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Time-optimal control by a quantum actuator
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Indirect control of qubits by a quantum actuator has been proposed as an appealing strategy to manipulate
qubits that couple only weakly to external fields. While universal quantum control can be easily achieved when
the actuator-qubit coupling is anisotropic, the efficiency of this approach is less clear. Here we analyze the
time efficiency of quantum actuator control. We describe a strategy to find time-optimal control sequences by the
quantum actuator and compare their gate times with direct driving, identifying regimes where the actuator control
performs faster. As a paradigmatic example, we focus on a specific implementation based on the nitrogen-vacancy
center electronic spin in diamond (the actuator) and nearby 13C nuclear spins (the qubits).
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I. INTRODUCTION

Fast and high-fidelity control of quantum systems is a key
ingredient for quantum computation and sensing devices. The
critical task is to reliably control a quantum system, while
staving off decoherence, by keeping it isolated from any
external influence. These requirements pose a contradiction:
fast control implies a strong coupling to an external controlling
system, but this entails an undesired interaction with the
environment, leading to decoherence. One is then often
faced with the choice between using a strongly connected
system, implying a stronger noise, or a weakly connected
one, which is more isolated from the environment and thus
offers longer coherence times, but results in slower control.
A strategy to overcome these issues is to use a hybrid system
where a quantum actuator interfaces the quantum system of
interest to the classical controller, thus allowing fast operations
while preserving the system isolation and coherence [1]. This
strategy has been proposed for a broad range of systems, from
superconducting qubits [2,3] to nanomechanical resonator
[4,5] and qubit networks [6,7]. This indirect control is partic-
ularly appropriate for nuclear spin qubits, which only couple
weakly to external fields, but often show strong interactions
with nearby electronic spins. This model describes several
systems, from spins associated with phosphorus donors in
Si [8], to fullerene qubits [9], ensemble-ESR systems (such
as malonic acid [10]), and, most recently, nitrogen-vacancy
(NV) centers in diamond [11,12]. While there are practical
advantages to this indirect control strategy, as it does not
require experimental apparatus to directly drive the nuclear
spins, an important question is whether it can reach faster
manipulation than direct control. In this paper we describe a
strategy to achieve time-optimal indirect control of a qubit by
a two-level quantum actuator. We focus on the NV center in
diamond as a paradigmatic example, assessing the achievable
gate times of this strategy as compared with those for direct
driving. The methods and results are however broader: thanks
to the wide range of couplings to 13C spins in the lattice, we
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can survey a large parameter space, encompassing many other
physical systems considered as qubit candidates.

We propose to use alternating controls to drive the evolution
of a nuclear spin anisotropically hyperfine coupled to an
electronic spin [10,13]; in particular, periodically driving the
spin of a NV center in diamond can steer the evolution of a
proximal 13C nuclear spin in a potentially shorter time than
a direct, slow radio-frequency (rf) addressing. In general, the
method ensures the use of the nuclear spin as a resource within
the same implementation time range of direct addressing,
while entirely bypassing the application of rf, thus avoiding
any noise and errors associated with it [14].

The paper is organized as follows. We first introduce the
general concepts of control by a quantum actuator, using the
NV center spin system to provide a concrete physical example.
We then show how to find the time-optimal actuator control
sequence, combining algebraic constraints with numerical
optimization. The main results of the paper are an extended
comparison of the quantum actuator control with direct driving
of the qubit. We use the NV center spin system to explore a
broad range of parameters in order to show when actuator
control is more convenient, ending the paper with a discussion
of more general applications. Some technical results are
contained in the appendices.

II. QUANTUM ACTUATOR

A. Indirect control by a quantum actuator

We assume a two-level quantum actuator, with eigenstates
|0〉,|1〉 separated by an energy gap much larger than the
coupling to the qubit; then, the qubit Hamiltonian depends
on the state of the quantum actuator:

H = Ha + Hq + |0〉〈0|a ⊗ H0
q + |1〉〈1|a ⊗ H1

q, (1)

where Ha,q are the internal Hamiltonian of the actuator and
qubit, respectively, and we only retained the part of the
coupling Hamiltonian that conserves the actuator eigenstates.
The qubit thus evolves under two different Hamiltonians
depending on the actuator state. Switching between the
actuator eigenstates is enough to achieve full controllability
of the qubit, as long as the coupling is anisotropic [10,13].
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In the absence of direct driving of the qubit, Pontryagin’s
minimum principle proves that this bang-bang control achieves
time optimality [15–17].

