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Abstract

We study the total least squares (TLS) problem
that generalizes least squares regression by al-
lowing measurement errors in both dependent
and independent variables. TLS is widely used
in applied fields including computer vision, sys-
tem identification and econometrics. The special
case when all dependent and independent vari-
ables have the same level of uncorrelated Gaus-
sian noise, known as ordinary TLS, can be solved
by singular value decomposition (SVD). How-
ever, SVD cannot solve many important prac-
tical TLS problems with realistic noise struc-
ture, such as having varying measurement noise,
known structure on the errors, or large outliers re-
quiring robust error-norms. To solve such prob-
lems, we develop convex relaxation approaches
for a general class of structured TLS (STLS).
We show both theoretically and experimentally,
that while the plain nuclear norm relaxation in-
curs large approximation errors for STLS, the
re-weighted nuclear norm approach is very ef-
fective, and achieves better accuracy on chal-
lenging STLS problems than popular non-convex
solvers. We describe a fast solution based on
augmented Lagrangian formulation, and apply
our approach to an important class of biological
problems that use population average measure-
ments to infer cell-type and physiological-state
specific expression levels that are very hard to
measure directly.

1. Introduction

Total least squares is a powerful generalization of ordi-
nary least squares (LS) which allows errors in the mea-
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sured explanatory variables (Golub & Van Loan, 1980).
It has become an indispensable tool in a variety of disci-
plines including chemometrics, system identification, as-
tronomy, computer vision, and econometrics (Markovsky
& Van Huffel, 2007). Consider a least squares problem
y =~ X[, where we would like to find coefficients 3 to
best predict the target vector y based on measured vari-
ables X. The usual assumption is that X is known exactly,
and that the errors come from i.i.d. additive Gaussian noise
n: y = XB3+n. The LS problem has a simple closed-form
solution by minimizing ||y — X 3||3 with respect to 3. In
many applications not only y but also X is known only ap-
proximately, X = Xy + E,, where X are the uncorrupted
values, and FE, are the unknown errors in observed vari-
ables. The total least squares (TLS) formulation, or errors
in variables regression, tries to jointly minimize errors in 'y
and in X (¢5-norm of n and Frobenius norm of E,):

L

min |03 + | B[ where y = (X — E,)8+n (1)

While the optimization problem in this form is not convex,
it can in fact be reformulated as finding the closest rank-
deficient matrix to a given matrix, and solved in closed
form via the singular value decomposition (SVD) (Golub
& Van Loan, 1980).

Many error-in-variables problems of practical interest have
additional information: for example, a subset of the entries
in X may be known exactly, we may know different en-
tries with varying accuracy, and in general X may exhibit
a certain structure, e.g. block-diagonal, Toeplitz, or Hankel
in system identification literature (Markovsky et al., 2005).
Furthermore, it is often important to use an error-norm ro-
bust to outliers, e.g. Huber loss or ¢;-loss. Unfortunately,
with rare exceptions', none of these problems allow an ef-
ficient solution, and the state of the art approach is to solve
them by local optimization methods (Markovsky & Use-
vich, 2014; Zhu et al., 2011; Srebro & Jaakkola, 2003).The

'A closed form solution exists when subsets of columns are
fully known; a Fourier transform based approach can handle
block-circulant errors F, (Beck & Ben-Tal, 2005).
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only available guarantee is typically the ability to reach a
stationary point of the non-convex objective.

In this paper we propose a principled formulation for STLS
based on convex relaxations of matrix rank. Our approach
uses the re-weighted nuclear norm relaxation (Fazel et al.,
2001) and is highly flexible: it can handle very general lin-
ear structure on errors, including arbitrary weights (chang-
ing noise for different entries), patterns of observed and un-
observed errors, Toeplitz and Hankel structures, and even
norms other than the Frobenius norm. The nuclear norm
relaxation has been successfully used for a range of ma-
chine learning problems involving rank constraints, includ-
ing low-rank matrix completion, low-order system approx-
imation, and robust PCA (Cai et al., 2010; Chandrasekaran
et al., 2011). The STLS problem is conceptually differ-
ent in that we do not seek low-rank solutions, but on the
contrary nearly full-rank solutions. We show both theoreti-
cally and experimentally that while the plain nuclear norm
formulation incurs large approximation errors, these can
be dramatically improved by using the re-weighted nuclear
norm. We suggest fast first-order methods based on Aug-
mented Lagrangian multipliers (Bertsekas, 1982) to com-
pute the STLS solution. As part of ALM we derive new
updates for the re-weighted nuclear-norm based on solv-
ing the Sylvester’s equation, which can also be used for
many other machine learning tasks relying on matrix-rank,
including matrix completion and robust PCA.

