the com-
munication with known advertisement and analytic services. The
table shows that almost 18% of the non-essential connections used
for these purpose flow to the external services and 82% – to in-
ternal ones, which further communicate with external services to
deliver the required content. Google services are commonly, but
not exclusively, used by numerous applications.

Lessons Learned. The collected statistics show that no principle
distinction between essential and non-essential connections can be
made just by considering connection types and their destinations.
That observation is consistent with findings in [18], where authors
show that blocking all messages to advertising and analytics ser-
vices made more than 60% of the applications either less functional
or completely dysfunctional. We conclude that a more sophisti-
cated technique for identifying the non-essential communication
performed by the applications is required.

We manually investigated binaries of several analyzed applica-
tions, to gain more insights into the way applications treat non-
necessary connections of each of the identified type and communi-
cation target. We noticed that, in a large number of cases, connec-
tion failures are silently ignored by the applications without pro-
ducing any visual indication to the user. That is, the exception
triggered by the connection failure of a non-essential connection is
either caught and ignored locally in the method that issues the con-
nection or, more commonly, propagated upwards in the call stack
and then ignored by one of the calling methods.

In several cases, an error or warning message is written to the
Android log file. However, this file is mostly used by application
developers and is rarely accessed by the end-user.

To answer RQ2, we conjecture that non-essential connections
can be detected by inspecting connection failure paths. The
lack of updates to GUI elements on the failure path is indica-
tive for a connection being silently ignored by the application,
thus being non-essential for the application execution.

4

1 public class ApplicationClass {
2 void f() {
3 try {
4 g();
5 stmtA;
6 } catch (AdvertisingException e) {
7 stmtB;
8 }
9 stmtC;

10 }
11 }
12 public class AdvertisingAPIClass {
13 void g() throws AdvertisingException {
14 try {
15 stmtD;
16 connect(); //throws RemoteException
17 stmtE;
18 } catch (RemoteException e) {
19 stmtF;
20 throw new AdvertisingException();
21 }
22 stmtG;
23 }
24 }

Figure 2: An example of failure handling.

3. FAILURE-HANDLING ANALYSIS
In this section we describe the static analysis algorithm we em-

ploy to automatically classify connections. Given an Android ap-
plication, the static analysis classifies each statement that may in-
voke a connection call as either essential or non-essential. Intu-
itively, we define an essential connection statement, s, as meeting
either of the following criteria:

1. User-Interface Cue: When s triggers an error, the user may
be notified of the error via a user interface cue during error
handling.

2. Program Exit: When s triggers an error, the program may stop
executing.

Conversely, a non-essential connection call does not meet either of
the two criteria.

Android applications are developed in Java, and program execu-
tion follows the semantics of Java. In an Android application, each
connection call s may generate an exception (of dynamic type e)
that reaches a subset of the program’s catch blocks. At runtime,
when e is triggered by s, the executing method’s trap table is con-
sulted, and if no catch blocks are defined to handle e at s, then e is
passed back up the stack to the calling method at the calling state-
ment, and the process repeats. If the Android runtime is returned to
during the stack unwinding, the application is typically exited with
an error.

DEFINITION (RETHROWN EXCEPTION). A rethrown exception
occurs when a catch block catches an exception, but before the
block is exited, a statement reachable from the block explicitly
throws the same exception object, or throws a new exception ob-
ject. The process of searching the stack for a handler begins anew.

DEFINITION (FAILURE HANDLING). The failure handling of a
connection call s for exception type e is defined as the execution
path that starts when an exception of type e propagates to connec-
tion call s and ends when the last catch block is exited that handles
e or a rethrown exceptions of e.

Intuitively, the failure handling of s on e is the computation that
handles e and any failure triggered by the handling of e (through
rethrown exceptions). Failure handling is finished when all excep-
tions triggered by e are handled and flow returns to normal execu-
tion.

Figure 2 give a simplified representation of failure handling pat-
tern that we observed in the twitter application. Method f invokes
method g. In g, a connection call is encountered on line 16; assume
during execution this connection call throws a RemoteException.
The failure handling for this connection call and exception is the set
of statements: stmtF, throw new AdvertisingException(), and
stmtB. These statements are executed from the start of the handling
of thrown RemoteException to the end of the handling of the
rethrown AdvertisingException.

PROBLEM: Analyze each connection call, s, in an Android appli-
cation to determine whether the application could possibly exit on
a failure at s or could modify the user interface during a failure
handling path of s.

To solve this problem statically, our failure-handling analysis
conservatively calculates all possible failure handling for excep-
tions that denotes connection failure for each connection call in the
application. If there exists a failure-handling path of s on e that
may include a call to a method that notifies the user of the failure,
then s is considered essential. If it is possible for e, when triggered
at s, to propagate back up the stack to the Android runtime, s is
considered essential.

3.1 Static Analysis of Android Applications
Static analysis of Android applications is notoriously difficult

because of issues including [16]:

• Android applications execute in the context of the Android API
and runtime. The application thus represents an incomplete
program.

• The Android API and runtime comprises multiple millions of
lines of code implemented in multiple programming languages.
Furthermore, much of the implementation is left for device
manufactures to implement, and is thus proprietary and closed-
source.

