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1. Introduction

The demonstration in the 1960's that cis-diamminedichloroplatinum(II), or cisplatin, inhibits

cellular division of Escherichia coli1 led to the subsequent discovery that this simple

coordination compound is also an effective antitumor agent in mouse models.2 Subsequent

studies validated cisplatin as an effective anticancer agent in humans as well,3–7 and FDA

approval of cisplatin for the treatment of metastatic ovarian and testicular cancers was

granted in 1978.8 Its introduction as a chemotherapeutic agent significantly improved the

survival outlook for many cancer patients; the cure rate for testicular cancer before the

approval of cisplatin was less than 10%, significantly lower than the 90% cure rate attained

with modern platinum chemotherapy.9,10

Cisplatin kills cancer cells primarily by cross-linking DNA and inhibiting transcription.11

The chemical origin of this process begins when cisplatin enters the cell and undergoes

aquation involving loss of one or both chloride ligands. The resulting platinum(II) aqua

complexes are potent electrophiles that readily react with a number of biological ligands

with loss of the bound water molecules. The purine bases of nucleic acids are strongly

nucleophilic at the N7 position. Thus, cisplatin binds readily to DNA, forming primarily

bifunctional adducts with loss of both chloride ligands. The major cisplatin-DNA adduct is

the intrastrand 1,2-d(GpG) cross-link, which accounts for 60–65% of the bound platinum.12

The resulting Pt-DNA adducts, which distort and bend the DNA structure,13–15 impede

transcription.16 The downstream effects of transcription inhibition ultimately lead to cell

death.

Despite its great curative success in testicular cancer, cisplatin is not universally effective in

other cancer types and induces a number of toxic side effects.17–19 Additionally, certain

cancers are resistant to cisplatin therapy. This resistance is either intrinsic or developed

during prolonged treatment.20,21 To circumvent these problems, new platinum complexes

have been pursued and investigated for their antitumor properties. Although well over a

thousand complexes have been prepared and tested thus far,22 only two other platinum drugs

are approved for clinical use worldwide, and three additional compounds are approved for
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regional use in Asia.23 These complexes, displayed in Chart 1, operate with a mechanism of

action similar to that of cisplatin, which involves DNA binding and transcription inhibition.

In designing a new platinum anticancer agent, several structural features can be strategically

modified. As shown in Figure 1, three different ligand types generally comprise a platinum

anticancer complex. The ligands L are typically nitrogen donors. They are referred to as

“non-leaving group” ligands because they form thermodynamically stable bonds with

platinum and are retained in the final platinum-DNA adduct. Modifications of these ligands

directly affect the nature of the resulting platinum-DNA adducts24–26 and therefore the

manner by which cellular repair pathways respond to those adducts. Complexes that contain

amine ligands different from the ammines in cisplatin usually exhibit a different spectrum of

activity in cancer cell lines and are usually not cross-resistant with cisplatin.27 Oxaliplatin,

with its chelating and chiral 1,2-diaminocyclohexane ligand, trans-1R,2R-DACH (DACH),

falls into this category. Modifications of the leaving group ligands X, so named because they

are lost upon DNA-binding, can alter the overall reaction stoichiometry and aquation

kinetics for a platinum anticancer complex. Complexes that react quickly, such as those with

labile nitrate ligands, are generally more toxic because of indiscriminate binding to off-

target biological nucleophiles.28 Carboplatin, on the other hand, contains a relatively stable

chelating CBDCA (CBDCA = 1,1-cyclobutane–dicarboxylato) ligand as its leaving group.

By comparison to cisplatin, carboplatin can be administered at higher doses because of its

lower toxicity profile.29,30 Although less toxic, carboplatin has a similar spectrum of activity

and exhibits cross-resistance to cisplatin, which is a result of the same non-leaving group

ammine ligands.27,31 The axial ligands R comprise the third category. Axial ligands are

present only in higher-valent platinum complexes, such as those of platinum(III) and

platinum(IV). These ligands can ultimately dissociate after biological reduction of the

platinum complex, although there is no guarantee that reduction will lead to their specific

departure from the coordination sphere. They provide convenient points for installation of

tumor-targeting moieties or attachment to nanoparticles. Any of the three ligand types can

be modified in order to alter the lipophilicity and water solubility of the resulting platinum

complex. Both of these properties are important in the design of an effective drug. The

stereochemistry and the number of each respective ligand type can be altered as well.

In this review, we present an overview of known synthetic strategies for the synthesis of

platinum anticancer complexes. Previous review articles have focused on the mechanistic

details of platinum-based drugs at the cellular level,32–37 the chemistry of platinum under

biological conditions,38,39 and new trends for the rational design of platinum anticancer

agents.40–46 The present article provides synthetic inorganic chemists with practical advice

on the synthesis and purification of potential platinum anticancer agents. The coordination

chemistry principles employed for the preparation of such compounds are emphasized and

are therefore useful to a broader readership. There are two major sections, which describe

the synthesis of platinum(II) and platinum(IV) complexes. These sections are further divided

based on the nature and stereochemistry of the target complexes. In each section, a short

overview is provided of the anticancer properties of the target complexes. Multinuclear

platinum complexes, some of which are excellent drug candidates,47,48 have been omitted

from this review to maintain the focus on single-site reactivity. The reaction schemes do not
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display fully balanced chemical reactions, but instead illustrate only the major platinum-

containing products. This choice stems from the complexity of many seemingly simple

reactions of platinum compounds, the chemistry of which can be deceptively complicated.

Two generic ligand types, L and X, are utilized (Figure 1), with ligands symbolized by “L”

representing either an amine or N-heterocyclic unit. When “(L2)” is used, the ligand is

bidentate. Ligands designated with an “X” are monoanionic, like halides or carboxylates.

2. Synthesis of Platinum(II) Complexes

All clinically used platinum drugs (Chart 1) contain the element in the +2 oxidation state

having almost exclusively square-planar coordination geometries. The major reaction

pathways involved in the synthesis of platinum(II) and other square-planar d8 complexes

involve associative ligand substitution. These reactions proceed through five-coordinate

trigonal-bipyramidal intermediates. The stereochemistry of the resulting products is dictated

by the relative trans effect of the ligands within the complex. Synthetic strategies discussed

in the following sections therefore rely heavily on the trans effect principle. For more

detailed summaries of substitution reactions of platinum(II) and other d8 complexes, as well

as the trans effect, the reader is referred elsewhere.49–51 An early review on the synthesis of

monodentate amine complexes of platinum(II) is also available.52

2.1. Synthesis of cis- and trans-[PtL2X2] Complexes

cis- and trans-Diamminedichloro–platinum(II), are stereoisomers, representative members

of the class of complexes having the general formula [PtL2X2], where L is an am(m)ine or

N-heterocycle and X is a halide or other labile ligand. Both cisplatin and its trans isomer

were first prepared over 100 years ago by Peyrone and Reiset, respectively,53,54 and were

commonly known as Peyrone's chloride and Reiset's second chloride. Cisplatin and the trans

isomer, both yellow solids, were recognized to be isomers of Magnus' green salt, [Pt(NH3)4]

[PtCl4]. Structural differences between these three compounds helped validate Werner's

theory of coordination chemistry.55

Following Peyrone's initial preparation of cisplatin, several different synthetic routes have

been described. The common starting material for these procedures is K2[PtCl4], a water-

soluble salt, which can be prepared directly from platinum metal in two steps.56 As with

Peyrone's initial synthesis, several protocols for the synthesis of cisplatin involve the direct

action of aqueous ammonia on the tetrachloroplatinate ion.57,58 This reaction inevitably

results in the formation of Magnus' green salt and the trans isomer as undesired byproducts,

both of which must be removed by additional purification steps.57,58 Recently, the use of

microwave irradiation for the synthesis of cisplatin directly from K2PtCl4 and NH4OAc was

reported.59 The adaptation of this method with flow chemistry techniques enables cisplatin

to be synthesized on the gram scale in one step with no contaminating impurities from

Magnus' green salt or the trans isomer.

The most widely used method for preparing cisplatin is that reported by Dhara in 1970.60

For this multistep reaction (Scheme 1), aqueous [PtCl4]2− is first converted to [PtI4]2− upon

treatment with 4 equiv of KI. The addition of ammonium hydroxide to the dark brown

solution of [PtI4]2− yields the yellow precipitate, cis-[Pt(NH3)2I2]. Removal of the iodide
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ligands from this complex with 2 equiv of AgNO3 in water gives the diaqua cation, cis-

[Pt(NH3)2(OH2)2]2+, from which isomerically pure cisplatin can be isolated as a yellow

solid following treatment with excess chloride ion. The absence of the trans isomer is

attributed to the much higher trans effect of the iodide compared to that of the chloride

ligand. The key intermediate in the formation of cisplatin from the tetrahaloplatinate anions

is the monosubstituted complex, [Pt(NH3)X3]−. When X is I, the large trans effect ensures

that the next NH3 ligand departs from a position trans to an iodide to give the desired cis

isomer. When X is Cl, the lower trans effect of the latter renders substitution trans to NH3

kinetically competitive with substitution trans to the halide, thus yielding a small proportion

of the trans isomer. Dhara's method has been adapted to prepare cis complexes with other

amine or N-heterocyclic ligands,61–63 cisplatin with 15N-labeled am–mines,64–66 and

radiolabeled 195mPt-cisplatin.67 When chelating diamines are used, this method is preferred

as well.68,69 In cases where the desired amine or N-heterocyclic ligands are not water-

soluble, an alternative synthetic route is employed, involving the addition of 2 equiv of the

amine ligand to K2PtCl4 in a solvent mixture of water and an alcohol at elevated

temperatures.70–73 The use of DMF instead of ethanol or methanol as a cosolvent for this

reaction has also been reported.74,75

Purification of cisplatin can be accomplished by recrystallization from hot water containing

either 0.1 M HCl or 0.9% NaCl.66,67 The high chloride ion concentration inhibits the

formation of platinum aqua or hydroxo complexes. The use of amide solvents to

recrystallize cisplatin is also an effective means of purification.76 Dissolution of cisplatin in

N,N-dimethylacetamide (DMA) to a concentration of 18 mg/mL, followed by the addition of

three volume equiv of 0.1 N HCl and incubation in an ice bath, affords analytically pure

material.67 Alternatively, storing a concentrated solution (~22 mg/mL) of cisplatin in DMF

at 3 °C overnight yields yellow cube-like crystals of a DMF solvate, cisplatin·DMF.77

Removal of DMF from the crystal lattice under vacuum gives solvent-free cisplatin of very

high purity.77 Care should be taken when recrystallizing new complexes of the general

formula, cis-[PtL2Cl2], from hot solvents. Although not observed for cisplatin, several other

compounds having this formula isomerize upon recrystallization from hot acetone or DMF,

giving instead the pure trans isomer.78–80 Thus, stereochemistry should be confirmed after

each purification step.

A quick way to test for the presence of isomeric impurities in cisplatin, its trans isomer, or

related [PtL2Cl2] complexes is the Kurnakow test.18 This test is performed by adding an

excess of thiourea (tu) to an aqueous mixture of cis/trans-[Pt(NH3)2Cl2]. The trans isomer

converts to a white, poorly water-soluble powder, trans-[Pt(NH3)2(tu)2]Cl2, whereas

cisplatin becomes the yellow, soluble complex [Pt(tu)4)]Cl2 (Scheme 2). The formation of

different products from the two isomers is a consequence of the high trans effect of thiourea.