As a case study of our approach to STLS we consider an
important application in biology, quantification of cellu-
lar heterogeneity (Slavov & Botstein, 2011). We develop
a new representation for the problem as a large structured
linear system, and extend it to handle noise by a structured
TLS problem with block-diagonal error structure. Experi-
ments demonstrate the effectiveness of STLS in recovering
physiological-state specific expression levels from aggre-
gate measurements.

1.1. Total Least Squares

We first review the solution of ordinary TLS problems. We
simplify the notation from (1): combining our noisy data
X and y into one matrix, A 2 [X —y], and the errors into
E £ [E, — n] we have

min||E||%> where (4 — E) m 0. ©

The matrix A is in general full-rank, and a solution can
be obtained by finding a rank-deficient matrix closest to A
in terms of the Frobenius norm. This finds smallest errors
E, and n such that y + n is in the range space of X —
E,. The closest rank-deficient matrix is simply obtained by
computing the SVD, A = USVT and setting the smallest
singular value to be zero.

Structured TLS problems (Markovsky & Van Huffel, 2007)
allow more realistic errors E,: with subsets of measure-
ments that may be known exactly; weights reflecting dif-
ferent measurement noise for each entry; requiring lin-
ear structure of errors E, such as Toeplitz that is crucial
in deconvolution problems in signal processing. Unfortu-
nately, the SVD does not apply to any of these more general
versions of TLS (Srebro & Jaakkola, 2003; Markovsky &
Van Huffel, 2007). Existing solutions to structured TLS
problems formulate a non-convex optimization problem
and attempt to solve it by local optimization (Markovsky
& Usevich, 2014) that suffers from local optima and lack
of guarantees on accuracy. We follow a different route and
use a convex relaxation for the STLS problem.

2. STLS via a nuclear norm relaxation

The STLS problem in a general form can be described as
follows (Markovsky & Van Huffel, 2007). Using the no-
tation in Section 1.1, suppose our observed matrix A is
M x N with full column rank. We aim to find a nearby
rank-deficient matrix A, rank(A4) < N — 1, where the er-
rors I have a certain linear structure:

min |W @ E||% , where rank(4) < N — 1
A=A—-FE,and L(E)=Db 3)

The key components here are the linear equalities that F
has to satisfy, £(F) = b. This notation represents a set
of linear constraints tr(LY E) = b;, fori = 1,..,.J. In our
application to cell heterogeneity quantification these con-
straints correspond to knowing certain entries of A exactly,
ie. E;; = 0 for some subset of entries, while other en-
tries vary freely. One may require other linear structure
such as Toeplitz or Hankel. We also allow an element-wise
weighting W © E, with W; ; > 0 on the errors, as some
observations may be measured with higher accuracy than
others. Finally, while we focus on the Frobenius norm of
the error, any other convex error metric, for example, mean
absolute error, or robust Huber loss, could be used instead.
The main difficulty in the formulation is posed by the non-
convex rank constraint. The STLS problem is a special case
of the structured low-rank approximation problem, where
rank is exactly NV —1 (Markovsky & Usevich, 2014). Next,
we propose a tractable formulation for STLS based on con-
vex relaxations of matrix rank.

