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Abstract— This paper proposes a stochastic model of runway
departures and a dynamic programming algorithm for their
control at congested airports. Using a multi-variable state
description that includes the capacity forecast, the runway
system is modeled as a semi-Markov process. The paper
then introduces a queuing system for modeling the controlled
departure process that enables the efficient calculation of
optimal pushback policies using decomposition techniques. The
developed algorithm is simulated at Philadelphia International
Airport, and compared to other potential control strategies
including a threshold-policy. The algorithm is also shown to
effectively adapt to changes in airport departure capacity,
maintain runway utilization and efficiently manage congestion.

I. INTRODUCTION

A. Motivation

Major airports worldwide frequently suffer from surface
congestion and its undesirable impacts, such as excessive
taxi-out times, fuel consumption and emissions. In the
United States (US), Philadelphia (PHL) airport has been seen
to exhibit frequent periods of excessive congestion, with
significantly more active aircraft than needed to maintain
throughput. During such congested periods, the average taxi-
out time at PHL was 38 min even in good weather, far more
than the unimpeded taxi-out time of 12 min [1].

Congestion at an airport such as PHL can be analyzed
using data from the Federal Aviation Administration’s (FAA)
Aviation System Performance Metrics (ASPM) database [2].
Figure 1 (top) shows the counts of aircraft pushbacks and
takeoffs during each 15-minute time window, averaged over
all days in 2011 during which aircraft landed on Runway
27R and took off from Runway 27 L. The average departure
capacity of this runway configuration at PHL, estimated to
be 13 aircraft/15 min [3], is also shown. This plot illustrates
that while the departure capacity is limited, the demand
(pushback rate) can be much higher. The detrimental effect of
this imbalance on taxi-out times is seen in Figure 1 (bottom).

This paper introduces an analytical framework for control-
ling taxi-out times which is also amenable to implementation
in an operational environment.

B. Background and related work

There are several possible options in designing a conges-
tion control strategy. The simplest approach is an open-loop
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Fig. 1: (Top) Average number of pushbacks, average number
of takeoffs and departure capacity per 15 minutes at PHL
in 2011; (Bottom) Average number of pushbacks per 15
minutes and average taxi-out times.

control policy that would restrict the demand to a value
approximately equal to the departure capacity. This form of
demand management, known as slot control, is employed at
most major European airports and at a few locations in the
US [4].

A simple closed-loop control strategy would be a state-
dependent pushback policy aimed at reducing surface con-
gestion, such as N-Control [5], [6], [7], [8]. The N-Control
policy is a threshold heuristic that stops pushbacks when
the number of departing aircraft on the ground exceeds
a certain value, and restarts them when the number of
departures on the ground drops below it. This approach is
similar to constant work-in-process (CONWIP) policies in
manufacturing systems [9].

In prior work, we showed that on-off or event-driven
policies for controlling the pushback process are difficult
to implement in practice [10]. Air traffic controllers prefer
being given a dispatch rate that is valid for a predefined
time period, after which it can be updated. We refer to
this class of policies as Pushback Rate Control (PRC). In
addition, the actuation occurs at the gates during pushback,
while the primary constraint is the runway. The control
strategy therefore has to accommodate stochastic taxi-out
times between the gate and the runway. In order to address
these issues, we developed and tested two variants of PRC
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at Boston airport. The first, PRC v1.0, was a rate-based ap-
proximation of the N-Control policy [11], while the second,
PRC v2.0, used dynamic programming to suggest a rate at
which aircraft would push back from their gates, so as to
keep the airport from becoming highly congested [10]. The
suggested rate was was periodically updated depending on
operating conditions (weather, configuration, fleet mix and
arrival demand), the number of aircraft taxiing out, and the
load of the departure queue.