The first equiv of thiourea displaces a chloride ligand. For cisplatin, this substitution places

the thiourea trans to an ammine ligand, whereas for trans-[Pt(NH3)2Cl2] the thiourea binds

trans to a chloride. The ammine of cisplatin is sufficiently labilized by the thiourea ligand

such that it can be displaced. The ammines of the trans isomer are never found in a position

trans to the thiourea ligand and therefore remain coordinated. The use of the Kurnakow test

in conjunction with HPLC provides a powerful and sensitive method to detect isomeric
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impurities.82,83 In contrast to cis- and trans-[Pt(NH3)2Cl2], the thiourea-coordinated

products exhibit significantly different retention times and contain stronger UV-vis

absorbance features, properties that make them amenable for HPLC analysis. NMR

spectroscopy provides another potential tool to distinguish between isomers. Unfortunately,

the 195Pt NMR chemical shifts of the cis and trans isomers are very similar, with δ = −2104

ppm for cisplatin and −2101 ppm for trans-[Pt(NH3)2Cl2)].84. The evaluation of 3-bond Pt–

H coupling constants (3JPtH) determined by 1H NMR spectroscopy, however, revealed that

these values are 8–14 Hz greater for the cis isomers of these complexes,85 indicating that the

magnitudes of these coupling constants can be used to distinguish the two isomers. A

potential limitation to this method is the need for a low-field NMR spectrometer in order to

minimize chemical-shift anisotropy effects of the 195Pt nucleus, which broaden resonances

and obscure coupling.

The discovery that trans-[Pt(NH3)2Cl2] lacks the biological activity of cisplatin influenced

the early structure-activity relationships derived for platinum-based anticancer

agents.28,86,87 In contradiction to these structure-activity relationships, which prescribe cis

geometry for activity, it was later discovered that some trans complexes of general formula

[PtCl2L2] are cytotoxic when L is an N-heterocycle like pyridine or thiazole.88–90 Several

methods have been described for the synthesis of these symmetric trans compounds from the

[PtCl4]2− ion. To prepare trans-[Pt(NH3)2Cl2], excess ammonia is added to the [PtCl4]2−

anion to generate the cationic complex, [Pt(NH3)4]2+. The [Pt(NH3)4]Cl2 salt forms

colorless aqueous solutions from which trans-[Pt(NH3)2Cl2] can be precipitated as a yellow

solid after the addition of hydrochloric acid (Scheme 3).57 This synthetic pathway also

exemplifies the trans effect principle. After treatment of [Pt(NH3)4]Cl2 with HCl, an

ammine ligand is replaced by a chloride, forming [Pt(NH3)3Cl]+. The trans effect of chloride

is greater than that of ammonia. Hence, the next incoming chloride ion preferentially

displaces the ammine trans to the coordinated chloride, selectively giving rise to the trans

isomer. This general scheme is applicable to other amine ligands and N-heterocycles as

well.90 Trans complexes can also be prepared directly from [PtL4]X2 compounds without

the use of hydrochloric acid. Upon heating [PtL4]X2 as a suspension in an organic solvent or

as a solid under vacuum, the outer-sphere halides substitute the inner-sphere amine or N-

heterocycle, exclusively generating the trans isomer.90–93 In an attempt to make trans-

[PtL2Cl2], where L is imidazole, [PtL4]Cl2 was treated with HCl. Instead of obtaining the

expected product, trans-[PtL2Cl2], only platinum(IV) complexes were obtained.61 The

reaction of [PtL4]Cl2 with excess Et4NCl in refluxing DMF ultimately gave the desired trans

complexes.61 Interestingly, for the analogous complex where L is pyrazole, trans-[PtL2Cl2]

could be obtained from [PtL4]Cl2 and HCl without any reported difficulties.94

As described in Section 1, leaving group ligands can have profound effects on the biological

properties of the resulting platinum complexes. The importance of this behavior is

exemplified by the clinically used drugs carboplatin and nedaplatin (Chart 1), which differ

from cisplatin only by substitution of the chloride leaving groups with chelating ligands. The

chloride ligands of complexes of general formula cis- and trans-[PtL2Cl2], where L is an

amine or N-heterocyclic ligand, can readily be replaced by other desired ligands. A number

of different synthetic routes are available for substitution of the halides with other ligands.
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For the synthesis of dicarboxylato species, these synthetic routes and their practical

applications have been reviewed in great detail.95 Here, we summarize these reactions

schemes and reiterate some practical aspects.

Typically, a water-soluble silver(I) salt, such as AgNO3, is allowed to react with a

suspension of the platinum(II) complex in water. Silver chloride or iodide is formed as a

white or yellow solid, respectively, and removed by filtration. The filtrate contains the

substitution-labile complex [PtL2(OH2)2]2+. The protonation state and charge on this cation

depend on the pH of the solution. At high pH, substitution-inert platinum(II) hydroxo

compounds form. These species readily oligomerize to form multinuclear platinum(II)

complexes containing bridging hydroxide ligands, which are similarly resistant to

conventional ligand substitution reactions.39,65,96 At slightly acidic pH, however, the aqua

ligands are readily displaced by other nucleophiles. Treatment of cis-[PtL2(OH2)2]2+ in

water with sodium salts of anionic nucleophiles, NaNu, forms the complexes cis-

[PtL2(Nu)2] (Scheme 4a). This reaction proceeds best when the resulting product is

insoluble in water and can then be isolated by filtration without the need to evaporate the

solution to dryness. In cases where the desired product is water soluble, contamination of the

final product with NaNO3 is a problem.97 In addition to preparing diamine dicarboxylato

platinum(II) complexes, this reaction has been used to synthesize platinum(II) diazido

complexes,98,99 which are precursors to photoreactive platinum(IV) prodrugs.100 The

platinum(II) dinitrato complexes, [PtL2(ONO2)2], can also be prepared independently and

isolated as solids, as evidenced in part by an early report of the X-ray crystal structure of cis-

[Pt(NH3)2(ONO2)2].101 An efficient synthesis of cis-[PtL2(ONO2)2] is accomplished by

treating cis-[PtL2I2] with AgNO3 in acetone.62,102 The reaction proceeds substantially faster

in acetone compared to water. Solid cis-[PtL2(ONO2)2] dissolves in water with heating to

form the diaqua species described above, which can then be used to install new leaving

group ligands.

An alternative reaction for preparing water-soluble complexes with modified leaving groups

utilizes a silver(I) salt of the desired new ligand. The silver(I) salts react directly with

cisplatin and related diaminedihalidoplatinum(II) complexes in water, yielding insoluble

AgX as the only byproduct (Scheme 4b). The resulting silver(I) halide can be removed by

filtration, leaving the soluble product to be recovered from the filtrate by evaporation of the

solvent. This strategy was employed for an optimized synthesis of radiolabeled 195mPt-

carboplatin.103 In cases where the silver(I) salt of a desired carboxylate ligand is not readily

available, a one-pot strategy can be employed, in which the diaminedihalidoplatinum(II)

complex, Ag2CO3, and the carboxylic acid are mixed together.95 In another approach, the

sulfate salt of [PtL2(OH2)2]2+, generated by the reaction of Ag2SO4 with [PtL2X2] in water,

is used in conjunction with Ba(II) salts of the carboxylates, usually formed in situ from

Ba(OH)2, to synthesize the desired platinum(II) carboxylate (Scheme 4c).97,104,105 The

byproduct of this reaction, insoluble BaSO4, can be easily removed by filtration. This

reaction has been used to attach β-diketonate106 and sulfonate107 ligands to platinum(II).

Another synthetic approach, which has not found widespread use, requires a platinum(II)

oxalate complex and the calcium salt of a ligand. The mixture of these two species generates
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insoluble calcium(II) oxalate and the target complex, the latter remaining in solution

(Scheme 4d).107

Various other interesting leaving groups have also been attached to platinum to generate

anticancer drug candidates. Platinum(II) diamine complexes with squarate,108 selenite,108

tellurate,109 ascorbate,110–112 and methyl sulfinyl carboxylate113,114 leaving groups have

been prepared using the protocols described above. Additionally, the complex [Pt(trans-1R,

2R-DACH)(B2O5H2)] with a chelating borate ligand was prepared from [Pt(trans-1R,2R-

DACH)(OH)2] and a mixture of boric acid and tetraborate in water.115 These novel

complexes demonstrate the synthetic versatility of the methods described above for

preparing new platinum compounds with different leaving group ligands, some of which

may have therapeutic potential.

2.2. Synthesis of cis- and trans-[PtLL'X2], Complexes with Mixed Am(m)ine Ligands

Platinum(II) complexes that bear two different amine or N-heterocyclic ligands have gained

importance in recent years as a new class of anticancer agents. The complexes cis-[Pt(NH3)

(2-picoline)Cl2] (picoplatin)116,117 and cis-[Pt(NH3)(cyclopentylamine)

(hydroxybutanedioato)] (cycloplatam)118 (Chart 2), for example, have undergone clinical

trials.23cis-[Pt(NH3)(cyclohexylamine)Cl2] (JM-118) (Chart 2), an active metabolite of the

clinically investigated platinum(IV) complex satraplatin,119,120 is another member of this

class of compounds. Trans platinum complexes of mixed amine or N-heterocyclic ligands

are also of importance. Some members of these “trans planar amine” (TPA) class of

compounds having the general formula trans-[Pt(NH3)LX2], where L is an N-heterocycle,

exhibit potent anticancer activity and are not cross-resistant with cisplatin.121 Moreover,

they serve as precursors for the preparation of phototoxic platinum(IV) diazido

complexes.98,122

The most straightforward synthetic route to mixed amine platinum(II) complexes with cis

stereochemistry involves the use of the [PtLCl3]− anion as an intermediate. Treating this ion

with another amine or N-heterocycle, L', is expected to yield the complex cis-[PtLL'X2]. A

limitation to this approach, however, is the difficulty in preparing

am(m)inetrichloridoplatinate(II) ions. Initial reports of the syntheses of K[Pt(NH3)Cl3]

(Cossa's salt) appeared over a century ago.123,124 Since then, researchers have focused on

finding straightforward, high yielding protocols for obtaining this and related ions. The

treatment of K2PtCl4 with one equiv of L more readily generates 0.5 equiv of the highly

insoluble cis-[PtL2Cl2] complex rather than the soluble salt K[PtLCl3]. An early, inefficient

preparation of K[Pt(NH3)Cl3] involved treatment of cisplatin with hydrochloric acid in the

presence of a catalytic amount of Pt metal at elevated temperatures.125 After removing

unreacted cisplatin and Pt metal by filtration, the [Pt(NH3)4]2+ cation was added to

precipitate the salt [Pt(NH3)4][Pt(NH3)Cl3]2. This salt was then treated with K2PtCl4, giving

insoluble Magnus' salt, [Pt(NH3)4][PtCl4], and Cossa's salt, K[Pt(NH3)Cl3], in the filtrate. A

typical yield was not reported for this method, but the large quantity of undesired platinum-

containing byproducts makes this approach expensive and undesirable. The reaction was

later optimized to obtain Cossa's salt in 60% yield from cisplatin.126 In this case, the salt

was isolated by anion-exchange chromatography and therefore did not require formation of
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the platinum double salts. With careful control of temperature and reaction time, the

ammonium salt of [Pt(NH3)Cl3]− was reportedly isolated in 90% yield, also by the action of

hydrochloric acid on cisplatin, but in the absence of a Pt metal catalyst.127

An alternative, more commonly used route for the preparation of the [Pt(NH3)Cl3]− anion

employs N,N-dimethylacetamide (DMA) as the solvent.128,129 At high temperatures (100

°C) with a stream of nitrogen gas bubbling through the DMA solution, the direct reaction

between an excess amount of tetraethylammonium chloride and cisplatin affords the desired

anion, which can be subsequently precipitated from an aqueous solution as the PPh4
+ salt.128

The use of other cis-[PtL2Cl2] complexes as starting materials in this reaction generally

affords the corresponding [PtLCl3]− ions. This transformation, however, is only successful if

the leaving amine ligand is sufficiently volatile, driving the reaction by evaporation of the

amine. Because of this limitation, the anion [Pt(cyclohexylamine)Cl3]− could not be

prepared by this method.128 The high temperatures employed, which result in the eventual

decomposition of cisplatin to insoluble platinum black, restrict the overall yield and

efficiency of the reaction. The introduction of substoichiometric amounts of NH4Cl (0.25

mol%) prevents formation of platinum black (Scheme 5).130 The reported yield in this case

was 58%, but unreacted cisplatin could be recovered for later use.130 Water-soluble forms of

the [Pt(NH3)Cl3]− ion as either its sodium or potassium salt can be isolated using an ion-

exchange resin,129,130 or metathesis with either KPF6
131 or NaBPh4.132 An HPLC method

was described recently to assess the purity of the potassium salt.133 To prepare the

analogous anions where L is an N-heterocycle instead of an amine, direct reaction between

K2PtCl4 and one equiv of L in DMF at 75 °C can be used. This reaction also produces some

of the disubstituted neutral product cis-[PtL2Cl2].134,135 The amount of this undesired

species formed depends on the steric bulk of the incoming heterocycle.135 For example,

much higher yields of the anion were afforded with 2,4-lutidine than with pyridine.