We start by formulating the nuclear-norm relaxation for
TLS and then improve upon it by using the re-weighted nu-
clear norm. The nuclear norm || A|| is a popular relaxation
used to convexify rank constraints (Cai et al., 2010), and it
is defined as the sum of the singular values of the matrix A,
ie. ||All« = >, 0i(A). It can be viewed as the ¢;-norm of
the singular value spectrum? favoring few non-zero singu-

?For diagonal matrices A the nuclear norm is exactly equiva-
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lar values, i.e., matrices with low-rank. Our initial nuclear
norm relaxation for the STLS problem is:

min ||A]|. + a||W ® E||% such that
A=A—-FE,and L(E)=Db ()

The parameter o balances error residuals vs. the nuclear
norm (proxy for rank). We chose the largest o, i.e. smallest
nuclear norm penalty, that still produces rank(A4) < N —1.
This can be achieved by a simple binary search over «. In
contrast to matrix completion and robust PCA, the STLS
problem aims to find almost fully dense solutions with rank
N — 1, so it requires different analysis tools. We present
theoretical analysis specifically for the STLS problem in
Section 4. Next, we describe the re-weighted nuclear norm,
which, as we show in Section 4, is better suited for the
STLS problem than the plain nuclear norm.

2.1. Reweighted nuclear norm and the log-determinant
heuristic for rank

A very effective improvement of the nuclear norm comes
from re-weighting it (Fazel et al., 2001; Mohan & Fazel,
2010) based on the log-determinant heuristic for rank. To
motivate it, we first describe a closely related approach in
the vector case (where instead of searching for low-rank
matrices one would like to find sparse vectors). Suppose
that we seek a sparse solution to a general convex optimiza-
tion problem. A popular approach penalizes the ¢1-norm
of the solution x ||x[|; = >, |z;| to encourage sparse so-
lutions. A dramatic improvement in finding sparse signals
can be obtained simply by using the weighted ¢;-norm, i.e.
>, wi|z;| with suitable positive weights w; (Candes et al.,
2008) instead of a plain £;-norm. Ideally the weights would
be based on the unknown signal, to provide a closer ap-
proximation to sparsity (¢yp-norm) by penalizing large ele-
ments less than small ones. A practical solution first solves
a problem involving the unweighted /;-norm, and uses the
solution X to define the weights w; = ﬁ with 6 a small
positive constant. This iterative approach can be seen as an
iterative local linearization of the concave log-penalty for
sparsity, » . 1og(d + |z;|) (Fazel et al., 2001; Candes et al.,
2008). In both empirical and emerging theoretical stud-
ies(Needell, 2009; Khajehnejad et al., 2009) re-weighting
the ¢1-norm has been shown to provide a tighter relaxation
of sparsity.

In a similar way, the re-weighted nuclear norm tries to pe-
nalize large singular values less than small ones by intro-
ducing positive weights. There is an analogous direct con-
nection to the iterative linearization for the concave log-det
relaxation of rank (Mohan & Fazel, 2010). Recall that the
problem of minimizing the nuclear norm subject to convex

lent to the ¢1-norm of the diagonal elements.

set constraints C,
min ||Al|« suchthat A € C, 5)

has a semi-definite programming (SDP) representation
(Fazel et al., 2001). Introducing auxiliary symmetric p.s.d.
matrix variables Y, Z > 0, we rewrite it as:

min tr(Y) +tr(Z) st {Y 4

Y, AT Z:| t 07 A € C (6)

Instead of using the convex nuclear norm relaxation, it has
been suggested to use the concave log-det approximation
to rank:

Jnin, log det(Y + 6I) + logdet(Z + dI)

tYA
St a5

}E(),AEC @)

Here I is the identity matrix and § is a small positive con-
stant. The log-det relaxation provides a closer approxima-
tion to rank than the nuclear norm, but it is more challeng-
ing to optimize. By iteratively linearizing this objective
one obtains a sequence of weighted nuclear-norm problems
(Mohan & Fazel, 2010):

. k -1 k -1
j{&nztr((Y +0)TY)+u((Z27 +61)" Z)

Yy A
st.{AT Z}EO,AGC (8)
where Y’“7 Z* are obtained from the previous iteration, and
YO, Z0 are initialized as I. Let WF = (Y* + 61)~'/? and
Wk = (Z% + 61)~1/? then the problem is equivalent to a
weighted nuclear norm optimization in each iteration k:

- k ATk
Jnin |WFAWS |« st. AeC )

The re-weighted nuclear norm approach iteratively solves
convex weighted nuclear norm problems in (9):

Re-weighted nuclear norm algorithm:
Initialize: k = 0, WP = W2 = I.