• Applications are event-driven and dynamic by nature. Applica-
tions define event handlers for possible runtime events that are
triggered in the Android runtime, and passed to the application
for handling.

• Applications interact heavily with the Android API. The An-
droid API includes most of the Java standard library, plus addi-
tional utility and resource access classes.

• Android application packages typically ship with third-party li-
braries for performing operations such as advertising, analytics,
and interaction with remote services. These libraries are com-
monly large, obfuscated, and include heavy use of reflection.

It is not feasible for a static analysis to include analysis of the
source code of the Android runtime and API because of the size
and multi-language nature of this code base. Thus static analysis
must either model the Android application execution environment,
or account for possible dynamic program behaviors with conserva-
tive analysis choices; otherwise some runtime behaviors could be
unconsidered. Precise, whole-program analysis runs the high-risk
of missing dynamic program behavior and not scaling to real-world
Android application [16].

Our analysis employs a class hierarchy analysis (CHA) [9] to
build a call graph with refinement achieved by intra-procedural
data-flow analysis. After much experimentation with higher pre-
cision, though brittle, points-to analysis techniques, this analysis
combination gave us the best performance for the classification
task. We augment the call graph to account for reflected method
calls, and conservatively account for exceptions that can be thrown

5

by native code. Our failure-handling analysis over-approximates
the runtime behaviors of the applications, and under-approximates
the connection calls that could be non-essential.

The presented analysis has the following limitations. Dynam-
ically loaded code is not be considered. The analysis considers
only checked exceptions. A best-effort, though aggressive, policy
is used to account for reflection semantics; this policy could miss
possible runtime semantics.

Our analysis is implemented in the Soot Java Analysis Frame-
work [29] and utilizes libraries and the Android API model pro-
vided by DroidSafe [16]. The presentation of the analysis below
assumes the application is represented in the Jimple intermediate
language [29].

3.2 Call Graph Construction
Our algorithm first computes a static call graph based on CHA

analysis. To compute a call graph, we augment the application code
with the DroidSafe Android Device Implementation (ADI) [16].
The ADI is a Java-based model of the Android runtime and API
that attempts to present full runtime semantics for commonly-used
classes of the runtime and API. Our call graph construction does
not traverse into Android API methods. However, we found it nec-
essary to account for API calls that immediately jump back into
the application. For example, if an application method, m calls
Thread.start() on a receiver that is an application class, t, we
found it necessary to add the edge to the call graph (m, t.run()).
This includes the started thread t in failure handler if m is encoun-
tered.

To achieve this in general, we add to the call graph edges of the
type (m, n) where there is an edge (m, api-method), the call of
api-method is passed a value that is a reference to an application
class, and api-method calls method n on the passed application
class value. This strategy adds to our callgraph the edges for the
Thread.start() to the Thread.run() discussed above.

Furthermore, the call graph is augmented to account for reflected
method calls in the application using the following policy. When
a reflected call is found, we add edges to the graph that target
all methods of the same package domain as the caller (e.g., com.
google, com.facebook). The edges are pruned by the following
strategy: if the number of arguments and argument types to the call
can be determined using a def-use analysis [1], then we limit the
edges to only targets that have the same number and types of argu-
ments. This strategy works well for us in practice and aggressively
accounts for reflection semantics.

3.3 Failure Handler Analysis
We organize the static failure-handling analysis as a recursive

traversal on the call graph for ease of understanding. An iterator
over all application statements calls the analysis separately for the
combination of each statement in the application that could target
a connection call and an exception that indicates communication
failure. Table 1 lists the target methods that we consider connection
calls and each method’s associated failure exception.

The analysis starts with the FINDCATCHES procedure listed in
Figure 3. For each start of the analysis on a statement and ex-
ception pair, s and e, respectively, the procedure first consults s’s
containing method to find an appropriate catch; if e is not caught
locally, the analysis recursively visits all direct predecessors of the
method to find catch blocks that trap the call statement edge (lines
7-23). For each predecessor, p, if a catch is not found that wraps
the call edge, then p’s direct predecessors are visited, and so on.

For each catch that is found during the FINDCATCH, handler
analysis of the reachable statements of the catch block is per-
formed (FINDCATCH, line 26). Figure 4 gives the listing of the

1: procedure FINDCATCHES(meth, stmt, ex, visiting, stack, cg)
2: if (stmt, ex) ∈ visiting || (stmt, ex) ∈ essential then
3: return
4: end if
5: visiting← visiting ∪ (stmt, ex)
6: catchBlockStart← FINDCOMPATCATCH(meth, stmt, ex)
7: if catchBlockStart = null then
8: if ISEVENTHANDLER(meth) then
9: essential← essential ∪ (stmt, ex)

10: return
11: end if
12: for (predStmt, predMeth) ∈ GETPREDS(cg, meth) do
13: if stack 6= ∅ and (predStmt, predMeth) 6= PEEK(stack) then
14: continue
15: end if
16: newStack← stack
17: POP(newStack)
18: FINDCATCHES(predMeth, predStmt, ex,
19: visiting, newStack, cg)
20: if (predStmt, ex) ∈ essential then
21: essential← essential ∪ (stmt, ex)
22: return
23: end if
24: end for
25: else
26: catchStmts← GETCATCHSTMTS(catchBlockStart, meth)
27: ANALYZEHANDLING(meth, stmt, catchStmts,
28: visiting, ∅, stack, cg)
29: end if
30: end procedure