Presumably, the steric properties of the ortho methyl groups of 2,4-lutidine disfavor

simultaneous coordination of two such ligands to a single platinum center. The use of steric

effects to synthesize of [PtLCl3]− directly from K2PtCl4 in water, where L is an aliphatic

amine, has also been described.136 The sterically crowded amines, isopropyl and tert-butyl

amine, substantially retard the formation of cis-[PtL2Cl2], enabling isolation of K[PtLCl3] in

16–36% yields.136 For either reaction, the desired soluble anion can be separated from the

insoluble disubstituted complex by extraction into water.

The [PtLCl3]− ions are suitable precursors for the synthesis of mixed ligand complexes of

the type cis-[PtLL'X2]. The reaction between L' and [PtLCl3]− in water or DMF gives the

mixed amine complex with the expected cis stereochemistry.128,137–139 Under these

conditions, however, a small amount of cis-[PtL'2Cl2] can also be formed, presumably

arising from [PtCl4]2− impurities in the starting material.129 By analogy to Dhara's method

for the synthesis of cisplatin,60 the preparation of cis mixed amine complexes was improved

by first treating the [PtLCl2]− anion with 2 equiv of NaI or KI in water (Scheme 5).126

Multinuclear NMR spectroscopic studies verified that the addition of two equiv of iodide,

when L = NH3, forms primarily the trans-[PtI2Cl(NH3)]− ion, resulting from substitution of

two chloride ligands.140 The large trans effect of the iodide favors the amine substitution

reaction. The addition of an amine, L, to trans-[PtI2Cl(NH3)]− readily yields the mixed
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halide species [PtL(NH3)ClI], where L is trans to the iodide ligand. In this case, some

impurity resulting from [PtCl4]2− is present in the form of cis-[PtL'2I2]. This impurity,

however, can be readily removed from the desired product by its dissolution in acetone.129

The mixed halide intermediate can then be converted to the dichloride by removal of the

iodide ligand with Ag+ and addition of Cl− to the resulting platinum aqua complex (Scheme

5). In the case where both L and L' are quinoline derivatives, the direct reaction of [PtLCl3]−

and L' in mixed aqueous and organic solvent directly afforded the desired compound in its

pure form without the need to proceed through the mixed halide species.141

The other commonly used route for preparing mixed cis amine platinum(II) complexes

utilizes iodido-bridged dimers, [PtLI(μ-I)]2, as intermediates. The reaction of cis-[PtL2I2]

with perchloric acid forms these species, which are generally insoluble and brown in color

(Scheme 6).142 The scope of this reaction extends to a range of aliphatic143 and aromatic

amines,144 and N-heterocycles.145 For sterically hindered amines, such as tert-butyl amine,

the analogous iodido-bridged dimers form directly upon reaction with K2PtI4; formation of

the expected product, cis-[PtL2I2], does not occur, presumably owing to the large steric

hindrance of the bulky amine ligands.143 The perchloric acid serves to remove an amine

ligand from cis-[PtL2I2] by protonolysis. The vacant coordination site on the platinum(II)

center is then filled by an iodide ligand from another complex. Because both the starting

material and products are poorly soluble in water, the reaction can take an exceedingly long

time to reach completion; for cyclopropyl amine, a reaction time of three weeks was

necessary to achieve full conversion.143 Furthermore, the lack of solubility of both species

makes it difficult to gauge the extent of the reaction. For reactions that have not gone to

completion, the final product may be contaminated by starting material. The iodido-bridged

dimers exist in two isomeric forms, syn and anti (Scheme 6), depending on the disposition of

the two amine ligands about the Pt–Pt vector. Solution NMR spectra display resonances

from both isomers, but in the solid-state only anti isomers have been observed by X-ray

crystallography.143,146

Although several recent publications have reported that some of these iodido-bridged dimers

exhibit anticancer activity,147,148 their primary use is to prepare cis mixed amine complexes.

In this context, it should be noted that these iodido-bridged dimers can also serve as

precursors for the [PtLCl3]− 3 anion discussed above. Treatment of [PtLI(μ-I)]2 with excess

AgNO3 in water, followed by the addition of excess KCl, provides another route to the

[PtLCl3]− ion.149 More useful, however, is the direct reaction of these dimers with another

amine or N-heterocycle to form the mononuclear mixed amine complexes, cis-[PtLL'I2]

(Scheme 6).131,142 2 Despite the presence of both anti and syn isomers in the iodido-bridged

dimer starting material, only cis-[PtL2I2] is obtained from this reaction. The iodide ligands

can be exchanged for other halides using an appropriate silver (I) salt as described above.

Analogous chlorido-bridged dimers can be synthesized by the photolysis of trans-

[Pt(ethylene)LCl2].150 Cleavage of these chlorido-bridged dimers with another amine

ligand, however, leads to formation of both the trans and cis isomers of the mixed amine

complex,150 rendering this procedure less useful.

When a bidentate oxygen ligand is desired as the leaving group instead of monodentate

halides, a different synthetic route can be used to access the mixed amine complex. The first
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step in this pathway requires the synthesis of cis-[Pt(DMSO)2(O2Chel)], where O2 Chel is a

typically anionic chelating ligand with oxygen donor atoms. This intermediate is prepared

by the reaction of cis-[Pt(DMSO)2Cl2], which itself is obtained from commercially available

K2PtCl4 and DMSO,151 and the disilver salt of the chelating ligand in water (Scheme 7).152

The first DMSO ligand of cis-[Pt(DMSO)2(O2Chel)] can be substituted by an amine L at 40

°C in water to form isolable complexes of the type cis-[PtL(DMSO)(O2Chel)]. The addition

of a different amine, L', to this complex at higher temperatures (100 °C) in water enables

substitution of the second DMSO ligand to afford the mixed amine complex cis-

[PtLL'(O2Chel)] (Scheme 7).152 The difficulty in removing the second DMSO ligand is

emphasized by the fact that even the use of chelating diamine ligands requires heating to 100

°C to enforce bidentate coordination. For bidentate N-heterocycles like 2,2'-bipyridine,

lower temperatures (refluxing methanol) can be used to substitute both DMSO ligands.153

The concentrations of the reactants are also important because, when high concentrations of

chelating diamine ligands are used, both the DMSO ligands and oxygen chelate get

displaced, forming [Pt(L2)2]2+.154 Despite the apparent utility of this method, it has not been

widely applied.95,155–157

The processes for preparing mixed amine complexes with trans stereochemistry are more

straightforward than those discussed above for cis complexes. These compounds, having the

general formula trans-[PtLL'Cl2], are of interest because many of them display in vitro

anticancer activity superior to that of cisplatin, despite their trans stereochemistry.158–163

Additionally, they exhibit no cross-resistance with cisplatin.158,159,161 Their preparation

begins with the complex cis-[PtL2Cl2], the synthesis of which has been described earlier.

The addition of greater than two equiv of L' to a suspension of this complex in boiling water

typically gives rise to a colorless solution containing the salt, cis-[PtL2L'2]Cl2 (Scheme 8).

The solubility and color can vary slightly, depending on the hydrophobicity and electronic

properties of the amine or N-heterocycle ligands. Addition of concentrated hydrochloric acid

to this salt at elevated temperatures leads to substitution of one L and one L' ligand by

chloride, forming trans-[PtLL'Cl2] (Scheme 8).158 The stereochemistry of the product is

dictated by the kinetic trans effect. The first chloride substitution can yield either of the

intermediates, [PtL2L'Cl] or [PtLL'2Cl2]. The larger trans effect of chloride compared to

those of amines or N-heterocycles ensures that the second chloride substitutes trans to the

first chloride. Further substitution to form [PtLCl3]2− is impeded by the low solubility of

trans-[PtLL'Cl2], which precipitates from solution as a yellow solid immediately upon its

formation.

2.3. Synthesis of Monofunctional Platinum(II) Complexes

Platinum(II) complexes containing only one substitution-labile ligand are designated as

`monofunctional' in contrast to cisplatin and carboplatin, both of which contain two

substitution-labile coordination sites and are referred to as `bifunctional.' Among the first

monofunctional platinum(II) complexes investigated for their potential anticancer activity

were [Pt(dien)Cl]Cl (dien = diethylenetriamine) and [Pt(NH3)3Cl]Cl. The observation that

these two complexes are inactive helped establish the traditional structure-activity

relationships for platinum therapeutics, which state that, among other requirements, charge

neutrality and bifunctionality are necessary for activity.28,164 Despite their lack of anticancer
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properties, these two monofunctional complexes have been useful in modeling the reactions

of platinum complexes with biologically relevant nucleophiles because the presence of only

one exchangeable ligand site simplifies interpretation of the results.165–168

Optimized synthetic routes to these salts are available.169,170 The synthesis of

[Pt(NH3)3Cl]Cl commences by treatment of trans-[Pt(NH3)2Cl2] with one equiv of KI to

form the mixed halide complex, trans-[Pt(NH3)2ICl]. The addition of 1 equiv of AgNO3 in

water selectively precipitates AgI and gives trans-[Pt(NH3)2Cl(OH2)](NO3). Aqueous

ammonia readily replaces the labile aqua ligand, yielding [Pt(NH3)3Cl]Cl as a colorless to

pale yellow solid after precipitation from the aqueous solution with a mixture of ethanol and

diethyl ether (Scheme 9).169 The aqua intermediate, trans-[Pt(NH3)2Cl(OH2)](NO3), could

also conceivably used as a synthon for complexes of the general type, trans-[Pt(NH3)2LCl]

(NO3). The optimized preparation of [Pt(dien)Cl]Cl utilizes the reaction of either cis/trans-

[PtCl (SMe 171 or cis-[Pt(DMSO)2Cl2151 with dien in refluxing methanol. Isolation of

[Pt(dien)Cl]Cl as a white solid in yields of >90% is accomplished by the addition of either