(1) Solve the weighted NN problem in (9) to get A**1,

(2) Compute the SVD: WlkAk“WQk = UXVT, and set
VAR — (WE)TWUSUT(WF)™! and
Zk1 = (Wzk)_lVZVT(WQk)_l.

(3) Set W = (YF+6I)" /2 and W) = (ZF +61)~1/2,

There are various ways to solve the plain and weighted
nuclear norm STLS formulations, including interior-point
methods (Toh et al., 1999) and iterative thresholding (Cai
et al., 2010). In the next section we focus on augmented
Lagrangian methods (ALM) (Bertsekas, 1982) which allow
fast convergence without using computationally expensive
second-order information.
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3. Fast computation via ALM

While the weighted nuclear norm problem in (9) can be
solved via an interior point method, it is computationally
expensive even for modest size data because of the need to
compute Hessians. We develop an effective first-order ap-
proach for STLS based on the augmented Lagrangian mul-
tiplier (ALM) method (Bertsekas, 1982; Lin et al., 2010).
Consider a general equality constrained optimization prob-
lem:

mgﬂin f(x) suchthat h(x)=0. (10)

ALM first defines an augmented Lagrangian function:
_ T K 2
LA p) = f(x) + ATh(x) + SlhGx)lz - AD

The augmented Lagrangian method alternates optimization
over x with updates of A for an increasing sequence of yiy.
The motivation is that either if A is near the optimal dual
solution for (10), or, if y is large enough, then the solu-
tion to (11) approaches the global minimum of (10). When
f and h are both continuously differentiable, if py is an
increasing sequence, the solution converges -linearly to
the optimal one (Bertsekas, 1982). The work of (Lin et al.,
2010) extended the analysis to allow objective functions in-
volving nuclear-norm terms. The ALM method iterates the
following steps:

Augmented Lagrangian Multiplier method

(1) xp4+1 = arg ming L(x, Ak, k)

(2) Ak+1 = A + pph(Xp41)

(3) Update g1, — pry1 (we use g = a® with a > 1).
Next, we derive an ALM algorithm for nuclear-norm STLS

and extend it to use reweighted nuclear norms based on a
solution of the Sylvester’s equations.

3.1. ALM for nuclear-norm STLS

We would like to solve the problem:

min ||A][« + ||E||%, such that (12)
A=A+E, and L(E)=b

To view it as (10) we have f(z) = |All. + o E||7 and
h(z) = {A—- A— E,L(E) — b}. Using A as our matrix
Lagrangian multiplier, the augmented Lagrangian is:

min__ |||+ E|}+tr(AT (A-A-E)+5 | A-A-E|}.

E:L(E)=b

13)
Instead of a full optimization over x = (F, A), we use
coordinate descent which alternates optimizing over each

matrix variable holding the other fixed. We do not wait
for the coordinate descent to converge at each ALM step,
but rather update A and p after a single iteration, follow-
ing the inexact ALM algorithm in (Lin et al., 2010)*. Fi-
nally, instead of relaxing the constraint L(E) = b, we keep
the constrained form, and follow each step by a projection
(Bertsekas, 1982).

The minimum of (13) over A is obtained by the singular
value thresholding operation (Cai et al., 2010):

App1=8,-1 (A= By + i, " A) (14)

where S, (Z) soft-thresholds the singular values of Z =
USVT, ie. S = max(S — ~,0) to obtain Z = USVT.

The minimum of (13) over FE is obtained by setting the gra-
dient with respect to E to zero, followed by a projection®
onto the affine space defined by L(E) = b:

By (Ag + (A — A))

" 2a + Lk
and  Eyy1 =g c(p)=bFri1 (15)

3.2. ALM for re-weighted nuclear-norm STLS

To use the log-determinant heuristic, i.e., the re-weighted
nuclear norm approach, we need to solve the weighted nu-
clear norm subproblems:

min |W; AWs ||, + a||E||3 where (16)
A=A+E,and L(E)=Db

There is no known analytic thresholding solution for the
weighted nuclear norm, so instead we follow (Liu et al.,
2010) to create a new variable D = W; AW5 and add this
definition as an additional linear constraint:

min || D||. 4+ || E||% where (17
A:A+E, D:W1AW2,and [:(E) =b

Now we have two Lagrangian multipliers A; and Ao and
the augmented Lagrangian is

i DI, E|2 +u(AT(A-—A-F
E;E?E)Lb” [+« + af[EllF + (A7 ( ) +

tr(AL( D — Wy AWS)) +
LIA— A= E|} + 51D - wiAW,|} (8)

3This is closely related to the popular alternating direction of
multipliers methods (Boyd et al., 2011).