As a concrete example, we consider a single NV center
electronic spin S = 1 [18,19] coupled to a 13C nuclear spin
I = 1/2 [20,21] (see Appendix A). Their Hamiltonian is

H = �S2
z + γeB0Sz + γCB0Iz + �S · A · �I , (2)

where � = 2.87 GHz is the NV zero-field splitting; γe ≈
2.8 MHz/G, γC ≈ 1 kHz/G are, respectively, the gyromag-
netic ratios of the electron and nuclear spins; B0 is a static
magnetic field along the NV ẑ axis; and A is the hyperfine
tensor. The NV spin triplet can be reduced to an effective
two-level system by driving the system on resonance with
a transition between two Sz eigenstates (e.g., |ms = 0〉 ↔
|ms = +1〉), while the third eigenstate (e.g., |ms = −1〉) can
be neglected. Then the Hamiltonian can be rewritten in the
electronic spin rotating frame as

H = ω0Iz + Sz
�Az · �I

= |0〉〈0|ω0Iz + |±1〉〈±1|(ω0Iz ± �Az · �I ), (3)

where ω0 = γCB0 (that we assume >0). The contact and
dipolar contributions [21] to the hyperfine coupling �A can
be described by a longitudinal component A‖ and a transverse
component A⊥, which we will take without loss of generality
along the x̂ direction. The nuclear spin thus rotates around
two distinct axes, depending on the electronic spin manifold.
Then, a simple strategy for the indirect control of the nuclear
spin is to induce alternating rotations by flipping the electronic
spin state with (fast) π pulses. We define the axes and rotation
speeds in the two manifolds as

ω0 = γCB0 = κω±1, ω±1 =
√

(ω0 ± A‖)2 + A2
⊥,

(4)
v̂0 = ẑ, v̂1 = ẑ cos(α) + x̂ sin(α),

with

tan(α) = A⊥
ω0 ± A‖

, κ = ω0

ω±1
. (5)

If the NV electronic spin is initially in the |0〉 state, applying
π pulses at times Tk gives the nuclear spin evolution:

U = e−iφ1
n �v1·�σ , . . . ,e−iφ0

k �v0·�σ e−iφ1
k−1 �v1·�σ , . . . ,e−iφ0

i �v0·�σ , (6)

where φ
0(1)
k = (Tk − Tk−1)ω0(1), for odd (even) k, and �σ are

the Pauli matrices.

B. Time-optimal control by a quantum actuator

For a fair comparison to direct driving, we need to
consider the time-optimal synthesis of the desired unitary
U by alternating rotations [15,16,22]. Explicit solutions to
this optimization problem have been recently obtained using
algebraic methods [22–24] and we only describe here the most
important and relevant results.

The optimization of Eq. (6) looks daunting at first, since
one needs to find n � ∞ phases φk . However, it was found
[15,22] that for n � 4, the internal angles are related by

tan

(
φ1

2

)
= tan

(
φ0

2

)
κ − cos(α)

1 − κ cos(α)
, (7)

with φ1(φ0) the rotation angle about �v1(�v0). Thus the solution
depends on only four parameters, greatly simplifying the
problem: the outer angles φi,φf , the internal angle φ0 of
the rotation around �v0, and the total number of rotations n

(the sequence length). We can distinguish two important
cases that yield different time-optimal solutions, whether
κ ≶ cos(α). This condition is simply set by the sign of the
longitudinal hyperfine interaction, since it corresponds to
ω0 ≶ (ω0 ± A‖).

If κ < cos(α), optimal sequences are finite and we always
have φ0 � π and φ1 � π . Finite sequences with n � 6 have
π/3 < φ0 < π and their length is bound by n � � 2π

α
� + 1.

For κ > cos(α), both finite and infinite time-optimal se-
quences are possible. For large angles between rotation axes,
α > 2π/3, only n = 3 or infinite sequences are possible, with
φ0 > π . For smaller angles, we can have longer time-optimal
sequences. The number of switches is limited by n � �π

α
� +

3 and, correspondingly, we have π < φ0 � (n−1)
(n−2)π . Loose

bounds can also be found for the outer angles [23] and thus on
the total time to implement general unitaries.