Figure 3: Find catch blocks for exception thrown at statement.

handler analysis procedure ANALZYEHANDLER. The analysis con-
siders the reachable statements inter-procedurally and flow-insens-
itively. Handler analysis searches for: (1) calls to application meth-
ods, (2) throw statements (3) calls to native methods, and (4) pos-
sible calls to UI methods. When the analysis finds a call to an appli-
cation method, it pushes the current statement and method onto the
stack and recursive calls itself for the new method to analyze the
new method’s statements (lines 16-21). If analysis finds a throw
statement, the handler analysis spawns a new FINDCATCHES anal-
ysis to find all the possible handlers of each rethrown exception
(lines 25-44). If analysis finds a call to a native method, we assume
that it will throw all exceptions it is defined to throw, handler anal-
ysis spawns a FINDCATCHES instance for each exception declared
throws (line 12). If a call is encountered that could target a UI
method, then the statement that began the handler analysis is con-
sidered essential since the error handling affects the user interface
(line 9).

FINDCATCHES and ANALYZEHANDLER maintain a set of state-
ment and exception pairs, essential, that records pairs that are cal-
culated as essential. After all connection call statement and excep-
tion pairs are analyzed, pairs not in the essential set are considered
non-essential.

The set of target methods that are considered as affecting the
user interface are listed in Table 4. We also define all overriding
methods of the methods listed in the table as UI methods.

A stack of pairs of method call statement and method is main-
tained during the analysis. The analysis uses the stack to focus
the handler search in FINDCATCHES after a method call has been
performed by a handler further up the stack. When we initiate the
analysis for a connection call, the stack is empty and the analysis in
FINDCATCHES has to search all possible stacks (predecessor of the
containing method) for handlers of the connection statement’s ex-
ception. However, once a handler is found, and the handler calls a
sequence of methods that ends in a possible rethrown exception, the
sequence of methods defines the only stack that should be searched
for a handler of the rethrown exception. The stack is pushed on
line 18 of ANALYZEHANDLER for each method call of a reachable
handler code. During the handler search of the execution stack in

6

1: procedure ANALYZEHANDLER(meth, exceptStmt, stmts, visiting, handled-
Stmts, stack, cg)

2: if stmts ∈ handledStmts then
3: return
4: end if
5: handledStmts← handledStmts ∪ stmts
6: for each stmt ∈ stmts do
7: if HASINVOKE(stmt) then
8: for (succStmt, succMeth) ∈ GETSUCCS(cg, stmt) do
9: if ISUIMETHOD(succMeth) then

10: essential← essential ∪ exceptStmt
11: return
12: else if ISNATIVEMETHOD(succMeth) then
13: for nativeEx ∈ GETTHROWSEXCEPTIONS(succMethd) do
14: FINDCATCHES(meth, stmt, nativeEx, visiting, stack, cg)
15: end for
16: else
17: newStack← stack
18: PUSH(newStack, (succStmt, succMeth))
19: succStmts← GETBODYSTMTS(succMeth)
20: ANALYZEHANDLER(succMeth, exceptStmt, succStmts,
21: visiting, handledStmts, newStack, cg)
22: end if
23: end for
24: else if ISTHROWSTMT(stmt) then
25: rethrownTypes = ∅
26: for defStmt ∈ GETLOCALDEFS(GETOP(stmt)) do
27: if ISALLOC(defStmt) then
28: rethrownTypes← rethrownTypes ∪
29: GETALLOCTYPE(defStmt)
30: else if ISCAUGHTEXCEPTIONSTMT(defStmt) then
31: rethrownTypes← rethrownTypes ∪
32: GETPOSSIBLETHROWNTYPES(meth, defStmt)
33: else
34: essential← essential ∪ exceptStmt
35: return
36: end if
37: end for
38: for rethrownType ∈ rethrownTypes do
39: FINDCATCHES(meth, stmt, rethrownType, visiting, stack, cg)
40: if stmt ∈ essential then
41: essential← essential ∪ exceptStmt
42: return
43: end if
44: end for
45: end if
46: end for
47: end procedure

Figure 4: Analyze reachable statements during handling for UI
interaction or rethrown exceptions.

FINDCATCHES, the stack is consulted to guide the search on line
13, only visiting the edge is at the head of the stack. The stack
is popped when visiting a caller method of the current method in
FINDCATCHES line 17.

During handler search in FINDCATCHES, if no handler is found
locally, and the method is a possible entry point called from the An-
droid runtime, then we conservatively calculate that the exception
and excepting statement could cause application exit, so the pair is
added to the essential set (line 8 of FINDCATCHES).

During handler analysis, if a throw statement is encountered in
reachable code of a handler, the analysis needs to determine the
possible type of the thrown value, and then start a new search for
the handler. The ANALYZEHANDLER procedure calculates local
def-use chains for the method it is analyzing. It uses the local def-
use information to calculate the types of the exception. In lines 25
through 37 the analysis considers all local reaching definitions of
the thrown value. If an allocation statement reaches, then add the
allocated types to the possible types of rethrown exceptions. If a
caught exception statement1, c, reaches the throw statement, then

1A caught exception statement is a statement that defines that start
of a catch block and assigns a local variable to the exception ob-
ject caught by the block.