CHCl3 or CH2Cl2 to the resulting methanolic reaction mixture.170

More recently, a number of monofunctional platinum(II) complexes have been discovered

that break the traditional structure-activity relationships by exhibiting anticancer

properties.172–176 The most thoroughly investigated members of this class are complexes of

general formula cis-[PtL2L'Cl]+, where L is a monodentate or bidentate amine and L' is

either an N-heterocycle,172 a sulfoxide,173,177,178 or a thiourea derivative (Chart 3).179

For the sulfoxide and thiourea complexes, chelating diamines are used exclusively because

the strong trans effect of these ligands labilizes monodentate amines, leading to their

dissociation. Although we define the sulfoxide compounds, cis-[Pt(L2)(RR'SO)Cl]+, as

monofunctional because of the presence of only one labile Pt–Cl bond, these complexes

form bifunctional DNA-adducts.180 Rapid substitution of the chloride for water or

nucleobases is followed by the slow substitution of the sulfoxide ligand. The kinetics of the

sulfoxide substitution reaction are effectively modulated by its steric bulk.173,177,180 The

synthesis of these complexes proceeds either by the addition of the chelating amine ligand to

cis-[PtCl2(RR'SO)2] or the addition of one equiv of sulfoxide to cis-[Pt(L2)Cl2] (Scheme

10). The latter reaction pathway is the preferred route; the use of cis-[PtCl2(RR'SO)2] as the

starting material in the former pathway gives variable amounts of cis-[Pt(L2)Cl2] as an

undesired byproduct.173

Complexes of the type cis-[Pt(NH3)2
+, where L is an N-heterocycle, have attracted

significant attention since the initial discovery of their antitumor properties in 1989.172 In

contrast to the sulfoxide complexes discussed above, these cations bind to DNA and

nucleobases in a monofunctional manner with no indication of ammonia or N-heterocycle

loss to form bifunctional adducts.181 Although the monofunctional lesions do not

significantly bend DNA,26,182 they still manage to effectively destabilize the structure of the

double helix183–185 and impede DNA replication186 and transcription.26,187 The

characteristic monofunctional DNA adducts may be responsible for the different spectrum of

activity observed for these compounds in comparison to those for clinically used

bifunctional platinum drugs.188 A number of derivatives of cis-[Pt(NH3)2
+ have been
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synthesized, with L being a wide range of different N-heterocycles. These N-heterocycles

include derivatives of pyridine with different substituents172 and fused aromatic rings,189

pyrimidines,190 a fluorescently labeled pyridine,191 steroid functionalized pyridines,192,193

imidazothiazoles,194 9-aminoacridine,195 the antimalarial drug chloroquine,195 ethidium,196

the anticancer drug 5-fluorouracil,197 and several antiviral agents.198,199 Of these drug

candidates, the complex utilizing phenanthridine as its N-heterocyclic ligand, termed

phenanthriplatin, exhibits in vitro cytotoxicity greater than that of cisplatin across a wide

range of cell lines.189 As phenanthriplatin illustrates, the judicious choice of the N-

heterocycle can give rise to very potent monofunctional complexes.

The synthesis of monofunctional complexes can be accomplished by stirring a mixture of

cisplatin and one equiv of the N-heterocycle in water at 50–60 °C for several days.172 This

reaction proceeds by direct substitution of the chloride ligand by the N-heterocycle. This

method, however, typically gives low yields of impure compounds. The major impurity is

the disubstituted species, cis-[Pt(NH3)2L2]Cl2, which arises from substitution of both

chloride ligands. Pretreatment of cisplatin with one equiv of AgNO3 in water to generate the

reactive monoaqua complex, cis-[Pt(NH3)2]+, followed by the addition of another ligand has

also been reported.190 This method gave rise to a substantial portion of unreacted cisplatin

and unidentified byproducts. The reaction mixture containing one equiv AgNO3 and

cisplatin in water has been analyzed by 195Pt NMR spectroscopy. The monoaqua complex,

cis-[Pt(NH3)2Cl(OH2)]+, comprises 57% of the total platinum in solution, whereas the

diaqua complex, cis-[Pt(NH3)2(OH2)2]2+, and unreacted cisplatin account for 39 and 4%,

respectively. The large quantity of the diaqua complex should lead to the formation of an

equally large proportion of the undesired disubstituted complex. Treating cisplatin with one

equiv of AgNO3 in DMF, however, gives a much more favorable product distribution; 79–

86% of the total platinum is in the monosolvated form cis-[Pt(NH3)2Cl(solv)], where “solv”

is either DMF or nitrate, whereas only 9% and 9–12% of the platinum comprises doubly

solvated species and unreacted cisplatin, respectively.172,195 The preferred synthetic route to

monofunctional complexes, therefore, involves the reaction of cisplatin with one equiv of

AgNO3 in DMF followed by the addition of the N-heterocyclic ligand (Scheme 11).172,200

Care must be taken to purify the final monofunctional product from unreacted cisplatin and

disubstituted byproducts. Because cisplatin is not soluble in methanol, it can be removed by

filtration after dissolving the crude product in this solvent. A final recrystallization step from

either dilute HCl or methanol is necessary to separate the monofunctional complex from

disubstituted byproducts. The mononitrato species, cis-[Pt(NH3)2Cl(NO3)], has reportedly

been isolated as a solid by evaporation of an aqueous solution containing a 1:1 mixture of

cisplatin and AgNO3.199 This complex was then used as a precursor for new monofunctional

complexes. Only CHN analyses were presented as characterization for cis-

[Pt(NH3)2Cl(NO3)]; it is most likely that the isolated solid comprised the mixture of species

found in solution by 195Pt NMR spectroscopic studies, as discussed above.

Another important class of monofunctional platinum anticancer agents contains complexes

of the general formula cis-[Pt(L2)Cl(tu)]+, where L2 is a chelating diamine ligand and tu is a

derivative of thiourea, coordinated through the sulfur atom (Chart 3, right side).201,202

Although the first generation analogues of these complexes with underivatized thiourea
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ligands exhibit only poor to moderate in vitro cytotoxicity,203 the second generation

compounds with acridine-functionalized thioureas are typically more cytotoxic than

cisplatin.174,204,205 These Pt-acridinylthiourea, or PT-ACRAMTU, conjugates form hybrid

DNA adducts;206 the Pt center binds preferentially to N7 of guanine bases and the acridine

intercalates between base pairs. Several dichloridoplatinum(II) complexes tethered to

acridine through a modified ethylenediamine ligand, first reported in the late 1980s, also

exhibit dual intercalation and covalent DNA-binding modes.74,75,207 The covalent adducts

of these complexes, however, are bifunctional as opposed to the monofunctional adducts

formed by PT-ACRAMTU compounds. In contrast to the monofunctional sulfoxide

complexes discussed above, the thiourea ligand does not get displaced by nucleobases and

therefore only monofunctional covalent DNA adducts are formed.203 The unique hybrid

DNA-binding motif of these complexes gives rise to a profile of activity in a wide range of

cancer cells substantially different from those of cisplatin and related platinum anticancer

drugs.179 The synthesis of PT-ACRAMTU complexes follows a protocol similar to that used

for the monofunctional cis-diammine complexes. A 1:1 mixture of cis-[Pt(L2)Cl2] and

AgNO3 is stirred in DMF, and the filtrate is treated with one equiv of the thiourea ligand

(Scheme 12).208 This reaction fails when monodentate amine ligands are used; the addition

of thiourea induces full substitution of the monodentate amine ligands, forming

[Pt(tu)4]2+,208 consistent with the expected results of the Kurnakow test, as discussed above.

2.4. Platinum(II) Complexes Synthesized by Ligand-Based Reactivity

The synthetic strategies discussed in the previous sections all rely on ligand substitution

reactions at the platinum(II) center. Alternative synthetic pathways involve the use of outer-

sphere, ligand-based reactivity. These reactions are facilitated by the ability of transition

metal ions to activate coordinated ligands, making them more susceptible to certain

reactivity pathways that would otherwise be inaccessible to them in the unbound form. This

section covers several examples of these reactions that have been utilized to synthesize of

novel platinum anticancer drug candidates.

Iminoether complexes of platinum(II) of general formula [Pt(iminoether)2Cl2] display

potent anticancer activity both in vitro and in vivo. As for traditional platinum anticancer

agents, this activity is proposed to arise from DNA binding.209 For the trans isomers,

monofunctional adducts210,211 and protein-DNA cross-links212 are invoked as the

predominant cytotoxic lesions. The trans isomers tested initially proved to be more active

than their cis congeners,213 although some recent studies have reported the opposite

observation for new members of this class of compounds.214,215 The cis and trans structure-

activity relationships for these compounds, therefore, depend on the exact chemical nature

of the iminoether ligand. In addition to the stereochemistry at the square-planar platinum

center, the iminoether ligands can exist in either E or Z configuration, depending on the

orientation of the substituents about the C–N double bond. As a result, there are six isomers

for [Pt(iminoether)2Cl2] complexes, neglecting rotational isomers involving hindered

rotation about the Pt–N bond vector (Chart 4). For both cis and trans isomers, the

stereochemistry of the ligand has a substantial effect on the biological activity of the

complex.213,216 Therefore, precise synthetic control over the total stereochemistry of the

final complex is important for further biological applications.
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The nitrile complexes, cis- and trans-[PtCl2(NCR)2], are precursors for preparing cis- and

trans-[PtCl2(iminoether)2] complexes. The reaction of cis- or trans-[PtCl2(NCR)2] in

alcohols217 or alcohol-dichloromethane mixtures218 with a catalytic amount of KOH affords

the iminoether complexes by nucleophilic attack of the alkoxide on the coordinated nitrile

ligand (Scheme 13). Formation of the iminoether occurs with retention of the starting

stereochemistry of the platinum complex, but generally a mixture of E and Z ligand-based

isomers is obtained. Formation of the Z iminoether is kinetically preferred; isomerization to

the E isomer occurs in the presence of catalytic amounts of base, which is present under the

reaction conditions.219 Carrying out the reaction at low temperature (0 °C) also significantly

impedes isomerization to the E isomer, giving predominantly Z isomers.220 The ZZ, EZ, and

EE isomers can be separated on the basis of solubility differences by fractional

crystallization or silica gel column chromatography.219 Recently, the reaction of cis- and

trans-[PtCl2(NCR)2] with thiols was disclosed.221 Utilizing n-BuLi as the base and THF as

the solvent at rt, both cis and trans complexes afford bis(imino thioether) platinum(II)

compounds. The reaction proceeds cleanly, forming only imino thioether ligands with E

configurations.221

Mixed iminoether-ammine platinum(II) complexes of formula [PtCl2(NH3)(iminoether)]

also exhibit in vitro and in vivo anticancer activity.220,222 These complexes are prepared

from mixed ammine-nitrile complexes by the attack of an alkoxide on the coordinated nitrile

ligand under conditions similar to those employed for the bis(iminoether) complexes

described above. The synthetic protocols for the precursor complexes, cis- and trans-

[PtCl2(NH3)(NCR)], are similar to those described for mixed amine platinum(II) complexes

described above. To prepare trans-[PtCl2(NH3)(NCR)], cis-[Pt(NH3)2I2] is treated with two

equiv of AgNO3 in water to form the diaqua complex, from which cis-[Pt(NH3)2(NCR)2]

can be formed by addition of a large excess of nitrile at 70 °C. Excess aqueous KI displaces

two ligands; the large trans effect of iodide enforces trans stereochemistry in the final

product, trans-[PtI2(NH3)(NCR)]. The iodide ligands can be replaced by chlorides via

sequential treatment with AgNO3 and KCl. The synthesis of cis-[PtCl2(NH3)(NCR)] is

accomplished more simply by action of a large excess of nitrile on Cossa's salt,

K[Pt(NH3)Cl3].220

In addition to alcohols, alkoxides, and thiols, platinum(II) nitriles are also activated for

nucleophilic attack by amines to form amidine complexes. Amidine complexes of formula

cis- and trans-[PtCl2(amidine)2], cis- and trans-[PtCl2(NH3)(amidine)], and trans-