These conditions on the admissible time-optimal sequences
severely constrain the search space of the time-optimal
control sequence for specific goal unitaries and Hamiltonian
parameters. We were thus able to perform an exhaustive
analysis of time-optimal control for a large number of nuclear
spins surrounding the NV center. In turn, the broad range of
parameters considered allows us to encompass many other
physical situations, also not linked with the specific system
considered here.

III. COMPARISON WITH DIRECT DRIVING

An alternative strategy for qubit control is to use classical
driving fields. Resonant driving along a desired rotation axis
achieves time-optimal steering of the qubit in the xy plane
[15,25].

Even when the direct driving of the qubit is slow, the
rate might be increased by virtual transition of the actuator.
This is the case for nuclear spins: while their coupling to an
external driving field is weak, indirect forbidden transitions
mediated by the electronic spin can considerably enhance the
driving strength [20,26–28]. This nuclear Rabi enhancement
depends on the state of the electronic spin. The effective
Rabi frequency 
 for an isolated nuclear spin, hence, is
modified from its bare value 
 by the enhancement factors
ζ0,±1, corresponding to the electronic spin states |0〉,|±1〉 (see
Appendix B). The enhancement is proportional to the ratio of
the qubit and actuator coupling to the external field. For nuclear
and electronic spins considered here, γe/γn ≈ 2600 and the
effective Rabi frequencies 
i = (1 + ζi)
 can be much larger
than the bare frequency.

We assume 
 ≈ 100 kHz as an upper limit on realistic
bare nuclear Rabi frequencies by considering data in Ref.
[29], where the 13C considered was only weakly coupled and
thus no Rabi enhancement was present. To achieve this strong
driving, a dedicated microfabricated coil was necessary [30].
Rabi frequencies 
 ≈ 20 kHz are, in our experience, in the
upper achievable range with modest amplifiers and a simple
wire to deliver the rf field.
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FIG. 1. (Color online) Comparison of gate time: Case κ <

cos(α), occurring for a 13C at a distance of ≈2.92 Å from the NV
center, with an external magnetic field B0 ≈ 500G aligned with the
ẑ axis. We plot the simulated actuator implementation time (blue
circles, left axis) of the unitaries X(θ ) (left) and Y(θ ) (right) and
the corresponding sequence lengths (red crosses, right axis). For
comparison, we plot the time required with direct driving (green
lines) with bare Rabi frequencies 20 and 100 kHz, when the electronic
spin in state |−1〉 (left), thus maximizing the enhancement factor, or
|0〉 (right). Note that the direct-driving time for θ > π depends on
whether the driving phase can be inverted (dashed line) or not (solid
line).

Both regimes of κ ≶ cos(α) for the time-optimal solutions
can be explored in the NV center system by considering the
coupling to 13C at different distances from the NV defect
[31–33]. The hyperfine tensors for 13C located up to ≈8 Å away
from the NV center were estimated using density functional
theory [34]. In what follows, we numerically compare the
performance of the proposed control method against direct
driving under diverse experimental conditions and for a
number of distinct nuclear spins.

Using the relationship between internal angles given by
Eq. (7) and the bounds on their values, we numerically
searched for sequences U, by solving the numerical equations
for the three angle parameters. The search was deemed
successful when the fidelity F ≡ 1

2 |tr(UU
†
goal)| = 1 − ε, with

ε � 10−10. We repeat the search for different sequence lengths
and choose the sequence with minimal time cost among all
sequences obtained in successful searches to ensure that we
are at the global time optimum within numerical error.

Typical results for the case κ < cos(α) are illustrated in
Fig. 1 by a 13C at a distance r ≈ 2.92 Å from the NV center,
at an external magnetic field B0 ≈ 500 G (ω0 = 0.5 MHz)
aligned with the ẑ axis. This magnetic field strength is experi-
mentally convenient: it achieves fast nuclear spin polarization
since in the electronic excited state the nuclear and electronic
spins have similar energies, allowing polarization transfer
during optical illumination. We will consider later the effects
of different magnetic field strengths. The hyperfine interaction
of this spin, A‖ ≈ 1.98 MHz and A⊥ ≈ 0.51 MHz, yields α ≈
11.6o and κ ≈ 0.20. Although the upper bound on the sequence
length is 32, we found that the optimal sequences were
much shorter (red crosses). The simulation results indicate
that, given a rotation angle θ , the actuator implementation
times for rotations around any axis in the {ŷ,x̂} plane are
comparable, with a maximum around θ ≈ π , and a symmetry
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FIG. 2. (Color online) Comparison of gate time: Case κ >

cos(α), occurring for a 13C at a distance of ≈ 4.31 Å from the NV
center. See Fig. 1 for comparison and explanation of symbols. Note
that virtual transition of the electronic spin in the ms = 0 manifold
result in a decrease of the effective Rabi frequency, thus making direct
driving in that manifold unfavorable.