1: procedure GETPOSSIBLETHROWNTYPES(meth,stmt)
2: thrownTypes = []
3: tryStmts = GETTRYBLOCK(meth,stmt)
4: for tryStmt ∈ tryStmts do
5: if ISTHROWSTMT(tryStmt) then
6: for defStmt ∈ GETLOCALDEFS(GETOP(stmt)) do
7: if ISALLOC(defStmt) then
8: rethrownTypes← rethrownTypes ∪
9: GETALLOCTYPE(defStmt)

10: else if ISCAUGHTEXCEPTIONSTMT(defStmt) then
11: reThrownTypes← rethrownTypes ∪
12: GETPOSSIBLETHROWNTYPES(meth, defStmt)
13: else
14: return ∅
15: end if
16: end for
17: else if HASINVOKE(tryStmt) then
18: for (succStmt, succMeth) ∈ GETSUCCS(cg, tryStmt) do
19: thrownTypes← thrownTypes ∪
20: GETTHROWSEXCEPTIONS(succMeth)
21: end for
22: end if
23: end for
24: return thrownTypes
25: end procedure

Figure 5: Calculate exception types caught at statement.

Table 4: Considered UI Elements.
Class or Interface Methods

1. android.app.Dialog setContentView

2. android.support.v7.app.
ActionBarActivityDelegate

setContentView

3. android.view.View onLayout, layout, onDraw,
onAttachedToWindow

4. android.view.ViewGroup addView, addFocusables,
addTouchables,
addChildrenForAccessibility

5. android.view.ViewManager addView, updateViewLayout
6. android.view.

WindowManagerImpl.
CompatModeWrapper

addView

7. android.webkit.WebView loadData,
loadDataWithBaseURL, loadUrl

8. android.widget.TextView append, setText
9. android.widget.Toast makeText

the try block associated with catch block of c is analyzed for
all checked exceptions that could be thrown. This is performed in
GETPOSSIBLETHROWNTYPES call on line 32 of ANALYZEHAN-
DLER.

If any other type of statement is a definition that reaches the
thrown value, then the analysis cannot determine the exception type
and the connection call (or rethrown exception statement) is con-
sidered essential (line 33). If only allocations and caught exception
statements reach the thrown value, then the handler analysis spawns
a new FINDCATCHES instance to analyze the failure handling. The
classification of the thrown statement is propagated to the current
excepting statement in line of ANALYZEHANDLER.

Figure 5 gives the algorithm for GETPOSSIBLETHROWNTYPES.
First, the method calculates the try block that associates with the
catch block that encloses stmt. Next, the procedure examines
throw and call statements of the try. For a call statement, the pro-
cedure adds to the return list all exception types declared throws
by all methods that the call can target. For a throw statement, the
reaching definitions of the thrown value are calculated. If the reach-
ing definition is an allocation, then add to the return list the type
of the allocation. If the reaching definition is a caught exception

7

statement, then GETPOSSIBLETHROWNEXCEPTIONS recursively
calls itself to find the nesting try block statements and continue the
calculation. If a definition of any other statement type can reach
the thrown value, then the procedure returns null to denote that it
cannot calculate the thrown type (line 14). This situation causes the
examined connection call or rethrown statement in ANALYZEHAN-
DLER to be labeled essential (we have not included the code in the
algorithms to propagate this situation to the essential set, though it
is in our implementation).

3.4 Helper Procedures
The analysis employs the following helper procedures:

FINDCOMPATCATCH(meth,stmt,ex): Return the first statement
of the catch block that will handle an exception of type ex thrown
at statement stmt in method meth.

ISEVENTHANDLER(meth): Return true if method meth overrides
a method defined in the Android API. This method over-approximates
the methods that can be called by the Android runtime to handle
events.

GETCATCHSTMTS(stmt,meth): Given the start of a catch block
defined in the trap table of method meth, return all statements that
were defined in the source code for the catch block of stmt. Since
the dex bytecode does not provide the ending statement of traps, we
need to calculate the extent of the catch block. GETCATCHSTMTS
takes advantage of the property that Java compilers do not produce
code that jumps from outside of the catch block into the middle
of a catch block. So to calculate the catch block’s extent, GET-
CATCHSTMTS (1) produces a control flow graph (CFG) for meth,
(2) colors all statements reachable from stmt in the CFG, (3) for
each statement, c of meth, if all predecessors of c in the CFG are
colored then c is included in the set of statements that are returned
(stmt is also included in the return set). This method calculates an
over-estimation of catch block extents, e.g., it includes finally
blocks.

GETTRYBLOCK(meth,stmt): Given a statement stmt that begins
a catch block in method meth, return the list of statement of try
block associated with the enclosing catch block of stmt.

4. EXPERIMENTS
To establish the quality of our static analysis algorithm, we eval-

uate it on the “truth set” established during our in-depth case study
(see Section 2). We then use it to gather information and report
on non-essential communication in the 500 top-popular Android
applications from Google Play.