[Pt(amine)2(amidine)2]Cl2 have been investigated for anticancer potential, both in vitro and

in vivo.223–228 Like their iminoether analogues, these complexes generally show good

activity in both cisplatin-sensitive and -resistant cell lines. Additionally, both metal- (cis or

trans) and ligand-based (EE, EZ, or ZZ) stereoisomers are possible, as for the related

iminoether complexes. The syntheses of cis- and trans-[PtCl2(amidine)2], like those for the

analogous iminoether complexes, begin with cis- and trans-[PtCl2(NCR)2]. Low

temperature reactions (−10 °C) of the bis(acetonitrile) complexes with secondary or primary

amines in CH2Cl2 affords the amidine complexes (Scheme 14).229 For the cis isomer, five

equiv of the amine are required, whereas for the trans isomer 50 equiv of amine are required

for complete conversion to the diamidine product.230 The metal stereochemistry is initially
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retained in both cases, but in pure water these complexes isomerize, forming an equilibrium

mixture of cis and trans species.231 This isomerization is prevented in the presence of 100

mM NaCl.231 The stereochemical outcome of the amidine ligand (E vs Z) appears to be

dictated by the nature of the coordinated nitrile ligand and the nucleophilic amine. In the

reaction with the bis(acetonitrile) or bis(benzylcyanide) platinum complexes, primary

amines selectively give ZZ isomers and secondary amines give EE isomers.225,232 When the

coordinated nitrile is benzonitrile, a mixture of EE and ZZ isomers is obtained.233

Preparative TLC can be used to separate and isolate some of these isomers.223

The action of ammonia on both cis- and trans-[PtCl2(NCR)2] has also been

investigated.224,234 For cis dinitrile complexes, addition of aqueous ammonia in THF

affords the expected diamidine species.224 When gaseous ammonia is bubbled through a

CH2Cl2 solution of the trans dinitrile complex at −10 °C, the major product is trans-

[PtCl(NH3)(amidine)2]Cl, which results from substitution of a chloride ligand by ammonia

in addition to the expected attack on the coordinated nitrile.234 This complex is also the

major product when the trans dinitrile complex is treated with aqueous ammonia in THF.224

At room temperature and with 24 h reaction times, both chlorides of trans-[PtCl2(NCR)2]

can be substituted by aliphatic amines or ammonia to form the salts, trans-

[Pt(amine)2(amidine)2]Cl2 (Scheme 14)235, which also exhibit anticancer activity.227 The

greater tendency of the trans dinitrile complex to lose its chloride ligands in comparison to

that of the cis is proposed to be a consequence of the greater solubility of the intermediate

diamidine complex, trans-[PtCl2(amidine)2], which makes it susceptible to further reactivity

with the nucleophilic amines. For the cis complex, the diamidine complex precipitates from

solution, thus impeding further substitution reactions.

Using the abovementioned amidine-forming reactions, new analogues of the monofunctional

PT-ACRAMTU complexes, discussed above, were prepared.236 These complexes have the

general formula, cis-[PtCl(L2)(amidine)](NO3), where L2 is either two ammine ligands or a

chelating diamine, and the amidine ligand is tethered to an intercalating acridine unit. These

complexes display excellent activity against non-small cell lung cancer (NSCLC) cell lines,

having no cross-resistance to cisplatin.236 Furthermore, compared to first generation

thiourea analogues, these amidine complexes react less readily with cysteine sulfur,237 yet

bind more rapidly to DNA.238 By comparison to cisplatin, these complexes display a

significantly larger degree of intracellular accumulation and DNA platination.239 The

syntheses are accomplished by first treating cis-[PtL2(NCR)Cl]Cl with 1 equiv of AgNO3 to

exchange the outer-sphere chloride with a nitrate counterion, followed by addition of an

acridinyl amine to a DMF solution of the complex at −10 °C (Scheme 15).236 Acidic

workup with HNO3 yields the product in its protonated form. The low temperature

conditions employed during addition of the amine are presumably necessary to prevent it

from displacing the chloride ligand. The mononitrile precursor complex, cis-

[PtL2(NCR)Cl]Cl, is synthesized by refluxing a mixture of cis-[PtL2Cl2] and excess nitrile

in dilute HCl (Scheme 15).236,240 This straightforward, amidine-forming reaction has

recently been applied to screen combinatorially a number of new platinum complexes that

differ in the starting nitrile ligand and the acridinyl amine.241 The method was used to
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delineate some structure-activity relationships for this new class of platinum anticancer

complexes.241

In addition to nitriles, amines and ammonia are also activated for novel reactivity pathways

when coordinated to platinum. Such ligands can engage in condensation reactions to form

coordinated imines or iminates. For example, reactions of [Pt(NH3)6]4+ and [Pt(en)3]4+ with

acetylacetone afford β-diketiminate complexes.242,243 Additionally, both cis- and trans-

[Pt(NH3)2Cl2] react with 2-pyrdinecarboxaldehyde to form [Pt(pmpa)Cl], where pmpa = N-

(2-picolyl)picolinamide), presumably by condensation of the coordinated NH3 group with

the aldehyde (Scheme 16).244 Ammine insertion into a carbon-carbon double bond of the

axial ligand of a platinum(IV) complex has also been observed.245 Acetonimine complexes

of platinum(II), cis and trans-[PtX2(acetonimine)2] where X = Cl or I, were synthesized by

the reaction of cis and trans-[Pt(NH3)2X2] with acetone in the presence of KOH (Scheme

16).246 These complexes are of therapeutic interest because they display good in vitro

anticancer activity against a panel of human cancer cell lines without exhibiting cross-

resistance to cisplatin.246cis- and trans-[Pt(NH3)2Cl2] react more slowly with acetone than

their corresponding iodide analogues, with complexes of cis stereochemistry being more

reactive than the trans complexes. Based on these observations, the ligand trans to the

ammines is proposed to modulate the condensation reactivity, which occurs first by

deprotonation of the ammine to form a nucleophilic amido ligand. Higher trans effect

ligands lower the ammine pKa by stabilizing the anionic amido ligand. Another route to

bis(acetonimine) platinum(II) complexes was also reported; direct ligand substitution

reaction of [PtL2Cl2] (L in this case is a phosphine) by [Ag(acetonimine)2]ClO4 affords such

species.247

Ligand-based reactivity does not necessarily require activation by platinum coordination. If

the ligand has a functional group that is not in direct interaction with the platinum ion, this

functional group can display its typical reactivity, provided that the reaction conditions or

byproducts do not lead to decomposition of, or ligand dissociation from, the platinum

complex. The platinum(II) complexes [Pt(edma)Cl2] and [Pt(edda)Cl2], where edma =

ethylenediaminemonoacetic acid and edda = ethylenediamine-N,N'-diacetic acid, can engage

in reactions associated with their free carboxylic acid groups (Scheme 17). The reaction of

[Pt(edma)Cl2] with thionyl chloride in methanol converts the acid to a methoxy ester group,

presumably through an intermediate acid chloride.248 Furthermore, the carboxylic acids of

both [Pt(edma)Cl2] and [Pt(edda)Cl2] can be converted to amides after activation with 1,1'-

carbonyldiimidazole (CDI) and treatment with an amine.249,250 In both cases, the platinum

coordination sphere remains unaffected. Platinum(II) complexes of a chelating diamine

ligand having a pendant azide have also been synthesized.251 The azide functional group

was employed for a Cu(I)-catalyzed click reaction with terminal alkynes. This chemistry

was used to attach a number of different groups to the platinum complex (Scheme 17).

Notably, the coordination sphere of the platinum(II) core remained intact in the presence of

the Cu(I) catalyst.251 Platinum(II) complexes with thiol-reactive maleimide derivatives

attached to both the non-leaving252 and leaving group ligands253 were prepared. As

expected, the maleimide moiety readily reacted with thiols. This reaction was used to link

carboplatin derivatives to human serum albumin for improved tumor delivery.253
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3. Synthesis of Platinum(IV) Anticancer Complexes

Several platinum(IV) complexes have undergone clinical trials, but to date none has been

approved for use in the USA. Examples include iproplatin, tetraplatin, and satraplatin (Chart

5).23 An advantage of platinum(IV) complexes over their platinum(II) analogues is their six-

coordinate octahedral coordination geometry. The introduction of two additional ligands

allows for further tuning of the properties and confers the ability to attach functional or

targeting groups. Moreover, being complexes of d6 octahedral metal ions, platinum(IV)

compounds are substantially more inert than those of platinum(II). Thus, undesirable side

reactions with proteins or intracellular thiols can generally be avoided using platinum(IV)

complexes. The kinetic inertness of satraplatin is most likely the reason why it could be

administered orally, in contrast to all other platinum drugs, which are delivered

intravenously.

Because platinum(IV) complexes are inert, they usually undergo reduction to platinum(II)

before binding to their ultimate intracellular target, DNA.254,255 Reduction of platinum(IV)

occurs with loss of two ligands, giving a square-planar geometry for the platinum(II)

product. It has generally been assumed that the two ligands lost upon reduction are located

trans to each other and that both derive from positions along the axis orthogonal to the

original plane of four ligands. This longstanding notion has been challenged by number of

recent studies, which show that the composition of the reduced platinum(II) products

depends on the nature of the reducing agent.256–259 Furthermore, the kinetics of intracellular

platinum(IV) reduction depend both on the cell type260 and the ligands that define the

coordination sphere of the complex.261 The ability to rationally design new platinum(IV)

anticancer drug candidates using well defined synthetic chemistry is critical for discovering

new therapeutic agents and for further elucidating structure-activity relationships.262

3.1. Oxidation of Platinum(II)

A common synthetic route to complexes of platinum(IV) proceeds via two-electron

oxidation of an appropriate platinum(II) precursor. For potential platinum(IV) anticancer

agents, the most widely used oxidizing agents are hydrogen peroxide263 and chlorine.264

These two molecules react with platinum(II) to give trans oxidative addition products

(Scheme 18). The equatorial ligands of the resulting platinum(IV) complex are generally

retained with the stereochemistry of the starting platinum(II) compound. For some diamine

dicarboxylato platinum(II) complexes, however, the action of chlorine leads to undesired

displacement of the carboxylate groups to form diaminetetrachloridoplatinum(IV)

compounds.265

Platinum(IV) dihydroxo compounds, obtained by oxidation of platinum(II) complexes in

water, are important starting materials for the synthesis of further derivatized platinum(IV)

compounds (vide infra). The treatment of a yellow-orange suspension of cisplatin in water

with 10–100 fold excess of H2O2 at 50 °C gives rise to a pale-yellow suspension comprising

cis,cis,trans-[Pt(NH3)2Cl2(OH)2].266 This reaction is general, proceeding equally well for

cis and trans platinum(II) isomers.267 When isolated directly from the mother liquor, this

complex crystallizes with a molecule of hydrogen peroxide that forms hydrogen bonds with

the hydroxo ligands.268 Hydrogen peroxide is also retained in the crystal lattice of the
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related complex, cis,cis,trans-[Pt(iPrNH2)2Cl2(OH)2] (iproplatin).269 The observation that

these complexes are able to cleave DNA270,271 is a consequence of hydrogen peroxide in the

lattice rather than the platinum(IV) complex. The hydrogen peroxide can be removed by

recrystallization from pure water.266,267 For the all trans isomer, trans,trans,trans-

[Pt(NH3)2Cl2(OH)2], which does not contain lattice-bound hydrogen peroxide,

recrystallization from water leads to isomerization, giving trans,cis,cis-

[Pt(NH3)2Cl2(OH)2].267 Diphenyl phosphate (DPP) can also be incorporated into the crystal

lattice of trans-platinum(IV) hydroxo compounds.272 In these crystals, the diphenyl

phosphate forms strong hydrogen bonds with the coordinated hydroxide or water ligands.272

The DPP adducts exhibit improved aqueous solubility. Thus, the use of an appropriate co-

crystallization agent may enhance the pharmacological properties of the complex. The

abovementioned results point to a large degree of complexity for the H2O2 oxidation of

anticancer platinum(II) complexes. Care should be taken to avoid co-crystallized molecules

which themselves might have biological activity. Additionally, isomerization may impede

purification attempts.