for θ = π ± δ. We plot, in particular, the optimal times
TA(θ ) required to generate the unitaries X(θ ) ≡ e−iθσx/2 and
Y(θ ) ≡ e−iθσy/2 with the actuator scheme (blue circles). Here
and in the following we neglect the time needed for the actuator
π pulses, since it can be as low as 2–5 ns [35]. For comparison,
we consider direct driving with bare Rabi frequencies in the
range 
 ≈ 20–100 kHz. In Fig. (1) we plot the gate time TD(θ )
required with directive driving (green solid and dashed lines),
taking into account the Rabi enhancement factors, which for
this nuclear spin are ζ0 ≈ −2.43, ζ+1 ≈ 0.62, and ζ−1 ≈ 1.81.
Note that for bare Rabi frequencies weaker than ≈20 kHz, the
actuator protocol is advantageous for any rotation angle.

In Fig. 2, we examine the driving of a 13C at a distance of
≈4.31 Å from the NV center, for which A‖ ≈ −0.35 MHz and
A⊥ ≈ 0.23 MHz. Under the same magnetic field conditions,
B0 ≈ 500 G, we have κ ≈ 1.8, α ≈ 57.4o, and thus κ >

cos(α), with n = 6 the maximal possible length of a finite
time-optimal sequence. The figures show the optimal times
to synthesize the unitaries X(θ ) and Y(θ ) as a function of the
rotation angle θ as well as the corresponding length of the
time-optimal sequence. For the synthesis of some unitaries,
the optimal scheme requires infinite-length sequences. We
compare the time required with the actuator protocol to
the direct driving, taking into account the enhancement
factors (ζ0 ≈ −1.07, ζ+1 ≈ 0.29, and ζ−1 ≈ 0.78). Even if the
hyperfine coupling strength is smaller than for the first spin
considered, the actuator times are in general smaller; similarly,
even for the highest considered direct-driving Rabi frequency
the actuator protocol can have a lower time cost.

While the results shown for particular nuclear spins are
indicative of the achievable gate times, the broad range of
parameters for different actuator-qubit systems could give
rise to quite different behaviors. We thus investigate the
actuator implementation time of a particular unitary Y(π ) for
an extended range in {α,κ} space; the result is plotted in the
leftmost panel of Fig. 3. To find the times for a smooth set
of parameters, we interpolate the implementation times found
numerically for representative pairs {α,κ}. We compare the
times achievable with the actuator scheme with the times
required for direct driving, taking into consideration the
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FIG. 3. (Color online) Left: Actuator gate-implementation times
for Y(π ), for the entire α range. Values for κ span from 10−3 (bottom
thick red line), through 0.1 to 0.9 in 0.1 intervals (thin red lines), to
1 (top thick red line). For the same values of κ , we plot the direct
driving times for Rabi frequencies 
 ≈ 20 kHz (green lines) and 
 ≈
100 kHz (green shaded region). Blue crosses represent the actuator
times for all the tabulated carbon spins around the NV center. Right:
ratio of actuator to direct driving times for the generation of Y(π )
in the NV system as a function of the distance between nuclear
and electronic spins. We consider all three electronic spin states
|0〉,|+1〉,|−1〉 (blue circles, red plus signs, and green dash-dot,
respectively), for a bare Rabi frequency 
 ≈ 20 kHz.

effective Rabi frequencies over the same range of parameters
{α,κ}. If only a moderate driving strength is available (a bare
Rabi frequency of 
 ≈ 20 kHz) the actuator scheme is faster
than direct driving for a broad region of the parameter space.
While 13C nuclear spins coupled to the NV center do not span
the whole region, other systems might, presenting an even
more favorable situation.