4.1 Evaluation of the Static Analysis
For our evaluation, we limit the set of results reported by the

static analysis to those that were, in fact, triggered during our dy-
namic study (see Table 2 in Section 2): these are the connection
statements for which we have reliable information to compare against.
We assess the results, for each application individually and aver-
aged for all applications, using the metrics below. The results are
summarized in Table 5.

1. Expected: the size of the predetermined expected result, i.e.,
the number of connections listed as non-essential in Table 2.

2. Reported: the number of connections deemed as non-essential
by the static analysis.

3. Correct: the number of non-essential connections correctly iden-
tified by the static analysis, i.e., those that were deemed as non-
essential in the dynamic study as well.

4. Precision: the fraction of relevant results among those reported,
calculated as Correct

Reported .
5. Recall: the fraction of relevant results among those expected,

calculated as Correct
Expected .

6. Execution time: the execution time of the analysis, measured
by averaging results of three runs on an Intel® Xeon® CPU E5-
2690 v2 @ 3.00GHz machine running Ubuntu 12.04.5. The
machine was configured to use at most 16GB of heap and to
perform no parallelization for a single application, i.e., each
application uses one core only.

As can be seen in the second and the third columns of Table 5, the
overall averaged precision of our analysis is 83.3%. The analysis
correctly identified 64 non-essential connections out of the total
82 reported. 18 connections were mis-classified, out of which 16
correspond to optional application behaviors, i.e., when connection
failures are indeed ignored and the applications proceed without
the missing information. The remaining two cases correspond to a
stateful communication within the application. The details of each
of these cases are given below:

• 13 connections are used for presenting optional advertisement
content: 3 in the net.zedge.android application, and 5 in
com.crimsonpine.stayinline and com.grillgames.guitarrockhero
each.

• 3 connections correspond to optional application behaviors: 2
in the com.walmart.android application, responsible for pro-
viding location-aware search, and 1 in the com.spotify.music
application, responsible for enhancing the presented album with
images.

• 2 connections, both in com.spotify.music, correspond to state-
ful communication within the application. Blocking each of
these connections, individually, harms the application’s search
capabilities.

Considering the advertisement information as non-essential gives
an overall average precision of 90.8%, as shown in column 4 of Ta-
ble 5. That is, depending on the user’s perspective, between 83%
and 90% of the cases identified as non-essential by the static anal-
ysis indeed do not affect the behavior of the applications.

While designed to be conservative, our analysis is able to cor-
rectly identify 64 out of 106 connection statements deemed non-
essential in the empirical study, resulting in the overall recall of
63.8% (column 3 in Table 5). Considering advertisement non-
essential results in a slight increase in recall, to 64.6% (column
5 in Table 5). The technique correctly identifies the majority of
non-essential connections.

Finally, the last column of table Table 5 shows that our analysis
is highly efficient – it runs in a matter of minutes even on large
applications.

To answer RQ3, we conclude that a static analysis can be ap-
plied for an accurate detection of non-essential connections.
Our highly scalable technique features up to 90% precision
and 64% recall, respectively.

4.2 Non-Essential Communication In the Wild
We apply our technique on the 500 most popular Android ap-

plication downloaded from the Google Play store in January 2015.
Our goal is to investigate how often non-essential communication
occurs in real-life applications and what are its most common des-
tinations.

8

Table 5: Comparison with the Manually Established Results.

Applications
Correctly detected non-essential Correctly detected non-essential Execution

time(counting ads as non-essential)
Precision Recall Precision Recall

air.com.sgn.cookiejam.gp 1/1 (100.0%) 1/3 (33.3%) 1/1 (100.0%) 1/3 (33.3%) 1min 50s
com.crimsonpine.stayinline 13/18 (72.2%) 13/13 (100.0%) 18/18 (100.0%) 18/18 (100.0%) 1min 52s
com.grillgames.guitarrockhero 17/22 (77.3%) 17/30 (56.7%) 22/22 (100.0%) 22/35 (62.9%) 2min 54s
com.king.candycrushsaga 3/3 (100.0%) 3/3 (100.0%) 3/3 (100.0%) 3/3 (100.0%) 1min 53s
com.pandora.android 4/4 (100.0%) 4/9 (44.4%) 4/4 (100.0%) 4/9 (44.4%) 2min 13s
com.spotify.music 4/7 (57.1%) 4/21 (19.0%) 4/7 (57.1%) 4/21 (19.0%) 2min 18s
com.twitter.android 4/4 (100.0%) 4/6 (66.7%) 4/4 (100.0%) 4/6 (66.7%) 2min 33s
com.walmart.android 3/5 (60.0%) 3/5 (60.0%) 3/5 (60.0%) 3/5 (60.0%) 2min 17s
net.zedge.android 15/18 (83.3%) 15/16 (93.8%) 18/18 (100.0%) 18/19 (94.7%) 2min 31s
Totals (average) 64/82 (83.3%) 64/106 (63.8%) 77/82 (90.8%) 77/119 (64.6%) 2min 15.7s

Table 6: Top 20 Non-Essential Communication Callers.
Description Used in # (%)

of Apps

1. com.google.android.gms Google mobile services 403 (80.6%)

2. com.facebook Facebook services 190 (38.0%)