“For many constraints of interest this projection is highly ef-
ficient: when the constraint fixes some entries I;; = 0, projec-
tion simply re-sets these entries to zero. Projection onto Toeplitz
structure simply takes an average along each diagonal, e.t.c
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Algorithm 1 ALM for weighted NN-STLS
Input: A, Wy, Ws,
repeat
e Update D via soft-thresholding:
Dys1 =8, (W1 AW, — 1/ A%).
e Update E as in (15).
e Solve Sylvester system for A in (19).
e Update ¥ = A¥ + (A~ A~ E),
ASTY = AK 4 (D — Wi AW:) and iy, — figei1.
until convergence

We again follow an ALM strategy, optimizing over D, F/; A
separately followed by updates of A1, Ao and p. Note that
(Deng et al., 2012) considered a strategy for minimizing
re-weighted nuclear norms for matrix completion, but in-
stead of using exact minimization over A, they took a step
in the gradient direction. We derive the exact update, which
turns out to be very efficient via a Sylvester equation for-
mulation. The updates over D and over E look similar to
the un-reweighted case. Taking a derivative with respect
to A we obtain a linear system of equations in an unusual
form: —A]_ — WyAQWZ — M(A — A - E) — /JWl(D —
W1 AW5)Ws = 0. Rewriting it, we obtain:

1 _
A+WEAWE = i (A1 + Wi Ao Wo)+(A—E)+W1 DW,
k

19)
we can see that it is in the form of Sylvester equation arising
in discrete Lyapunov systems (Kailath, 1980):

A+ B1ABy, =C (20)

where A is the unknown, and By, Bs, C are coefficient ma-
trices. An efficient solution is described in (Bartels & Stew-
art, 1972). These ALM steps for reweighted nuclear norm
STLS are summarized in Algorithm 1.

To obtain the full algorithm for STLS, we combine the
above algorithm with steps of re-weighting the nuclear
norm and the binary search over « as described in Sec-
tion 2.1. We use it for experiments in Section 5. A faster
algorithm that avoids the need for a binary search will be
presented in a future publication.

4. Accuracy analysis for STLS

In context of matrix completion and robust PCA, the nu-
clear norm relaxation has strong theoretical accuracy guar-
antees (Recht et al., 2010; Chandrasekaran et al., 2011).
We now study accuracy guarantees for the STLS problem
via the nuclear norm and the reweighted nuclear norm ap-
proaches. The analysis is conducted in the plain TLS set-
ting, where the optimal solution is available via the SVD,
and it gives valuable insight into the accuracy of our ap-
proach for the much harder STLS problem. In particular,

we quantify the dramatic benefit of using reweighting. In
this section we study a simplification of our STLS algo-
rithm, where we set the regularization parameter o once
and do not update it through the iterations. The full adap-
tive approach from Section 2.1 is analyzed in the addendum
to this paper where we show that it can in fact recover the
exact SVD solution for plain TLS.

We first consider the problem min ||A — A% such that
rank(A) < N — 1. For the exact solution via the SVD,
the minimum approximation error is simply the square of
the last singular value Errsyp = ||[Asyp — 4|2 = 0%.
The nuclear-norm approximation will have a higher error.
We solve min || A — A||% + || Al|« for the smallest choice
of « that makes A rank-deficient. A closed form solution
for A is the soft-thresholding operation with a = op. It
subtracts o from all the singular values, making the error
Erran = N 012\,. While it is bounded, this is a substantial
increase from the SVD solution. Using the log-det heuris-
tic, we obtain much tighter accuracy guarantees even when
we fix «, and do not update it during re-weighting. Let
a; = ;’N, the ratio of the ¢-th and the smallest singular
values. In the appendix using ‘log-thresholding’ we derive
that