In order to achieve widespread implementation, PRC pro-
tocols need to be adapted to different operational environ-
ments. PRC v2.0 faces several challenges to such adaptation,
including the dimension of the state-space, sensitivity of
the solution to uncertain parameters, and the definition of
the objective function [3]. This paper presents an alternate
approach (henceforth referred to as PRC v3.0) that resolves
these problems using a new runway service process model.
Using simulations of operations at PHL, N-control and
the PRC variants are compared, and the tradeoffs between
different airport congestion control strategies are assessed.

II. DESIGN REQUIREMENTS

The objective of the control strategy is to minimize the
amount of taxiing-out traffic, and thus taxi-out times, while
maintaining runway utilization. In addition, the desired form
of a congestion control strategy is one that periodically rec-
ommends a pushback (release) rate to air traffic controllers
[11]. The suggested pushback rate is updated at the beginning
of each time-window, and is valid for the duration of it. If
the length of the time-window, ∆, is approximately equal to
the delay between actuation and control (that is, the expected
travel time from the gates to the departure queue), the flights
released from the gate during a given time period would be
expected to reach the departure queue in the next time period.

III. CONTROL STRATEGY

A. System dynamics

The state Nt of the departure process at time t consists
of the number of aircraft traveling from the gates to the
departure queue (Rt ), and the number of aircraft in the
departure queue (Qt ), that is, Nt = (Rt ,Qt). Both elements
of the state, Rt and Qt , can be observed using surface
surveillance data.

The start of each time-window is called an epoch. Suppose
the state at epoch τ is (Rτ ,Qτ), and the decision maker
selects a pushback rate λτ for that time period. Let us assume
that i out of the λτ aircraft reach the runway during the time
interval (τ,τ +∆] with probability βi. Similarly, i out of Rτ

aircraft are assumed to reach the runway at t > τ +∆ with
probability γi. Therefore, Rτ aircraft reach the runway during
the time interval (τ,τ +∆], and λτ aircraft at t > τ +∆, with
probability 1−∑βi−∑γi. In all cases, the queue at time
τ +∆ will be a function f of the aircraft that were in the
queue at τ and the number of aircraft that reach the queue
during the time interval ∆. The queuing system therefore
evolves as follows:

(Rτ+∆,Qτ+∆) =


(
λτ , f (Rτ ,Qτ )

)
, w.p. 1−∑βi−∑γi(

λτ − i, f (Rτ + i,Qτ )),w.p. βi, i = 1, . . . ,λτ(
λτ + i, f (Rτ − i,Qτ )),w.p. γi, i = 1, . . . ,Rτ

(1)

B. Control algorithm

At the beginning of each time-window, the algorithm
recommends a pushback rate λ ∈ Λ = [0, λ̂ ], expressed as
the number of pushbacks per ∆ minutes. The model treats
the departure runways as a single server where aircraft line
up (queue) to await takeoff. The queuing system has finite
queuing space C, which depends on operational procedures
and airport layout.

The control policy tries to balance two objectives, namely,
to minimize the expected departure queue length and to max-
imize the runway utilization. These objectives are reflected
in the cost function c̄(r,q) (Section V). The optimal average
cost per stage, c∗, is given by Bellman’s equation:

c∗+h∗(r,q) = min
λ∈Λ

{
(1−∑βi−∑γi)[c̄(r,q)+ ~pq(r,q) ·~h∗(λ )]

+∑βi[c̄(r+ i,q)+ ~pq(r+ i,q) ·~h∗(λ − i)]

+∑γi[c̄(r− i,q)+ ~pq(r− i,q) ·~h∗(λ + i)]
}

where ~pq(r,q) is the probability vector of the state of the
queue at the end of the time-window given that the state at
the beginning of the time window is (r,q).