3. com.android.
vending.billing

Google in-app billing 139 (27.8%)

4. com.chartboost.sdk Gaming services 116 (23.2%)

5. com.flurry.sdk Advertising, monetization
and analytics services

79 (15.8%)

6. com.millennialmedia.
android

Advertising, monetization
and analytics services

76 (15.2%)

7. com.mopub.mobileads Advertising, monetization
and analytics services

70 (14.0%)

8. com.tapjoy Advertising, monetization
and analytics services

47 (9.4%)

9. com.bda.controller PhoneGap game controller 23 (4.6%)

10. com.unity3d.
plugin.downloader

Gaming Services 21 (4.2%)

Our analysis reveals that 84.2% of all connections encoded in
these application can be considered non-essential (283,159 connec-
tion out of 336,203 in total). These results are consistent with the
observation of our empirical study described in Section 2. Table 6
presents the top 10 packages in which non-essential connections
occur. As the numbers are aggregated for 500 applications, it is not
a surprise that Google Services, as well as gaming, advertisement
and analytics services, are on the top of the list – numerous applica-
tions use these services, as shown in the last column of Table 6. By
manually investigating some of the most-popular connections in
reverse-engineered versions of the applications, we observed that
those connections are designed to be “best-effort” only. For exam-
ple, an application might attempt to obtain user-specific advertise-
ment information, but continues with generic advertisement if that
attempt fails. The prevalence of mobile services and their “best-
effort” behavior make us believe that it would be beneficial if these
services were designed to allow users to select the level of support
they wish to obtain, instead of relying merely on connectivity for
that purpose.

To answer RQ4, we conclude that non-essential communica-
tion is very common in real-life applications. Most such com-
munication is performed with various mobile services that are
designed to be “best-effort only”, i.e., communication failures
do not prevent successful application execution. Designing
mobile services that allow the user to select the preferred level
of support instead of relying merely on connectivity would be
beneficial.

5. LIMITATIONS AND THREATS TO
VALIDITY

Empirical Study. Our empirical study has a dynamic nature and
thus suffers from the well-known limitations of dynamic analysis:
it does not provide an exhaustive exploration of an application’s
behavior, thus the findings apply only to the execution paths ex-
plored during the analysis. Even though we made an effort to cover
all application functionality visible to us, we probably missed some
behaviors, e.g., those triggered under system settings different from
ours. We attempted to mitigate this problem by performing all our
dynamic experiments on the same device, at the same location and
temporally close to each other. We also automated our execution
scripts in order to compare behaviors of different application ver-
sions under the same scenario and settings. We only report on the
results comparing these similar runs.

During our analysis, we disabled connections one by one, iter-
ating over their list arranged in a lexicographic (i.e., semantically
random) order. As such, we could miss cases when several con-
nections can be excluded altogether, but not individually. Since ex-
ploring all connection state combinations is exponential, we opted
for this linear approach that still guarantees correct, albeit possi-
bly over-approximate results. Moreover, by focusing on individ-
ual connection statements, we cannot distinguish between multiple
application behaviors that communicate via the same statement in
code. We thus conservatively deem a connection as essential if it is
essential for at least one of such behaviors.

Finally, our study only includes a limited number of subjects,
so the results might not generalize to other applications. We tried
to mitigate this problem by not biasing our application selection
but rather selecting top-popular applications from the Google Play
store, and by ensuring that we observe similar communication pat-
terns in all analyzed applications.

A Static Technique For Detecting Non-Essential Connections.
Our technique deems optional behaviors – those when failing con-
nections are ignored by the application, but successful connections
result in presenting additional information to the user – as non es-
sential. As an application can proceed when optional behaviors are
excluded, it is debatable whether they are really essential for the
application functionality or not. In fact, we believe that it is up to
the users to decide whether an optional behavior is indeed essential
for their needs.

Our technique also deems as non-essential stateful communica-
tion that toggles the state of a connection target but does not per-
form any operations in fault-processing code. In many cases, de-
tecting such communication statically is impossible because the
code executed on the target is unknown and unavailable. Even
when communication is performed via RPC within the same ap-

9

plication, it is exceedingly costly for an analysis to determine, with
precision, whether a connection (or set of connections) is stateful.

Some of the non-essential connections that we identified stati-
cally might never be triggered dynamically. In fact, our empirical
study shows that only less than 5% of the connection statements
in the analyzed applications were indeed triggered. Some of such
connections belong to execution paths that were not explored dur-
ing our dynamic application traversal. Yet, a large percentage of
these connections originate in third-party libraries that are included
in the application but only partially used. Analyzing them is still
beneficial as this code might be used in other applications. Nev-
ertheless, our approach could be combined with techniques for de-
tecting dead code, to provide better results.

6. RELATED WORK
Work related to this paper falls into three categories: (1) user-

centric analysis to identify spurious application behaviors (2) infor-
mation propagation in mobile applications, and (3) static exception
analysis for Java.