Errrw-nn = 0'12\[ (1 + % Z(ai — \/a? — 1)2>> 21

i<N

<o+ ).
ien i
For larger singular values the approximation is much more
accurate than for the smallest ones. In contrast, for the plain
nuclear norm approach, the errors are equally bad for the
largest and smallest singular values. Considering that nat-
ural signals (and singular value spectra) often exhibit fast
decay (exponential or power-law decay), we can quantify
the improvement. Suppose that the singular values have
exponential decay, o; = onaV 7% with a > 1, or power-
law decay o; = on (N — i + 1)P. The approximation er-

rors are Errey, = 0% (1 + 32 onlat = Va2 — 1)2)

and Err, = ok (144>, 5 (i — V42" — 1)?) respec-
tively. For exponential decay, if N = 100, and a = 1.1,
the approximation error is 1.84 ¢4 for our approach, and
No?%, =100 0%, for the nuclear norm relaxation. This is a
dramatic improvement in approximation, that strongly sup-
ports using the log-det heuristic over the nuclear norm for
approximating matrix rank!

5. Experimental Results

Our first experiment considers plain TLS, where we know
the optimal solution via the SVD. We evaluate the accuracy
of the nuclear norm (NN) and two flavors of the reweighted
nuclear norm algorithm: the full adaptive one described in
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Figure 1. RW-NN for plain TLS: (a) relative error in Frobenius norm for NN and full RW-NN (avg. over 100 trials) w.r.t. SVD. (b) Min,
average, and 90%-quantile relative error for the simplified non-adaptive log-det STLS relative to SVD.

Section 2.1, which we will refer to as (RW-NN), and the
simplified approach with fixed « as described in Section 4
(log-det).

We simulate random i.i.d. Gaussian matrices A of size
N x N, use a maximum of 3 re-weightings in RW-NN,
and update the ALM parameter /i, as i = 1.05%. We plot
the relative error of NN-TLS with respect to exact TLS via
SVD, i.e. the norm of error (w.o. squaring) for NN-TLS
divided by the norm of error for TLS. We compare it to the
relative error for full RW-NN TLS (again with respect to
exact TLS) in Figure 1 (a). The results are averaged over
100 independent trials.

The NN solution, as we expect, is a factor of VN worse
than TLS in Frobenius norm. The full RW-NN always re-
covers the optimal TLS solution, i.e. the relative error is
exactly 1, as we establish in the addendum. The simplified
non-adaptive log-det STLS in Figure 1 (b) is almost as good
as the adaptive: the average error is only about 1% higher
than exact TLS, dramatically better than v/ for plain NN.
These empirical results agree with our theoretical analysis
in Section 4.

Next, we compare NN and RW-NN for a structured TLS
problem with a pattern of entries in E fixed at O (entries are
fixed independently with probability 0.5). This is a prac-
tically important case where the entries of E fixed at zero
represent exact measurements while allowing other entries
to have noisy measurements. The solution of plain TLS via
SVD ignores the constraints and is infeasible for this struc-
tured problem. We still compute the relative error with re-
spect to exact TLS to quantify the increase in error needed
to obey the imposed structure. Again, in Figure 2 (a) we
can see that the RW-NN solution provides much better ac-
curacy than NN, and not far worse than 1, the infeasible
lower-bound given by plain TLS.

Next we consider Toeplitz structured errors, which means
that the matrix E is constant on the diagonals:

(22)

Toeplitz structure arises in time-series modeling, analysis
of linear systems, and system identification, as the convo-
lution operation can be represented as a multiplication by a
Toeplitz matrix (Kailath, 1980). We simulate the Toeplitz
entries at the start of each diagonal as i.i.d. Gaussian. The
Toeplitz structure is quite restrictive, with only M + N — 1
degrees of freedom instead of O(M N). However, we reach
a similar conclusion as we had before: RW-NN solution
provides much better accuracy than NN, much closer to the
infeasible lower-bound via plain TLS. We show the results
for STLS with Toeplitz structure in Figure 2(b).