As shown in Fig. 3 (right panel), for the NV center system
the dependence on the hyperfine parameters of both the
actuator scheme time and the direct driving strength yields
a broad variation of results for both close by and more far
away nuclei; while a trend toward longer times for the actuator
scheme vs direct driving is apparent as the distance from the
NV center increases, the large variations indicate that the best
scheme should be evaluated for individual nuclear spins.

Finally, we analyze the effect of the qubit’s internal Hamil-
tonian, which sets the energy gap between its eigenstates. As
this increases, the angle α between the two axes of rotation
decreases and thus we expect longer sequences (both in terms
of number of switches and of total time). On the opposite end,
if the energy gap is small, the rotation speeds decrease in both
manifolds; thus, although the time-optimal sequences might
have short lengths, the total time could still be long. For the
nuclear spin qubits, the energy is set by the external magnetic
field strength: in Fig. 4 we plot for various fields the bare
Rabi frequency for which the actuator implementation time
of Y(π ) coincides with the minimum direct driving time (that
is, when the enhancement factor is maximal). If the available
experimental bare Rabi frequency is lower than the depicted
value at any given field, the actuator control method will yield
an advantage over direct driving. At intermediate fields, around
B0 ≈ 250–500 G, Rabi frequencies that favor direct driving

FIG. 4. (Color online) Minimal bare Rabi frequency for which
direct driving is advantageous over the actuator method for the
implementation of Y(π ), for different magnetic fields.

are relatively large, indicating a region where actuator control
can prove especially beneficial. As before, variations in the
hyperfine coupling parameters yield sizable variations on top
of the expected behavior.

Incidentally, the upper bound on the implementation time
of any considered unitary, T ≈ 25μs, is still much shorter
than the nitrogen-vacancy center spin-lattice relaxation time
at room temperature, T1 ≈ 1–10 ms [21].

IV. DISCUSSION

Indirect control of qubits by a quantum actuator is an
attractive strategy in many situations when the qubits couple
weakly to external fields, but interact more strongly to another
quantum system.

Here we analyzed an exemplary situation, consisting of a
hybrid quantum register composed of electronic and nuclear
spins centered around the NV center in diamond. Using this
particular system, we analyzed the parameter space where
indirect control by an actuator presents a time advantage over
direct control methods. The comparison was performed by us-
ing time-optimal control results. Similar control schemes have
been proposed and experimentally implemented previously,
as it was realized early on that switched control is universal
[10,13]; however, time optimality was not considered. For
example, the most frequent scheme [12,36,37] applies alter-
nate rotations for equal times; even if this is a convenient
way of implementing dynamical decoupling on the actuator
while manipulating the qubits, the scheme is not time optimal
and has in general poor fidelity except in the limit of small
qubit-actuator coupling (see Appendix D). In contrast, here
the electronic spin was used just as an actuator (always in an
eigenstate), and as such dynamical decoupling is not required.

An interesting extension of our results would be to simul-
taneously control two or more qubits by the same quantum
actuator. While this is possible, provided the qubits are coupled
with different strengths [10], it becomes more difficult to find
time-optimal solutions except for particular tasks (such as
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state-to-state transformations [38]) or geometries [2,39]. Still,
even when the goal is to control a larger number of qubits, our
results can guide the experimentalist’s choice between direct
driving and the actuator control, for which these results give
an upper bound.
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APPENDIX A: NITROGEN VACANCY IN DIAMOND

The nitrogen-vacancy (NV) center is a localized defect
in diamond [40,41], consisting of a vacancy close to a
nitrogen substitutional atom. It is a common impurity in
natural diamond and it can be as well created in a controlled
manner by nitrogen ion implantation. NV centers have gen-
erated much interest thanks to spin-dependent fluorescence,
optical polarization, and good coherence properties even at
room temperature, with applications ranging from sensors to
fluorescent biomarkers and qubits.

Single NV centers can be detected by optical scanning con-
focal microscopy with excitation at 532 nm and fluorescence
emission in the range 650–800 nm. The NV spin state can
be measured even at room temperature using spin-dependent
decay into metastable states: The |±1〉 states undergo spin-
orbit-induced intersystem crossing [42], decaying in 1/3 of
the cases to metastable singlet states (with ∼300 ns lifetime)
followed by nonradiative decay to the ground state. Thus, a
NV in the |0〉 state will emit more photons on average than a
NV in the |±1〉 states, yielding state discrimination by fluores-
cence intensity. Room temperature optically detected magnetic
resonance (ODMR) of a single NV spin was demonstrated
in groundbreaking experiments [43,44]. The metastable state
decays via spin-nonconserving processes into the |0〉 state
thereby reorienting the spin. While this reduces measurement
contrast, it allows spin polarization in excess of 95%.