User-Centric Analysis for Identifying Spurious Behaviors in Mo-
bile Applications. Huang et al. [19] propose a technique, AsDroid,
for identifying contradictions between a user interaction function
and the behavior that it performs. This technique associates intents
with certain sensitive APIs, such as HTTP access or SMS send op-
erations, and tracks the propagation of these intents through the
application call graph, thus establishing correspondence between
APIs and the UI elements they affect. It then uses the established
correspondence to compare intents with the text related to the UI
elements. Mismatches are treated as potentially stealthy behaviors.
In our work, we do not assume that all operations are triggered by
the UI and do not rely on textual descriptions of UI elements.

CHABADA [17] compares natural language descriptions of ap-
plications, clusters them by description topics, and then identifies
outliers by observing API usage within each cluster. Essentially,
this system identifies applications whose behavior would be unex-
pected given their description. Instead, our approach focuses on
identifying unexpected behaviors given the actual user experience,
not just the description of the application.

Elish et al. [12] propose an approach for identifying malware by
tracking dependencies between the definition and the use of user-
generated data. They deem sensitive function calls that are not trig-
gered by a user gesture as malicious. However, in our experience,
the absence of a data dependency between a user gesture and a sen-
sitive call is not always indicative for suspicious behavior: applica-
tions such as twitter and Walmart can initiate HTTP calls to show
the most up-to-date information to their user, without any explicit
user request. Moreover, malicious behaviors can be performed as a
side-effect of any user-triggered operation. We thus take an inverse
approach, focusing on identifying operations that do not affect the
user experience.

Information Propagation in Mobile Applications. The most promi-
nent technique for dynamic information propagation tracking in
Android is TaintDroid [13], which detects flows of information
from a selected set of sensitive sources to a set of sensitive sinks.
Several static information flow analysis techniques for tracking prop-
agation of information from sensitive sources to sinks have also
been recently developed [4, 16, 23, 24]. Our work is orthogonal
and complimentary to all the above: while they focus on providing
precise information flow tracking capabilities and detecting cases
when sensitive information flows outside of the application and/or
mobile device, our focus is on distinguishing between essential and
non-essential flows.

The authors of AppFence [18] build up on TaintDroid and ex-
plore approaches for either obfuscating or completely blocking the
identified cases of sensitive information release. Their study shows
that blocking all such cases renders more than 65% of the appli-
cation either less functional or completely dysfunctional, blocking
cases when information flows to advertisement and analytics ser-
vices “hurts” 10% of the applications, and blocking the commu-
nication with the advertisement and analytics services altogether –
more than 60% of the applications. Our work has a complementary
nature as we rather attempt to identify cases when communication
can be disabled without affecting the application functionality. Our
approach for assessing the user-observable effect of that operation
is similar to the one they used though.

Both MudFlow [6] and AppContext [30] build up on the Flow-
Droid static information flow analysis system [4] and propose ap-
proaches for detecting malicious applications by learning “normal”
application behavior patterns and then identifying outliers. The first
work considers flows of information between sensitive sources and
sinks, while the second – contexts, i.e., the events and conditions,
that cause the security-sensitive behaviors to occur. Our work has
a complementary nature as we focus on identifying non-essential
rather than malicious behaviors, aiming to preserve the overall user
experience.

Shen et al. [26] contribute FlowPermissions – an approach that
extends the Android permission model with a mechanism for al-
lowing the users to examine and grant permissions per an informa-
tion flow within an application, e.g., a permission to read the phone
number and send it over the network or to another application al-
ready installed on the device. While our approaches have a similar
ultimate goal – to provide visibility into the holistic behavior of
the applications installed on a user’s phone – our techniques are
entirely orthogonal.

Exception Analysis for Java. A rich body of static analysis tech-
niques has been developed to analyze and account for exceptional
control and data flow [7, 8, 14, 15, 21, 25, 22]. Most of these tech-
niques define a variant of a reverse data-flow analysis and use a
program heap abstraction (e.g., points-to analysis or class hierar-
chy analysis) to resolve references to exception objects and to con-
struct a call graph. Our technique follows a similar strategy, using
class hierarchy analysis with intra-procedural analysis refinement.
Though some of the prior analysis techniques will provide higher
precision than our technique (namely [14, 15, 25]), we designed
our technique to conservatively, though aggressively, consider dif-
ficult to analyze Android application development idioms such as
reflection, RPC, native methods, and missing program semantics
of the Android API defined in non-Java languages. We initially ex-
perimented with high-precision abstraction techniques such a deep
object-sensitive points-to analysis [27]; however, the abstraction
choices either did not scale or the precision and recall of the full
analysis was unacceptable.

7. CONCLUSIONS
Non-essential communication can impair the transparency of de-

vice operation, silently consume device resources, and ultimately
undermine user trust in the mobile application ecosystem. Our
analysis shows that non-essential communication is quite common
in top-popular Android applications in the Google Play store. Our
results show that our static analysis can effectively support the iden-
tification and removal of non-essential communication and pro-
mote the development of more transparent and trustworthy mobile
applications.

10

8. REFERENCES
[1] A. Aho, M. Lam, R. Sethi, and J. Ullman. No

TitleCompilers: Principles, Techniques, and Tools. Addison
Wesley, 2 edition, 2006.

[2] Android getevent Tool.
https://source.android.com/devices/input/getevent.html.

[3] Android’s UI/Application Exerciser Monkey.
http://developer.android.com/tools/help/monkey.html.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. L. Traon, D. Octeau, and P. McDaniel. FlowDroid:
Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps. In Proc.
of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’14), 2014.