IV. PARAMETRIC THROUGHPUT FORECASTS

A wide range of factors such as fleet mix and the expected
number of landings in the next time period can provide a
conditional forecast for the runway service time distribution
[12]. These parameters help explain some of the variance
in the departure throughput, and provide a more accurate
estimate of the expected departure capacity. We extend the
state space to include the throughput forecast (F) as a state
of the system:

Nt = (Rt ,Qt ,Ft) (2)

The optimal average cost per stage, c∗, is then given by:

c∗+h∗(r,q, f) = min
λ∈Λ

{
(1−∑βi−∑γi)[c̄(r,q, f)+∑ f p f pq(r,q, f) ·~h∗(λ , f )]

+∑βi[c̄(r+ i,q, f)+∑ f p f pq(r+ i,q, f) ·~h∗(λ − i, f )]

+∑γi[c̄(r− i,q, f)+∑ f p f pq(r− i,q, f) ·~h∗(λ + i, f )]
}

where p f is the probability of each throughput forecast
and pq(r,q, f) is the probability vector of the state of the
queue at the end of the time-window given that the state at
the beginning of the time window is (r,q, f). The resulting
policy is denoted PRC v3.0.



V. RUNWAY SERVICE PROCESS

In prior work, the runway service process was modeled
as an Erlang distribution whose parameters were estimated
from empirical data [10]. While the Erlang distribution is
convenient for modeling the evolution of a runway queuing
system, the numerical solution of the Chapman-Kolmogorov
equations can be computationally expensive [13], especially
in case of multiple possible throughput distributions with
different shape parameters. In this paper, a new model for
the runway service process, the (M(t)|R0)/Ds/1 model, is
developed.

A. (M(t)|R0)/Ds/1 model

We use the following notation:
• µi: Possible service rate (aircraft/15 min).
• Σ: Set, of cardinality s, of all possible service rates

µ1,µ2, . . . ,µs.
• (R,Q; µi): State of the queuing system, given the deter-

ministic service rate µi.
• F : Set, of cardinality z, of all throughput forecasts

f1, f2, . . . , fz.
• w(i; f j): Probability that the service rate equals µi, given

throughput forecast f j.
We assume that during each time window the number of

aircraft joining the queue is known (R0). We also assume that
during each time window the service rate is deterministic,
but unknown. It is one of a finite set µ1,µ2, . . . ,µs, with
probabilities derived from the empirical distribution (for
example, Figure 2). The set µ1,µ2, . . . ,µs, of cardinality s
is the support of the empirical distribution function.
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Fig. 2: Example of an empirical probability distribution of
departure capacity.

For the example in Figure 2, the throughput process within
each 15-minute window is assumed to be deterministic with
rate 5, 6, . . . , or 13. The probability of each rate equals the
corresponding probability mass in the empirical throughput
distribution. For example, the probability that the service rate
is 10/15 min is 0.28. While this model reflects the empirical
probability distribution of the departure throughput, it does
not reflect the fact that a service rate of 10 aircraft/15 min
does not imply uniformly spaced service times of 1.5 min.

Consider the case of a single possible service rate, µ .
In a given time-window, the system resembles a transient
M(t)/D/1 queuing system, except that the number of arrivals
to the queue during the time-window is known. We denote

such a system as (M(t)|R0)/D/1, and analyze it by extending
the framework proposed by Koopman [14]. In this frame-
work, the service epochs are a priori marked on the time axis.
For example, when the service rate is 10/15, the (potential)
service time epochs are marked at times 1.5,3, . . . ,15 min
from the beginning of the time window. If an aircraft arrives
at an empty system in minute 1, it must wait until 1.5
min before its service starts. Delays at lower states may
therefore be overestimated. This assumption however makes
the analysis tractable: If at epoch 0, R0 aircraft are taxiing
out, the probability mass function ĝ of k arrivals between
the departure runway service times i and i+1 assuming that
j− k aircraft have already arrived, is:

ĝ(i, j,k) = Pr{k arrivals in(ti, ti+1]|(R0− ( j− k))arrivals in(ti,∆]}

=


(R0−( j−k)

k

)
( τi+1−τi

∆−τi
)k(∆−τi+1

∆−τi
)(R0− j),

if 0≤ k ≤ j, j ≤ R0,τi+1 ≤ ∆

0, otherwise
(3)