The ground state of the NV electronic spin can be manip-
ulated by on-resonance microwave fields. The |0〉 and |±1〉

levels are separated by a zero-field splitting � ≈ 2.87 GHz.
A small magnetic field aligned with the NV axis splits the
degeneracy between the |±1〉 levels, allowing addressing one
transition at a time, as considered in the main text.

NV centers have garnered much attention also due to
their very good coherence properties. Coupling to phonons is
weak and relaxation is dominated by spin-spin processes. For
ultrapure type II-a diamond, the main source of decoherence
is the nuclear 13C spin bath, which can be further suppressed
in isotopically engineered diamonds [45–47]. The coherence
time can be extended by using dynamical decoupling tech-
niques (a series of π pulses) [48,49] to T2 ≈ 600 μs in
natural diamond [20,50,51]. The limiting factor is the T1

relaxation process of NV centers. The process is generally slow
thanks to low coupling to phonons yielding relaxation times of
T1 ≈ 5–10 ms (depending on the NV and other paramagnetic
impurity density).

While the nuclear spin bath is a source of decoherence,
proximal individual 13C nuclear spins can be used as a re-
source [29,52]. Because 13C isotopic impurities are distributed
randomly in the diamond lattice with 1.1% probability, each
NV center couples to spins at different locations, leading to
distinct hyperfine structure and coherence properties. We can
considered the discrete set of proximal lattice sites, in the first
five lattice cells, that will be probabilistically occupied by
a 13C nuclear spin. The hyperfine coupling of these nuclear
spins to the NV center is set by their positions through the
dipolar interaction and the contact term, which is set by the NV
electronic spin wave function density at the spin location. We
used the results of ab initio calculations [31,34,53] that yield
a discrete set of possible hyperfine splittings for the 13C in the
region of interest. Because of the strong angular dependence
of the magnetic dipolar coupling and of the electronic wave
function (which presents a C3v symmetry) there is a wide
variety of coupling strengths, even for nuclear spins at similar
distances from the central NV electronic spin, leading to
different results in the comparison between the quantum and
classical control strategies, as discussed in the main text.

Here we thus survey some of the relevant properties for the
comparison of direct driving versus the actuator model. We
considered the 13C nuclear spin in the first five lattice cells
around the NV center. As shown in Fig. 5, there is a great
variation in the hyperfine parameters, even for spins that are
located at similar distances from the NV center. This in turn
translates into a spread in the enhancement factors of the Rabi
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FIG. 5. (Color online) Left: Histogram of the distribution of hyperfine coupling strengths for the closest 70 nuclear spins. Center: Histogram
of the relevant parameters for time-optimal control for the closest nuclear spins calculated from their coupling to a NV center in diamond at
B0 = 500 G using the hyperfine couplings on the left. Right: Histogram of Rabi enhancement factors, |1 + ζi |, for the closest nuclear spins to
a NV center in diamond at B0 = 500 G. While a few spins have large enhancement >3 (not plotted), the majority of spins have factors 1–1.5.
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driving frequency (right panel) and the magnitude and angle
of the axis of rotation in the ms = 1 manifold (left panel).

APPENDIX B: ENHANCEMENT OF THE RABI DRIVING

In the qubit-actuator model, a critical assumption is that
the actuator can be controlled by an external driving much
faster than the qubit. In addition, for the actuator model
to have an advantage in terms of gate-implementation time,
the actuator-qubit coupling should be strong. Under these
conditions, there is a large energy-scale separation between
the qubit and the actuator and a careful analysis of their joint
dynamics is needed.

In particular, for electronic and nuclear spin systems, the
nuclear spin driving field also couples to the electronic spin.

While this coupling is well off resonance, it is in general
quite strong and cannot be disregarded. Because the driving is
off resonant, it cannot induce electronic transitions. However,
it can increase the probability of the on-resonance nuclear
spin transition probabilities, thanks to virtual transitions. This
enhancement has been long observed in electron-nuclear
double resonance (ENDOR) experiments [26,54,55] and is
usually described as a pseudo-Zeeman effect, affecting both
the resonance frequency and the transition probability of
nuclear spins.