The mechanism of platinum(II) oxidation by hydrogen peroxide and chlorine has important

implications for the composition of the isolated products. Studies of hydrogen peroxide-

oxidation of platinum(II) complexes using 18O-labeled water revealed that only one of the

hydroxide ligands on the platinum(IV) complex originates from hydrogen peroxide; the

other comes from water.275 Recently, the oxidation of [Pt(cis-1,4-DACH)Cl2] by chlorine

gas was investigated in several different solvents.276 By NMR spectroscopy, an intermediate

corresponding to the addition of one solvent molecule and one chloride ligand, fac-

[Pt(cis-1,4-DACH)(solv)Cl3]+, was detected. The remaining outer-sphere chloride

counterion then substitutes for the labile solvent molecule, giving the expected tetrachlorido

species.276,277 Further support for this mechanism comes from the crystal structure of a

mixed trans-chloridoaqua complex obtained by the aqueous chlorine oxidation of a

platinum(II) oxazole complex.278 Some early studies report the observation of a transient

red or orange color upon oxidation of cisplatin or [Pt(en)Cl2] with chlorine.264,279 The color

then changes to the characteristic yellow of the tetrachlorido complexes.264,279 In our lab,

we observed similar behavior following the oxidation of cisplatin and related platinum(II)

complexes with hypervalent iodine reagents. The transient red color has been proposed to

arise from dinuclear metal-metal bonded platinum(III) complexes, some of which are also

red and readily form tetrachloridoplatinum(IV) complexes by disproportionation.280,281

These dinuclear intermediates probably only occur at high platinum concentrations.

The use of coordinating solvents enables isolation of mixed trans oxidative addition

products. For example, oxidation of platinum(II) in alcohols with H2O2 gives trans hydroxo-

alkoxo complexes (Scheme 18).273–275,282–284 An optimized protocol for the synthesis of

cisplatin analogues of these species, cis,cis,trans-[Pt(NH3)2Cl2(OH)(OR)], utilizes high

dilution conditions in neat alcohol and oxidation with 50% aqueous H2O2.274,284 The use of

50% rather than 30% H2O2 presumably minimizes the amount of water in solution, which

can compete with the alcohol for coordination to platinum. Addition of hydrogen peroxide

to a platinum(II) complex with a 9-fluorenylidenepropanedioate (fpd) ligand in refluxing

methanol afforded a complex with two axial methoxide ligands instead of the expected
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mixed hydroxo-methoxo complex.282 The formation and stability of the dimethoxo complex

is proposed to arise from an intramolecular stabilizing interaction between the methoxide

and fpd ligands,282 and therefore this reaction is probably not general for most platinum(II)

complexes. The use of ethyleneglycol as a solvent for the hydrogen peroxide-oxidation of

platinum(II) affords a trans hydroxo-ethyleneglycolato complex.283 The terminal alcohol

group of the ethyleneglycolate ligand can presumably be further functionalized by

electrophiles, but such reactions have not yet been investigated.

The hydrogen peroxide-oxidation of platinum(II) complexes in the presence of carboxylic

acids has also been explored. The oxidation of [Pt(CBDCA)(DPDA)] (DPDA = 2,2-

dimethyl-1,3-propanediamine) in acetic acid with hydrogen peroxide gave the unexpected

cis diacetate complex, cis-[Pt(CBDCA)(DPDA)(OAc)2].285 In contrast, the use of acetic

anhydride mixed with a small amount of acetic acid, formed by hydrolysis of the anhydride,

as a solvent selectively afforded the trans diacetate complex, trans-[Pt(CBDCA)(DPDA)

(OAc)2] (Scheme 19).285 The mechanistic details and reasons for the isomeric preferences

of these reaction products have not yet been elucidated. The oxidation of the platinum(II)

dihydroxo compound, [Pt(DPDA)(OH)2], with hydrogen peroxide in carboxylic acids at

room temperature gave an unexpected species of general formula and stereochemistry, fac-

[Pt(DPDA)(OH)(O2CR)3] (Scheme 19).286 In our lab, we also explored the oxidation of

cisplatin with hydrogen peroxide in neat formic acid. The major product obtained is the

diformate complex, cis,cis,trans-[Pt(NH3)2Cl2(O2CH)2] (Scheme 19).287

Recently, the oxidation of oxaliplatin with hydrogen peroxide in the presence of greater than

40 equiv of carboxylic acid in a minimum volume of THF was reported.288 The major

products observed were the monocarboxylato species, trans-[Pt(trans-1,2-DACH)(oxalate)-

(OH)(O2CCR)].288 When bromoacetic acid was used, however, a large quantity of the

dicarboxylato species was obtained.288 This observation was rationalized based on the lower

pKa of bromoacetic acid (2.9) compared to those of the other acids screened (≈ 4.8). With its

greater acidity, the bromoacetic acid can protonate the second hydroxo ligand and displace

it, as discussed below. Unlike hydrogen peroxide-oxidations carried out in alcohols where

one alkoxide and hydroxide are added, there is a greater tendency to add at two carboxylate

ligands when the oxidation is performed in organic acids. The species initially formed are

most likely mixed hydroxo-carboxylato complexes, analogous to the mixed chlorido-

solvento species observed in chlorine oxidations.276 The highly acidic conditions, not

present in alcohol solutions, lead to protonation and subsequent substitution of the hydroxide

ligand by a carboxylate, as discussed below. The relative pKa values of the hydroxo ligands

and carboxylic acids most likely dictate whether the major product will be the mono or

dicarboxylato complex. Another strategy to prepare mixed hydroxo-acetato complexes

employs a different oxidant and solvent mixture.261,288 Oxaliplatin and trans-[PtLL'Cl2]

complexes, suspended in a 1:1:1 mixture of DMF, CH2Cl2, and acetic acid, can be oxidized

with tert-butyl hydroperoxide (in decane) to afford trans-[Pt(trans-1,2-DACH)(oxalate)

(OH)(OAc)] and trans,trans,trans-[PtLL'Cl2(OH)-(OAc)].261,288 The use of entirely non-

aqueous solvent and peroxide for these reactions prevents formation of the dihydroxo

compound. These complexes can serve as precursors for the synthesis of mixed

dicarboxylato species.
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Oxidation with hydrogen peroxide can also be used to increase the denticity of a ligand.

Platinum(II) complexes with the formulas [Pt(edma)Cl2], [Pt(edda)Cl2], and [Pt(edta)Cl2]

contain one, two, and four uncoordinated carboxylic acid groups, respectively. Upon

oxidation of [Pt(edma)Cl2] with H2O2, the carboxylate coordinates and the ligand binds in a

facial, tridentate manner, forming fac-[Pt(edma)Cl2(OH)] (Scheme 20).248 Similarly, both

carboxylates of [Pt(edda)Cl2] coordinate upon oxidation with H2O2.248,289 For

[Pt(edta)Cl2], only two of the four free carboxylates bind upon oxidation.290 The remaining

two carboxylates can potentially be functionalized by standard amide-bond coupling

chemistry, as for the platinum(II) analogues described above. These ring-closing reactions

provide a general synthetic route to stable platinum(IV) complexes with multidentate

ligands. The design of ligands for platinum(II) complexes with strategically placed donors

can facilitate such reactions upon oxidation.

Apart from chlorine and hydrogen peroxide, few other oxidants have been explored for the

synthesis of platinum(IV) anticancer agents. One such alternative oxidant is the

dithiobis(formamidinium) cation. The dichloride salt of the dithiobis(formamidinium) cation

oxidized cisplatin, adding a thiourea and a chloride to the axial positions (Scheme 21).291

The oxidation of trans-[Pt(NH3)2Cl2] with this reagent afforded initially the all trans isomer,

t,t,t-[PtCl2(NH3)2(tu)Cl], but over time it isomerized to give the same product obtained by

the oxidation of cisplatin, cis,cis,trans-[Pt(NH3)2Cl2(tu)Cl].292 Notably, the

tetrafluoroborate salt of the dithiobis(formamidinium) cation does not give any oxidation

products, thus highlighting the important role of the coordinating chloride counterion in

facilitating the oxidative addition.291,292 Bromine, like chlorine, also oxidizes diamine

platinum(II) complexes, generally forming trans dibromido complexes (Scheme 21).293 The

bromine oxidation of several dichlorido platinum(II) complexes, however, failed to give the

expected trans dibromido products; instead, a mixture of complexes with different ratios of

chloride and bromide ligands was obtained.250,294 For diphosphine complexes, this halide

scrambling reaction is initiated by light.295 Oxidations of cisplatin with KMnO4
296 or

ozone297 in water reportedly both lead to the formation of the dihydroxo compound,

cis,cis,trans-[Pt(NH3)2Cl2(OH)2], which can also be obtained by oxidation with hydrogen

peroxide. The use of peroxydisulfate, S2O8
2−, as an oxidant, primarily gives trans hydroxo-

sulfato platinum(II) complexes.296,298 The reaction of diamine diamidate complexes of

platinum(II) with NaOCl yields the corresponding trans hydroxo-chlorido platinum(IV)

complexes (Scheme 21).299 The tetrachloroaurate ion, [AuCl4]−, can also oxidize

platinum(II). The complex cis-[Pt(NH3)2(1-methylthymine)2] was oxidized by NaAuCl4 to

afford cis,cis,trans-[Pt(NH3)2(1-methylthymine)2(OH)(OH2)].300 The addition of two

ligands originating from water was unexpected and rationalized on the basis of steric

crowding at the axial sites by the 1-methylthymine ligands. In contrast, the oxidation of a

platinum(II) terpyridine complex by AuCl4− added two chloride ligands to the resulting

platinum(IV) coordination sphere.301 Nitrogen dioxide gas can also oxidize cisplatin in an

aqueous solution containing one equiv of KCl (Scheme 21).302 The product, [PtCl3(NO2)

(NH3)], which could not be isolated as analytically pure material, comprised primarily the

facial isomer, as determined by NMR spectroscopy. Analysis by X-ray diffraction revealed a

disordered mixture of facial and meridional isomers.302 Potassium dichromate, K2Cr2O7,

and potassium chlorochromate, KCrO3Cl, can also oxidize cisplatin.303 On the basis of
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spectroscopic data, the products were proposed to be a dimetallic heteronuclear Pt–Cr

complex and a trimetallic Pt–Cr2 complex, respectively, with oxo ligands bridging the metal

centers (Scheme 21).303 Similarly, cisplatin was oxidized by iron(III) complexes of the

general formula, cis-[Fe(bpy')2(CN)2](NO3), where bpy' is derivative of 2,2'-bipyridine, to

form trinuclear cyanide-bridged complexes (Scheme 21).304,305 The photochemistry of these

complexes was explored, and in some cases the release of aquated cisplatin as a

photoproduct occurred,304,305 thus signifying the potential use of such complexes as

photoactivated anticancer agents.