In this case, the state of the runway system is denoted as
(R,Q; µ), where R is the number of aircraft traveling to the
runway, Q is the number of aircraft in the queuing system
(in service or in queue) and µ is the deterministic service
rate. Now, we observe that ĝ(i, j,k) is the probability of
transitioning from state (R0− ( j− k), j− k + 1{ j−k≥1}; µ)τi

to state (R0 − j, j; µ)τi+1 . The condition j− k ≥ 1 implies
that there were one or more aircraft in the system before
the arrival of the k aircraft between service times i and
i+ 1, and one of them was served. At epoch 0 the system
is in state (R0,Q0,µ). The state of the queuing system at
time ∆, Q̂∆(µ), is a probabilistic function of the initial value
(R0,Q0,µ), the functions ĝ(i, j,k) describing the probability
of each allowable transition, and the assumed service rate µ .

In the full system, for each throughput forecast f , we
have a finite set µ1,µ2, . . . ,µs of possible service rates, each
with probability w(1; f ),w(2; f ), . . . ,w(s; f ). The state of the
queuing system at ∆, Q∆ is therefore given by:

Q∆( f ) =
s

∑
i=1

w(i; f ) · Q̂∆(µi). (4)

Equation (4) shows the benefit of this formulation: The
probability vector of the state of the system Q∆( f ) given a
throughput forecast f is decomposed in a weighted sum of
Q̂∆(µi)’s, which are independent of the weights of the sum-
mation w(1; f ),w(2; f ), . . . ,w(s; f ). A different throughput
forecast f can be modeled by merely changing the weights
w(i; f ) in Equation (4).

We denote this queuing model of deterministic service
times sampled from a finite set and a known number of ar-
rivals at random times as (M(t)|R0)/Ds/1. Moreover, Equa-
tion (4) offers the ability to track each individual arrival at
the queue. Each possible transition is assigned a probability
(ĝ(i, j,k)) and a cost. The cost has two components, that of
queuing and non-utilization of the runway. For the queuing
cost, the first of k arrivals between service times i and
i+1 will encounter a system with j− k aircraft, the second



j− k+ 1 aircraft, etc. Each transition is penalized in terms
of its expected queuing delay (in minutes). Similarly, each
transition from an empty system ( j = k), is penalized in terms
of a loss of runway utilization. The runway non-utilization
cost is the minutes of additional delay for later flights due
to the capacity loss. The optimal pushback policies are
obtained from the optimal cost-per-stage solutions for the
(M(t)|R0)/Ds/1 model.

B. Comparison of (M(t)|R0)/Ds/1 and (M(t)|R0)/E(k)/1
models

In Figure 3, the (M(t)|R0)/Ds/1 model is compared to the
(M(t)|R0)/E(k)/1 model used by PRC v2.0 [15] in terms
of predicting the state of the queue after a 15-minute period
given the range of possible initial conditions Q and R. In
the (M(t)|R0)/E(k)/1 model, the runway service times are
modeled as Erlang-distributed, and the state probabilities are
calculated by deriving the first-order differential equations
(Chapman-Kolmogorov equations) [15]. We assume a single
throughput forecast (Figure 2), and that parameters βi and γi
in Equation (1) equal zero.
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Fig. 3: Expected queue length after 15 min as a func-
tion of the number of aircraft in the departure queue
(R) and the number of aircraft traveling to the runway
(Q) for the (M(t)|R0)/E(k)/1 model (solid line), and the
(M(t)|R0)/Ds/1 model (dashed line).

The two models predict the same value of expected queue
for most initial conditions, except for states in which the
initial queue length is very low (0-3 aircraft). For example,
given 0 aircraft queuing and 12 aircraft traveling to the
runway, (M(t)|R0)/Ds/1 predicts an expected queue of 4 af-
ter 15 min, whereas (M(t)|R0)/E(k)/1 predicts an expected
queue of 3. The (M(t)|R0)/Ds/1 model is conjectured to
underestimate the throughput (and overestimate the queue)
in these cases, because of the assumption that service times
are a priori equally-spaced in the time-window.