The enhancement is due to the mixing of the nuclear
spin Zeeman eigenstates due to the anisotropic hyperfine
interaction. We can calculate the enhancement by performing
second-order perturbation theory in the hyperfine coupling
strength [28], obtaining:

ζ+1 = γe

γn

2A⊥
� + B0(γe − γn) − A‖

; ζ0 = −γe

γn

4A⊥(� − A‖)

(� + B0(γe − γn) − A‖)(� − B0(γe − γn) − A‖)
;

(B1)

ζ−1 = γe

γn

2B

� − B0(γe − γn) − A‖
.

We can rewrite these expressions in terms of the parameters α, κ , which determine the performance of the actuator protocol:

ζ+1 = 2B0γe sin(α)

κ(B0γe + �) − B0γn cos(α)
; ζ0 = − 4B0γe sin(α)(κ(B0γn + �) − B0γn cos(α))

[κ(B0γe + �) − B0γn cos(α)]{κ[� − B0(γe − 2γn)] − B0γn cos(α)}
(B2)

ζ−1 = 2B0γe sin(α)

κ[� − B0(γe − 2γn)] − B0γn cos(α)
.

Note that the enhancement is proportional to the ratio γe/γn,
which is in general quite large. More generally, this corre-
sponds to a proportionality to the relative coupling strength of
the actuator and qubit to external fields.

Note that ζi can be either positive or negative, depending
on the sign of the transverse hyperfine coupling, thus leading
to either an enhancement or a reduction of the effective Rabi
frequency 
i = (1 + ζi)
.

APPENDIX C: LENGTH OF QUANTUM ACTUATOR
CONTROL SEQUENCES

While in the main text we neglected the time required
to apply π pulses on the NV center, this time can become
substantial if the number of required pulses grows. In addition,
pulse errors might also accumulate and degrade the nuclear
spin unitary fidelity. The actuator sequence length is thus a
very important parameter, and we thus survey in Fig. 6 its
spread over the nuclear spins of interest. In particular we plot
the maximum sequence length, as determined by constraints
on the time-optimal solution [23], while the actual solution
might be much shorter.

We note that for typical parameters, the sequence length
is relatively short, as good implementation of dynamical
decoupling pulse sequences comprising more than thousands
of π pulses have been implemented, both in the NV spin system
[56] and in other systems [57–59], including a long tradition
in nuclear magnetic resonance, where thousands of pulses are
routinely employed.

APPENDIX D: FIDELITY OF QUANTUM ACTUATOR
CONTROL

The simplest scheme to obtain rotations of the target
qubit is by alternating its evolution about the two nonparallel
axes for equal amounts of time. While this scheme has
advantages, in particular when one also seek to preserve
the coherence of the quantum actuator [12,36] or when the
exact rotation axes are not known with enough precision,
it provides high-fidelity gates only for small angles α. In
addition, the rotations are not time optimal. In Fig. 7 we
compare the equal-time sequences with the time-optimal
sequences. While the time-optimal construction can achieve
in principle perfect fidelity (and we set the infidelity to
10−10 in the numerical searches) the equal-time decomposition

Number of switches

N
um

be
r 

of
 1

3 C
 s

pi
ns

FIG. 6. (Color online) Maximum number of switches required
for the time optimal solution. Here we survey the closest nuclear
spins to a NV center in diamond at B0 = 500 G.
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FIG. 7. (Color online) Left: Gate Infidelity 1 − |Tr{UeqU
†
g }|, where Ug is a π rotation about Y. Here Ueq is obtained by rotations around

alternating axes (separated by an angle α) for equal time periods. While the fidelity is good for small α, it becomes poor at larger α. Note that
the infidelity for the time-optimal scheme is in principle 0 and was set to <10−10 in the numerical searches. Right: Gate time for the same gate
(solid lines) compared to the time-optimal solution time (dotted lines). Note that the equal-time solutions seem to be time favorable at high α,
but then their fidelity is poor.

does not leave enough degrees of freedom to achieve the
desired gate. The fidelity is worse for large angles between
the rotation axes and a large mismatch between the two

rotation rates. When the equal-time decomposition achieves
acceptable fidelities, this is paid for by long decomposition
times.
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