Hypervalent iodine species are a class of powerful oxidizing agents with utility in organic

synthesis. Iodobenzene dichloride (PhICl2),306 which can be isolated as a crystalline solid,

acts as an easy-to-handle surrogate for chlorine gas. It efficiently converts cisplatin and

related diaminedichloridoplatinum(II) complexes to their corresponding

tetrachloridoplatinum(IV) analogues (Scheme 22).249,250 A recent report describes the

action of PhICl2 on an organoamide platinum(II) complex in a mixture of acetone and basic

water.307 A mixed trans hydroxo-chlorido platinum(IV) complex is obtained (Scheme

22),307 consistent with a solvent-assisted mechanism, similar to that observed for oxidations

by chlorine and hydrogen peroxide.

The oxidations of cis- and trans-[Pt(NH3)(NH2Cy)Cl2], where NH2Cy is cyclohexylamine,

with PhI(OAc)2 in dichloromethane have been investigated.308 The major products derive

from the oxidative addition of two acetate ligands in a cis orientation. For cis-[Pt(NH3)

(NH2Cy)Cl2], the major product is cis,cis,cis-[Pt(NH3)(NH2Cy)Cl2(OAc)2], whereas, when

the starting material is trans-[Pt(NH3)(NH2Cy)Cl2], the major product is cis,trans,cis-

[Pt(NH3)(NH2Cy)Cl2(OAc)2] (Scheme 22). In addition to the major product, minor products

mer-[Pt(NH3)(NH2Cy)Cl(OAc)3] and fac-[Pt(NH3)(NH2Cy)(OAc)Cl3] also form upon

PhI(OAc)2 oxidation of cis-[Pt(NH3)(NH2Cy)Cl2], indicative of intermolecular ligand

substitution reactions. The apparent limitations of using PhI(OAc)2 in contrast to PhICl2 are

the formation of products without predictable stereochemistry and unexpected ligand

stoichiometries. Given the large number of hypervalent iodine complexes in the literature,

further investigations of their reactivity with platinum(II) complexes is certainly warranted,

for they may lead to new, valuable synthetic routes to novel platinum(IV) complexes.

3.2. Outer-Sphere Ligand-Based Reactivity

Outer-sphere ligand-based reactivity pathways for the preparation of new platinum(IV)

complexes is a valuable synthetic route because their kinetic inertness limits the utility of

ligand substitution reactions. A reaction of key importance in this regard is that of Pt(IV)-

hydroxo compounds with electrophiles. The coordinated hydroxide ligand of platinum(IV)

complexes is sufficiently nucleophilic to enable such transformations. The acetylation of

cis,cis,trans-[Pt(iPrNH2)2Cl2(OH)2] with trifluoroacetic anhydride to form cis,cis,trans-

[Pt(iPrNH2)2Cl2(O2CCF3)2] was first demonstrated in 1983.309 This chemistry was further

expanded to include a broader range of acid anhydrides, pyrocarbonates, and isocyanates as

electrophiles to afford dicarboxylate, dicarbonate, and dicarbamate platinum(IV) complexes,

respectively.129 In all cases, the stereochemistry of the starting dihydroxo platinum(IV)

compound is retained. For acetylation of trans,trans,trans-[Pt(NH3)(NH2Cy)Cl2(OH)2] with
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acetic anhydride, however, light-induced isomerization of the initial product,

trans,trans,trans-[Pt(NH3)(NH2Cy)Cl2(OAc)2], to trans,cis,cis-[Pt(NH3)

(NH2Cy)Cl2(OAc)2] occurred.308

Since the initial report, a wide variety of trans platinum(IV) dicarboxylate complexes have

been synthesized in this manner. The carboxylate ligands have significant effects on both the

lipophilicity and reduction potentials of the resulting platinum(IV) complexes.310–313

Furthermore, the ubiquitous nature of the carboxylate functional group in many different

organic molecules enabled the synthesis of platinum(IV) complexes bearing biologically

active ligands, attached via the carboxylate.314–317 Different protocols have called for the

use of excess anhydride, either neat,129 or together with acetone,129 dichloromethane,66,310

acetonitrile,318,319 or DMSO320,321 as the solvent (Scheme 23). Similarly, tetracarboxylato

platinum(IV) complexes, some of which exhibit anticancer activity when administered

orally,322 can be synthesized from cis-[PtL2(OH)4]293,308,323 and excess anhydride in

dichloromethane (Scheme 23).308,324 This reaction demonstrates that equatorial cis

hydroxide ligands also display nucleophilic properties. Acyl chlorides also react with trans

dihydroxo platinum(IV) complexes to form dicarboxylates. A difficulty in this reaction,

noted early on,129 is the formation of hydrochloric acid as a byproduct, which can remove

the hydroxo ligands of platinum(IV) by protonation. Optimized reaction conditions utilize

refluxing acetone as a solvent and an excess of pyridine as a base to sequester the HCl that is

formed (Scheme 23).325,326 Aromatic carboxylate ligands can be installed on platinum(IV)

with this method as well.314,327

A third route to trans platinum(IV) dicarboxylates utilizes the ring opening reactions of the

platinum(IV) hydroxo complexes with cyclic anhydrides. Succinic,154,328,329 maleic,154,245

glutaric,154,330 phthalic,327 and naphthalic331 anhydrides have all been used in this reaction,

together with the traditional Chinese medicine cantharidin.315 Early protocols for this

reaction involved the treatment of a platinum(IV) hydroxo compound with the cyclic

anhydride in refluxing dichloromethane for two days.154,330 Currently, the most commonly

used method utilizes either DMF329 or DMSO328 as solvent at 50–80 °C for 6–24 h

(Scheme 23). Activating carboxylic acids with an appropriate coupling reagent has also been

an effective means of forming trans dicarboxylate complexes. For example, the reaction of a

platinum(IV) analogue of oxaliplatin, trans-[Pt(trans-1,2-DACH)(oxalate)(OH)2], with 3

equiv of carboxylic acid, triethylamine (TEA), and the coupling reagent O-benzotriazol-1-

yl-N,N,N',N'-tetramethyluronium tetrafluoroborate (TBTU) readily yields the dicarboxylato

complex, trans-[Pt(trans-1,2-DACH)(oxalate)(O2CR)2] (Scheme 23).288 This one pot

procedure may provide a useful alternative to the abovementioned methods because it

avoids the need to prepare anhydrides or acyl chloride as intermediates.

The synthesis of mixed platinum(IV) carboxylate complexes can introduce greater

molecular complexity and provide a means of installing different functional or targeting

groups. The reaction of a platinum(IV) dihydroxo complex with a mixture of different

anhydrides gives rise to a statistical mixture of symmetric and asymmetric platinum(IV)

dicarboxylates that can be separated by silica gel chromatography.129 Similarly, mixed

tetracarboxylates were synthesized by the reaction of a platinum(IV) tetrahydroxo complex

with different ratios of anhydrides.332 The resulting products required purification by either
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silica gel chromatography or preparative reverse-phase HPLC.332 Another, more elegant

pathway to mixed platinum(IV) dicarboxylates requires the isolation of a trans mixed

hydroxo-carboxylato platinum(IV) complex. The remaining hydroxo ligand could then be

derivatized with a different carboxylate ligand. The synthesis of several mixed hydroxo-

carboxylato complexes by the peroxide oxidation of platinum(II) in the presence of an

excess of carboxylic acid was described above, as shown in Scheme 19.261,288 These

complexes can react with another acid anhydride to yield a mixed-dicarboxylate complex.

The selective acetylation of a single hydroxo ligand is another potential strategy. One way to

accomplish this selective reaction is with steric control. Initially, the acetylation of a

platinum(IV) analogues of sterically hindered picoplatin, cis,cis,trans-[Pt(NH3)(2-

pic)Cl2(OH)2], with acetic anhydride was reported to be unsuccessful because the ortho

methyl group of the picoline ligand impedes the hydroxo nucleophilic attack.145 It was later

shown, however, that the acetylation of this complex can be successfully executed with a

number of different anhydrides to give symmetric dicarboxylate complexes.333 Thus the

steric effects of the 2-picoline ligand did not successfully lead to the formation of the

monohydroxo complex. The platinum(IV) complex cis,cis,trans-[Pt(en')Cl2(OH)2], where

en' is N,N-dimethylethylene-diamine, is selectively acetylated at only one of the hydroxo

ligands in the presence of excess succinic anhydride (Scheme 24).334 The inability to form

the dicarboxylate was attributed to steric repulsion induced by the additional methyl groups

on the ethylenediamine ligand.334 This strategy was expanded with other bulky derivatives

of ethlyenediamine to selectively functionalize only one hydroxide ligand with isocynates

and acyl chlorides using mild reaction conditions.335 The isolation of other mixed hydroxo-

carboxylato platinum(IV) complexes as synthons for mixed dicarboxylates was described

recently.331 These complexes were obtained by careful control of the reaction conditions.

The room temperature reactions of platinum(IV) dihydroxo complexes with an acid

anhydride in DMSO were used to increase the yield of the desired monocarboxylate

complexes with respect to that of the dicarboxylate species (Scheme 24). These reaction

conditions were employed to prepare complexes with axial aromatic carboxylates331 and

succinate.258,336 In general, the desired mixed hydroxo-carboxylato complexes are insoluble

in acetone, thereby enabling the undesired dicarboxylate complexes to be removed by

dissolution in this solvent.129 An alternative procedure utilizes a carboxylic acid

preactivated by N, N'-dicyclohexylcarbodiimide (DCC).288 The one pot reaction of a trans-

[Pt(trans-1,2-DACH)(oxalate)(OH)2] with only slightly greater than one equiv of DCC and

a carboxylic acid in DMF at room temperature preferentially gave the monocarboxylato

species (Scheme 24).288

In addition to acid anhydrides and acid chlorides, several other electrophiles react with

platinum(IV) hydroxo complexes. The reactivity of platinum(IV) hydroxides with

pyrocarbonates and isocyanates to form platinum(IV) carbonates and carbamates has been

known for over 15 years.129 The reactions of cis, cis, trans-[Pt(NH3)2Cl2(OH)2] with both

alkyl and aromatic isocyanates were recently investigated in detail.337 The optimal

conditions utilized four equiv of the isocyanate and DMF as the solvent at room temperature

for several hours (Scheme 25). The action of trimethylsilyl chloride (TMSCl) on the

tetrahydroxo complex, cis-[Pt(DPDA)(OH)4] has also been explored.323 At room

temperature in THF with TEA as a base, the main reaction product is the trans disiloxide
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complex, cis, trans, cis-[Pt(DPDA)(OSiMe3)2(OH)Cl], whereas refluxing conditions

afforded cis, trans, cis-[Pt(DPDA)(OSiMe3)2Cl2] (Scheme 25)323. The substitution of the

hydroxide ligands most likely arises from the HCl byproduct, which acts as the source of

protons to labilize the hydroxide ligands and as the source of the nucleophilic chloride

ligands.