VI. SIMULATION OF CONGESTION CONTROL STRATEGIES

A. Departure process model

We focus on the departure process for the runway config-
uration 26, 27R, 35 | 27L, 35, which was in use 74% of the
time under VMC in 2011. In this runway configuration, the
main departure runway is 27L, and the main arrival runway is
27R. ASDE-X analysis shows that there is one departure on
runway 35 for every 11.5 departures on 27L. Additionally,
the thresholds of the two runways are very close to each
other, and the aircraft heading to both of them are part of
the same flow [3].

The model can be used to predict departure throughput
and taxi-out times through a day at PHL. Figure 4 (top)
shows the average number of pushbacks and the average
number of takeoffs (or departures) that were recorded during
each 15-minute time window for all days in which this
runway configuration was in use in 2011. It also shows the
average number of departures predicted by the model. Figure
4 (bottom) shows the actual and predicted average taxi-out
times for the flights that pushed back in each 15-minute time
window. We observe that the model is representative of an
average day at PHL.
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Fig. 4: (Top) Average number of pushbacks, and average
numbers of actual and predicted takeoffs by time of day at
PHL in 2011; (Bottom) Average actual and predicted taxi-out
times by time of day.

B. Calibration of PRC v3.0

The µ and w parameters of Equation (4) that are nec-
essary for calculating the queuing transition probabilities
are estimated from empirical throughput distributions. In
particular, the model makes use of seven departure through-
put distributions, with average throughput ranging between
10 and 14 aircraft/15 min depending on arrival demand,
route blockage and fleet mix factors [3]. As explained in
Section V, it is not necessary to recalculate the transition
probabilities, nor the congestion costs for every empirical
throughput distribution. The maximum pushback rate is set
to 24 aircraft/15 min, which is the maximum pushback



rate observed at PHL after eliminating outliers. This rate is
assumed to be the maximum admissible rate of arrivals into
the departure process (pushbacks).

The next step involves the decision of the optimal time
window, ∆, for this runway configuration. For this, we do a
simple flow analysis. On average, in a controlled scenario,
aircraft enter the system at the same rate as they exit, namely,
the average departure throughput (13 aircraft/15 min). The
corresponding average travel time of each aircraft is 14.6min
[3]. ∆ is therefore chosen to be 15 min.

The last step involves calculating the probabilities βi(R,λ )
and γi(R,λ ), which are necessary for deriving the system
dynamics (Equation (1)). We use Monte Carlo simulations to
estimate the empirical distribution of the number of aircraft
traveling to the runway at the next epoch, Rτ+∆ given the
current number of aircraft traveling, Rτ , and the current
pushback rate, λτ . The system evolves from a randomized
initial condition, and we select random pushback rates every
15 minutes. These rates are allocated to airlines according to
their relative presence at the airport. Every 15 minutes, we
record the transition Rτ+∆, given the current Rτ and pushback
rate λτ . Finally, we derive βi and γi from the simulated
empirical distributions Rτ+∆ = g(Rτ ,λτ).

C. Simulation setup

The simulations are used to evaluate the models used in
PRC v3.0, and also to compare it to other congestion control
mechanisms such as N-Control and Slot-Control.

The airport is seen to saturate when 20 aircraft are taxiing-
out, that is, N∗ = 20 [3]. A value of Nctrl = N∗ = 20, is used
for the N-Control policy. Simulations show that for Nctrl =
20, aircraft do not incur additional delay resulting from gate-
holding. Given that Nctrl ≥ N∗, the resulting taxi-out time
reduction is the highest that can be achieved with N-Control.

The capacity envelope of PHL is used for simulating
Slot-Control. The average departure capacity of this runway
configuration at PHL is 13 aircraft/15 min, and is not found
to change significantly with arrival throughput [3]. Slot-
Control can therefore be simulated by limiting pushbacks
to the average departure capacity. This policy is open-loop
and easy to simulate.