Finally, we compare our re-weighted nuclear norm ap-
proach to the latest widely used non-convex solver for
STLS, SLRA (Markovsky & Usevich, 2014). The success
of non-convex solvers depends heavily on a good initializa-
tion. We consider a problem with a block-diagonal struc-
ture where some entries are corrupted by large outliers. The
weights on these entries are set to be very small, so an ideal
STLS solver should find the solution while minimizing the
influence of the outliers. Figure 3 shows that for moderate
levels of outliers, both RW-NN and the non-convex SLRA
approach find very accurate solutions. However, for larger
levels of noise, while RW-NN continues to have good per-
formance, the accuracy of SLRA plummets, presumably
due to the difficulty of finding a good initialization. For this
setting we know the exact solution without outliers, and we
measure accuracy by correlation (i.e. cosine of subspace
angles) of the recovered and the exact STLS nullspaces,
averaged over 100 trials.

5.1. Quantification of cellular heterogeneity

We now demonstrate the utility of STLS for solving a broad
and important class of problems arising in biology, namely
inferring heterogeneity in biological systems. Most biolog-
ical systems (such as human cancers, tissues, the human
microbiome and other microbial communities) are mix-
tures of cells in different physiological states or even dif-
ferent cell types. While the primary biomedical interest is
in characterizing the different cell types and physiological
states, experimental approaches can typically measure only
the population average across physiological states. Our aim
is to combine these readily available population-average
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Figure 2. Relative error in Frobenius norm for NN and RW-NN (avg. over 100 trials). The SVD solution is infeasible, providing a lower
bound 1 on the error. (a) STLS with some observed entries (b) STLS with Toeplitz structure.

measurements and use STLS to infer the distribution of
cells across distinct physiological states.

We consider a cell culture containing cells in K distinct
physiological states, such as phases of cell growth or di-
vision cycles (Slavov et al., 2011; 2012). As the growth
rate of the culture changes, the fraction of cells in each
physiological state changes. This fractional change is of
primary interest but it is often too expensive or even tech-
nologically impossible to measure directly. Since the cells
cannot be easily separated we consider the general case
when we know M indicator genes (such as cyclins) that
are either present or absent in K distinct physiological
states, S € RM* X Existing methods for high-throughput
measurements of mRNA levels, such as DNA microarrays
and RNA-seq, can quantify relative changes of mRNA lev-
els across different conditions but cannot accurately quan-
tify the ratios between different mRNAs, i.e., depending
on chemical composition and the physical properties, each
RNA has its own normalization scaler accounting for bi-
ases such as GC (guanine-cytosine) content. To avoid such
biases we explicitly scale the measured relative expression
levels X € RM*N by an unknown positive diagonal ma-
trix Z = diag(z). The goal is to find U € RE*N | the frac-
tion of cells across the K physiological states for each of IV
different conditions, such as different steady-state growth
rates. Mathematically the problem is:

X = ZSU, (23)

where we aim to recover the decomposition up-to scaling
knowing X and S only. We now study conditions for iden-
tifiability without noise, and extend it to a structured TLS
problem in presence of noise.

Linear Algebraic solution We define A = [-,..., 1],
and A = diag(\). Thus A = Z~1. We now have to find A
and U:

AX = SU, (24)

and both unknowns enter the equations linearly. We trans-
pose both sides and move everything to one side to get:
UTST — XTA = 0. Now let us stack columns of U7,
ie. rows of U into a vector, u = vec(U?). Then

vec(UTST) = (S ® I)u, where ® stands for the Kro-
necker product. Similarly defining a block-diagonal matrix
blkdiag(X ™), with columns of X7 (i.e. rows of X) in di-
agonal blocks. This way X7A = blkdiag(X”)\. Com-
bining this together we have:

[(S®I), — blkdiag(XT)] N =0 (25)

Any vector in the nullspace of A =
[(S®1TI) —blkdiag(XT)] is a solution to this prob-
lem. If we have a single vector in the nullspace of A, then
we have a unique solution up-to scaling.

Noisy case: structured Total Least Squares approach
When the observation matrix X is corrupted by noise, it is
no longer low-rank. The structured matrix A in (25) will
only have a trivial null-space. Furthermore, the simple ap-
proach of setting the smallest singular value to zero will not
work because it ignores the structure of the compound ma-
trix A. The errors in X correspond to errors in the block-
diagonal portions of the right part of A. Other entries are
known exactly. This is precisely the realm of structured
total least squares (STLS) that we explored in Section 2.