[5] ASM Java Bytecode Manipulation and Analysis Framework.
http://asm.ow2.org/.

[6] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt,
S. Rasthofer, and E. Bodden. Mining Apps for Abnormal
Usage of Sensitive Data. In Proc. of the 37th International
Conference on Software Engineering (ICSE’15) (to appear),
2015.

[7] Byeong-Mo Chang, Jang-Wu Jo, and Soon Hee Her.
Visualization of exception propagation for Java using static
analysis. In Proceedings. Second IEEE International
Workshop on Source Code Analysis and Manipulation, pages
173–182. IEEE Comput. Soc, 2002.

[8] B.-M. Chang, J.-W. Jo, K. Yi, and K.-M. Choe.
Interprocedural exception analysis for Java. In Proceedings
of the 2001 ACM symposium on Applied computing - SAC
’01, pages 620–625, New York, New York, USA, Mar. 2001.
ACM Press.

[9] J. Dean, D. Grove, and C. Chambers. Optimization of
Object-Oriented Programs Using Static Class Hierarchy
Analysis. In Proceedings of the 9th European Conference on
Object-Oriented Programming (ECOOP 95), 1995.

[10] dex2jar. https://code.google.com/p/dex2jar/.
[11] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:

Detecting Privacy Leaks in iOS Applications. In Proc. of the
Network and Distributed System Security Symposium
(NDSS’11), 2011.

[12] K. O. Elish, D. D. Yao, and B. G. Ryder. User-Centric
Dependence Analysis for Identifying Malicious Mobile
Apps. In Proc. of IEEE Mobile Security Technologies
Workshop (MoST’12), 2012.

[13] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proc. of the 9th USENIX
Conference on Operating Systems Design and
Implementation (OSDI’10), pages 1–6, 2010.

[14] C. Fu, A. Milanova, B. G. Ryder, and D. G. Wonnacott.
Robustness testing of Java server applications. IEEE
Transactions on Software Engineering, 31:292–311, 2005.

[15] C. Fu and B. G. Ryder. Exception-chain analysis: Revealing
exception handling architecture in Java server applications.
In Proceedings - International Conference on Software
Engineering, pages 230–239, 2007.

[16] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen,
and M. Rinard. Information Flow Analysis of Android

Applications in DroidSafe. In Proc. of the 22nd Annual
Network and Distributed System Security Symposium
(NDSS’15), 2015.

[17] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking
App Behavior against App Descriptions. In Proc. of the 36th
International Conference on Software Engineering
(ICSE’14), 2014.

[18] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These Aren’t the Droids You’re Looking for: Retrofitting
Android to Protect Data from Imperious Applications. In
Proc. of the 18th ACM Conference on Computer and
Communications Security (CCS’11), pages 639–652, 2011.

[19] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. AsDroid:
Detecting Stealthy Behaviors in Android Applications by
User Interface and Program Behavior Contradiction. In Proc.
of the 36th International Conference on Software
Engineering (ICSE’14), 2014.

[20] ImageMagick Compare Tool.
http://www.imagemagick.org/script/compare.php.

[21] J. W. Jo, B. M. Chang, K. Yi, and K. M. Choe. An uncaught
exception analysis for Java. Journal of Systems and Software,
72:59–69, 2004.

[22] G. Kastrinis and Y. Smaragdakis. Efficient and effective
handling of exceptions in java points-to analysis. In
Compiler Construction, 2013.

[23] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer.
Android Taint Flow Analysis for App Sets. In Proc. of the
3rd ACM SIGPLAN International Workshop on the State Of
the Art in Java Program analysis (SOAP’14), 2014.

[24] L. Li, A. Bartel, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer,
E. Bodden, D. Octeau, and P. McDaniel. I Know What
Leaked in Your Pocket: Uncovering Privacy Leaks on
Android Apps with Static Taint Analysis. arXiv Computing
Research Repository (CoRR), abs/1404.7431, 2014.

[25] X. Qiu, L. Zhang, and X. Lian. Static analysis for java
exception propagation structure. In Proceedings of the 2010
IEEE International Conference on Progress in Informatics
and Computing, PIC 2010, volume 2, pages 1040–1046,
2010.

[26] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora,
B. Dhandapani, E. J. Lehner, S. Y. Ko, and L. Ziarek.
Information Flows as a Permission Mechanism. In Proc. of
the ACM/IEEE International Conference on Automated
Software Engineering (ASE’14), 2014.

[27] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick Your
Contexts Well: Understanding Object-Sensitivity. In POPL,
2011.

[28] O. Tripp and J. Rubin. A Bayesian Approach to Privacy
Enforcement in Smartphones. In Proc. of the 23rd USENIX
Conference on Security Symposium (SEC’14), pages
175–190, 2014.

[29] R. Vallée-Rai, E. Gagnon, and L. Hendren. Optimizing Java
bytecode using the Soot framework: Is it feasible? CC, 2000.

[30] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck.
AppContext: Differentiating Malicious and Benign Mobile
App Behavior Under Contexts. In Proc. of the 37th
International Conference on Software Engineering

(ICSE’15) (to appear), 2015.

11