For all control policies, we impose the additional con-
straint that the pushback rate does not exceed 4 aircraft/min,
which was the maximum number of pushbacks/minute
achieved at PHL in 2011. This additional constraint reflects
the fact that pushback coordination and communication re-
quire a certain minimum time.

Finally, the earliest possible pushback time of each flight
is its recorded actual pushback time. This means that in all
scenarios, pushbacks can only be delayed, and not advanced.
In addition, for the cases of PRC and Slot-Control, if the
pushback requests in a 15-minute time-window are fewer
than the optimal pushback rate and the pushback cap re-
spectively, the remaining slots are unutilized. This loss of
runway utilization is because of a lack of sufficient demand
at this time period, and not because of the control scheme.
In the case of N-Control, there are similar instances without

sufficient demand to bring the number of aircraft on the
surface to the Nctrl value.

D. Simulation results

For simulating the three strategies, we run 100 Monte
Carlo simulations sampling the unimpeded taxi-out time of
each flight from the corresponding distribution, and sampling
the runway service time. We also simulate a do-nothing
scenario as a baseline. The results are summarized in Table
I, for the 136,430 flights that pushed back and departed in
this configuration at PHL in 2011. The column “mean delay”
lists the additional takeoff delay that flights incur as a result
of the control scheme, and is the difference between the take-
off time in the baseline scenario and the takeoff time in the
controlled scenario.

Table I shows that PRC v3.0 reduces average taxi-out
times by 1.66 min, while increasing the average delay by
only 0.03 minutes, compared to the do-nothing (baseline)
case. It also reduces the variability of taxi-out times. The
N-Control strategy yields slightly smaller taxi-out time sav-
ings, but with no added delays. It is worth noting that the
PRC v3.0 strategy achieves similar results to the N-Control
strategy despite only being applied every 15 minutes. We
conjecture that this is because of the predictive nature of
PRC. Instead of aiming to keep the taxiing-out traffic below
21 aircraft, it uses information on the current state of the
airport to predict the departure capacity and the queue in
the next 15 minutes. The pushback rate is then set so as to
optimize the load of the queue.

Table I also suggests that the taxi-out time savings from
the Slot-Control policy are less than those of either N-
Control or PRC v3.0, and are achieved with an increased
average delay of 0.27 min or a total added delay of 614
hours per year. This weaker performance is due to the
level of stochasticity in the PHL departure process, which
makes it unsuitable for an open-loop policy. Despite the
fact that the number of pushbacks is capped at the average
departure capacity of the system, loss of runway utilization
occurs often enough that this capacity loss propagates to
delay later aircraft. We also remark that Slot-Control would
result in more variable taxi-out times than N-Control and
PRC v3.0. Taxi-out times grow much higher under Slot-
Control because of the absence of a feedback mechanism
at times of significant congestion.

Figure 5 shows the average traffic by time of day resulting
from a single run of the N-Control simulation. Similarly,
Figure 6 shows the average traffic by time of day resulting
from a single run of PRC simulation. From the lower plots of
the figures, we notice that both strategies are very effective
in reducing long taxi-out times, and in particular removing
the taxi-out time peaks at 1000 and 1900 hours. The upper
plots show that the controlled pushback rates exhibit a similar
trend under both strategies. It is high in the beginning of
each departure push, but it is subsequently rapidly reduced.
Both strategies initially try to load the runway queue, and
subsequently regulate the flow of aircraft on the surface.



TABLE I: Taxi-out time predictions from simulating different control strategies.