We will now experimentally apply our reweighted nuclear
norm approach for STLS for the cell heterogeneity quan-
tification problem to demonstrate the inference of the frac-
tions of cells in different physiological states. We use ex-
perimentally measured levels of 14 genes, five expressed
in HOC phase, six expressed in LOC phase, and three in
both phases, across 6 exponentially growing yeast cultures
at different growth rates. The resulting A matrix in (25)
is 84 x 26. Our algorithm infers the fraction of cells in
HOC and in LOC phase, up to a scalar factor, in close
agreement with expectations from physical measurements
in synchronized cultures (Slavov et al., 2011; Slavov &
Botstein, 2011). Thus we can extend the observed trend
to asynchronous cultures where this fraction is very hard
to measure experimentally. Such analysis can empower
research on cancer heterogeneity that is a major obstacle
to effective cancer therapies. This modest size experiment
provides a proof of concept and we are pursuing applica-
tions to more complex biological systems.
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Figure 3. Comparison of convex STLS (RW-NN) with non-
convex SLRA and SVD on problems with large outliers. At low-
noise all the solvers are accurate, but only RW-NN remains accu-
rate at high noise. We measure accuracy by correlation with the
exact solution. We present the distribution of correlations over
100 trials as a boxplot.

6. Appendix: Error analysis for re-weighted
STLS

To gain insight into the re-weighted nuclear norm we con-
sider the diagonal case first, where A = diag(x). The di-
agonal matrix case penalizing rank of A is equivalent to
the vector problem penalizing sparsity of x, so we use the
vector notation for simplicity. As both the Frobenius and
nuclear norms are unitarily invariant’, the analysis directly
extends to the non-diagonal case.

The log heuristic for sparsity solves the following problem:
min § |[x—y|3+a Y, log(6+|z;), for a very small § > 0.
This is a separable problem with a closed form solution for

each coordinate® (contrast this with the soft-thresholding
operation):

3 (= 0) +/(yi = 0)2 —4(a —wid) ), yi > 2V
7= 05 (Wi +0) = V(yi +0)° —4la+pid) ), i < —2Vax
0, otherwise
(26)
Assuming that § is negligible, then we have:
%yz+\/yi_ lfyz>2f
T~ % -V - ,if y; < =24/« (27)
0 0therw1se

3

and we chose « to annihilate the smallest entry in x, i.e.

a = Lmin;y?. Sorting the entries in |y| in increasing
lyil

1
order, with Yo = ¥min, and defining a; = Tool” we have

a; > 1 and the error in approximating the i- th entry, for

> Taking the SVD A = USV” we have |USV||% = ||S||%
and |[USV ||« = ||S||+ since U, V are unitary.

® For § small enough, the global minimum is always at 0, but
if y > 24/« there is also a local minimum with a large domain of
attraction between 0 and y. Iterative linearization methods with
small enough step size starting at y will converge to this local
minimum.
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Figure 4. STLS infers accurate fractions of cells in different phys-
iological phases from measurements of population-average gene
expression across growth rate.

©>0is

- (28)

> Y ’ o
Err; = |z, —yi|° = 5 (ai —y/a? — 1) < = 2a
Also, by our choice of «, we have Errg = y fori = 0.
The approximation error quickly decreases for larger en-
tries. In contrast, for ¢; soft-thresholding, the errors of ap-
proximating large entries are as bad as the ones for small
entries. This analysis extends directly to the log-det heuris-
tic for relaxing matrix rank.

7. Conclusions

We considered a convex relaxation for a very rich class of
structured TLS problems, and provided theoretical guaran-
tees. We also developed an efficient first-order augmented
Lagrangian multipliers algorithm for reweighted nuclear
norm STLS, which can be applied beyond TLS to matrix
completion and robust PCA problems. We applied STLS
to quantifying cellular heterogeneity from population aver-
age measurements. In future work we will study STLS with
sparse and group sparse solutions, and explore connections
to robust LS (El Ghaoui & Lebret, 1997).
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