Control Taxi-out time Mean delay Mean gate-hold time Number of
algorithm Mean (min) St. dev. (min) (min) (min) flights held
Baseline 18.46 8.53 0.00 0.00 0

N-Control 16.85 5.82 0.00 1.61 31,325
PRC v3.0 16.83 5.86 0.03 1.66 28,594

Slot-Control 17.03 6.60 0.27 1.70 52,042

Pushback rates at the beginning of each departure push are
slightly higher under the PRC v3.0 strategy (for example at
1745 hours). At low traffic levels, the optimal pushback rate
under PRC v3.0 is high, since it aims to build up the queue
at the runway. Subsequently, given the current state of the
surface, (R,Q), and the predicted capacity, the pushback rate
is regulated so as to maintain a desired inventory of aircraft at
the queue, in this case 5-6 aircraft. In steady state, there will
be 5-6 aircraft in queue and 13 aircraft taxiing to the runway.
Although the initial level of traffic is higher for PRC v3.0
than for N-Control, it subsequently stabilizes at lower values
(18-19 aircraft) on average.
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Fig. 5: N-Control simulation: Average departure capacity (in
black), average number of pushbacks, average number of
actual and simulated takeoffs at PHL in 2011 (top); Average
actual and simulated taxi-out times (bottom).

Figure 7 shows the average traffic by time of day resulting
from a single run of the Slot-Control simulation. The trend
of pushbacks under Slot-Control is very different from that
under the two other strategies. The pushback rate is always
capped at 13 aircraft/15 min. For example, the evening
departure push is evenly distributed in the 1-hour time
window 1745 - 1845 hours. The lower plot of Figure 7 shows
that the smoothing of the pushbacks results in significant
taxi-out time reduction. Aircraft pushback at the rate that
they takeoff, and delays build up very slowly.

Figure 8 compares the simulated taxi-out times from the
three control strategies to the do-nothing approach, during
the evening times. In the primary evening departure push
between 1730 and 2000 hours, all control strategies achieve
significant taxi-out time reductions. Under Slot-Control, taxi-
out times are low at the beginning of the departure push,
because aircraft push back at the same rate as the service rate.
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Fig. 6: PRC v3.0 simulation: Average departure capacity (in
black), average number of pushbacks, average number of
actual and simulated takeoffs at PHL in 2011 (top); Average
actual and simulated taxi-out times (bottom).

6 8 10 12 14 16 18 20 22
0

10

20

30

Local time

A
v
e
ra

g
e
 t
a
x
i−

o
u
t 
ti
m

e
 (

m
in

)

 

 

Actual
Predicted

6 8 10 12 14 16 18 20 22
0

5

10

15

20

O
p
e
ra

ti
o
n
s
 (

A
C

/1
5
 m

in
)

 

 Actual dep.

Predicted dep.
Pushbacks

Fig. 7: Slot-Control simulation: Average departure capacity
(in black), average number of pushbacks, average number of
actual and simulated takeoffs at PHL in 2011 (top); Average
actual and simulated taxi-out times (bottom).

However, between 1800 and 1830 hours, a significant number
of Heavy aircraft push back, and the departure capacity is
reduced. As time progresses, aircraft arrive at the queue
at rate greater than the service rate, and queuing delays
increase. By contrast, both PRC v3.0 and N-Control have
delays higher than Slot-Control before 1815 hours, but they
subsequently become significantly lower. Between 1830 and
1930 hours, PRC v3.0 outperforms N-Control, due to its
ability to adapt to the impact of Heavy aircraft on departure
throughput.
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Fig. 8: Comparison of the performance of the control strate-
gies in the evening times

VII. CONCLUSIONS

This paper proposed a stochastic model of runway de-
partures and a dynamic programming approach to airport
congestion control that can handle the multiple uncertainty
factors that are present in airport operations. The proposed
Pushback Rate Control approach, denoted PRC v3.0, over-
comes the challenges faced by previous solutions to the prob-
lem. PRC v3.0 used probabilistic forecasts of the departure
throughput distribution and the observation of the current
system state to determine the optimal rate at which aircraft
pushback from their gates. Using simulations of operations
at Philadelphia International airport, the performance of
PRC v3.0 is compared to a static Slot-Control strategy as
well as a threshold policy known as N-Control.

The results demonstrate that PRC v3.0 offers an effec-
tive compromise between state-dependent control and static
congestion control. Congestion is efficiently managed, high
runway utilization is achieved, even when pushback rates are
allocated every 15 minutes. The algorithm is also shown to
effectively adapt to changes in airport departure capacity.
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