The additional axial ligands available in platinum(IV) but not platinum(II) complexes can be

selected for introducing reactive organic functionalities. For example, the ring-opening

reaction of platinum(IV) hydroxides with cyclic acid anhydrides yields platinum(IV)

complexes with free terminal carboxylic acids. The terminal carboxylic acids can undergo

amide and ester coupling reactions with the octahedral platinum(IV) center remaining intact

(Scheme 26). These reactions have been used to covalently modify platinum(IV) complexes

with estrogen,328–341 and nano-delivery devices.274,342–348 Additionally, a wide variety of

amines and alcohols have been coupled to such platinum(IV) complexes in order to

systematically adjust their lipophilicities.284,329,349–354 For coupling reactions carried out in

DMF, N, N'-diisopropylcarbodiimide (DIPC),328O-(7-azabenzotriazol-1-yl)-N, N, N', N'-

tetramethyluronium hexafluorophosphate (HATU),342 and 1,1'-carbonyldiimidazole

(CDI)329 were all used with success, whereas for aqueous coupling reactions the

combination of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) (EDC) and N-

hydroxysuccinimide (NHS) works well.336,338,341

Two platinum(IV) complexes with axial ligands containing aldehyde and ketone functional

groups have also been reported recently.355,356 The reaction of these functional groups with

organic hydrazines and hydroxylamines leads to the formation of hydrazones and oximes,

providing a new convenient method to conjugate platinum(IV) to different units (Scheme

26). This strategy has already been employed to attach platinum(IV) to a short peptide356

and a polymeric nanoparticle.355 A platinum(IV) complex containing an axial carboxylate

ligand with a pendant azide has also recently been described.288 In the presence of CuI, the

azide ligand reacts with an alkyne to form the expected triazole, and the intact platinum(IV)

complex can be isolated by preparative HPLC in approximately 50% yield (Scheme 26).288

A possible limitation of this reaction for use in the preparation of other platinum(IV)

complexes could be undesired reduction of the platinum(IV) center by the Cu(I) ion. In

another recent report, a thiol-reactive maleimide functional group was installed in the axial

positions of two platinum(IV) complexes via carbamate linkages.357 The maleimide was

used to attach the platinum(IV) complex to human serum albumin at its single exposed

cysteine residue (Scheme 26).357

3.3. Ligand Substitution Reactions

Because of the inert nature of platinum(IV) complexes, direct ligand substitution reactions

are generally very slow and require harsh conditions. As a result, such reactions are rarely

employed to prepare anticancer platinum(IV) prodrug candidates. Complexes of the type

[Pt(L2)Cl4], where L2 is a chelating diamine ligand, however, can be synthesized by the

reaction of the [PtCl2]2− anion with L2 in water, usually under refluxing conditions.358–362

For more complicated structures, different strategies can be utilized to facilitate ligand

substitution of platinum(IV), as discussed below.
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Hydroxide ligands bound to platinum(IV) complexes can be substituted under acidic

conditions. A popular synthetic route to cis-[Pt(NH3)2Cl4] and other diamine tetrachlorido

complexes utilizes cis, cis, trans-[Pt(NH3)2Cl2(OH)2] as a platinum(IV) starting material.

Treatment of this compound with hydrochloric acid affords the tetrachloride (Scheme

27).310 This reaction most likely proceeds via protonation of the hydroxo ligands, converting

them to labile water ligands, followed by displacement with the nucleophilic chloride ion.

This reaction also works for hydrobromic acid to substitute bromide for hydroxide

ligands.363 When hydrochloric acid is added to the tetrahydroxo compound, [Pt(trans-1,2-

DACH)(OH)4], all four hydroxides are replaced by chloride ligands.364 In contrast,

suspending [Pt(trans-1,2-DACH)(OH)4] in neat carboxylic acid affords the trisubstituted

species, fac-[Pt(trans-1,2-DACH)(OH)(O2CR)3] (Scheme 27).364 It is hypothesized by the

authors of these studies that the pKa of the last hydroxide ligand is too low to be protonated

by a carboxylic acid (pKa ≈ 5), but not lower than that of the stronger acid HCl. This

hydroxo ligand, however, still retains its nucleophilic character as it can be acetylated with

other carboxylic anhydrides to rationally make mixed carboxylate complexes.365 When

trifluoroacetic anhydride is added to these tricarboxylate complexes in the absence of a base,

the unexpected product cis, cis, cis-[Pt(trans-1,2-DACH)(O2CR)2(O2CCF3)2] is obtained

(Scheme 27).366 The hydroxide is most likely initially acetylated by trifluoroacetic

anhydride, releasing the strong acid, trifluoroacetic acid, as a byproduct. Trifluoroacetic acid

can then protonate and release a coordinated carboxylate ligand and bind to the platinum(IV)

center. Consistent with this hypothesis is the observation that adding a base with the

trifluoroacetic anhydride gives rise only to the expected complex, fac-[Pt(trans-1,2-DACH)

(O2CCF3)(O2CR)3], presumably by neutralizing the trifluoroacetic acid byproduct.366

Just as acidic conditions favor ligand substitution reactions in platinum(IV) complexes by

protonolysis, basic conditions can also induce ligand substitution, albeit by a different

mechanism. Under basic conditions, platinum amine complexes can undergo ligand

substitution via the base hydrolysis mechanism.367–369 In general, these reactions result in

the net substitution of a chloride by a solvent ligand. The first step is the deprotonation of an

amine ligand to form an amido ligand. The high trans effect of the amido ligand favors

dissociation of a trans chloride ligand, yielding a five-coordinate intermediate. The addition

of a solvent molecule to this five-coordinate intermediate results in the observed product. In

the realm of platinum-based anticancer agents, this reaction mechanism has been proposed,

albeit without supporting kinetic data, for the formation of several new derivatives of

satraplatin.308,370 The reaction of cis, cis, trans-[Pt(NH3)(NH2Cy)Cl2(O2CC3H7)2] with

sodium methoxide in methanol resulted in substitution of the chloride trans to the

cyclohexylamine for a methoxide ligand, forming cis, cis, trans-[Pt(NH3)(NH2Cy)Cl(OMe)

(O2CC3H7]2 (Scheme 28)370. Similarly, in basic water cis, cis, trans-[Pt(NH3)

(NH2Cy)Cl2(O2CCH3)2] converts to the monohydroxide complex, cis, cis, trans-[Pt(NH3)

(NH2Cy)Cl(OH)(O2CCH3)2], where the hydroxide ligand is also trans to the

cyclohexylamine (Scheme 28).308 In DMA containing 2 M LiCl, the addition of TEA as a

base to cis-[Pt(NH3)(NH2Cy)(OAc)4] afforded the monochlorido complex mer-[Pt(NH3)

(NH2Cy)Cl(OAc)3] (Scheme 28).308 In this case, the base hydrolysis route was able to

substitute an acetate ligand rather than a chloride. This reaction also demonstrates that, if a

non-coordinating solvent is used, other ligands besides solvent can be added to the

Wilson and Lippard Page 25

Chem Rev. Author manuscript; available in PMC 2015 April 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



platinum(IV) complex. In a recent study, it was demonstrated that platinum(IV) complexes

with electronegative halocarboxylate ligands can be directly hydrolyzed, undergoing

substitution of the carboxylates for hydroxides.371 These reactions are accelerated under

basic conditions,371 suggesting that a conjugate base mechanism might be operative.

4. Concluding Remarks

The chemistry of cisplatin and its isomers was first explored over one hundred years ago.

The discovery of its anticancer properties in 1969 motivated further exploration into its

coordination chemistry and that of related species,372,373 with the ultimate goal of finding

new complexes with improved therapeutic properties. The development of new synthetic

methodologies can give access to new platinum complexes with novel structures and

possibly novel modes of biological activity. This review summarizes the known reactivity

patterns and synthetic strategies for a range of platinum anticancer complexes. Notably,

much of this chemistry has only been developed within the last 20 years. Thus, as long as

the need for new platinum anticancer agents persists, new chemistry will be developed and

investigated in order to obtain such compounds.
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bpy 2,2'-bipyridine

CBDCA 1,1-cyclobutanedicarboxylato

CDI 1,1'-carbonyldiimidazole

DACH diaminocyclohexane

dien diethylenetriamine

DMA N,N-dimethylacetamide

DCC N,N'-dicyclohexylcarbodiimide

DPDA 2,2-dimethyl-1,3-propanediamine

DIPC N,N'-diisopropylcarbodiimide

DPP diphenyl phosphate

edda ethylenediamine-N,N'-diacetic acid

edma ethylenediaminemonoacetic acid

EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide)

edta ethylenediametetraacetic acid

en ethylenediamine

fpd 9-fluorenylidenepropanedioate

HATU O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate

pmpa N-(2-picolyl)picolinamide

NHS N-hydroxysuccinimide

TBTU O-benzotriazol-1-yl-N,N,N',N'-tetramethyluronium tetrafluoroborate

TEA triethylamine
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TMSCl trimethylsilyl chloride

tu thiourea
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Chart 1.
Chemical structures of the clinically used platinum-based anticancer drugs. The top three complexes, cisplatin, carboplatin, and

oxaliplatin, are approved for use worldwide. The bottom three complexes, nedaplatin, lobaplatin, and heptaplatin, are approved

for use in Japan, China, and Korea, respectively.
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Chart 2.
Structures of mixed amine platinum(II) complexes that have undergone clinical trials.
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Chart 3.
Examples of cationic monofunctional platinum(II) complexes that exhibit anticancer activity.172–174
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Chart 4.
Depiction of the six different stereoisomers of [PtCl2(iminoether)2]. The terms cis and trans refer to the stereochemistry at the

platinum(II) center, whereas E and Z denote the stereochemistry at the C–N double bond of the iminoether ligands.213
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Chart 5.
Examples of several clinically investigated platinum(IV) anticancer agents.
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Figure 1.
Different components of platinum anticancer agents. Additional factors that can be varied are the stereochemistry and the

respective number of non-leaving and leaving group ligands.
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Scheme 1.
Synthesis of cisplatin using the method of Dhara.60 All reactions steps are carried out in aqueous solution.
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Scheme 2.
The use of the Kurnakow test81 to distinguish cis- and trans-[Pt(NH3)2Cl2]. Reactions with thiourea are carried out in sub-

boiling water.
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Scheme 3.
Synthesis of trans-[Pt(NH3)2Cl2].57 Reactions are carried out in water at elevated (50–100 °C) temperatures.
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Scheme 4.
Different synthetic routes to replace halide leaving group ligands.95,107
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Scheme 5.
Synthesis of cis-[Pt(NH3)LCl2] starting from cisplatin using the [Pt(NH3)Cl3]− ion as an intermediate.126,130
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Scheme 6.
Synthesis of mixed amine complexes, cis-[PtLL'I2], via iodido-bridged dimer intermediates.131,142
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Scheme 7.
Synthesis of mixed amine complexes with a chelating oxygen donor leaving group.152
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Scheme 8.
Synthesis of trans-[PtLL'Cl2].158
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Scheme 9.
Synthesis of [Pt(NH33Cl]Cl.169
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Scheme 10.
Two different synthetic routes for the preparation of cis-[Pt(L2)(RR'SO)Cl]Cl.173
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Scheme 11.
Synthesis of cis-[Pt(NH3)2LCl]NO3.172,189
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Scheme 12.
Synthesis of monofunctional, thiourea platinum(II) complexes.208
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Scheme 13.
Synthesis of cis- (top), trans-[PtCl2(iminoether)2] (middle), and trans-[PtCl2(imino thioether)2].213,219,221
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Scheme 14.
Synthesis of cis- (top) and trans-[PtCl2(amidine)2] (middle).229 Room temperature conditions and extended reactions times lead

to the formation of primarily trans-[Pt(NH2R')2(amidine)2] from trans-[PtCl2(NCR)2] (bottom).235
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Scheme 15.
Multi-step synthetic scheme for the preparation of monofunctional platinum-amidine complexes.236

Wilson and Lippard Page 59

Chem Rev. Author manuscript; available in PMC 2015 April 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Scheme 16.
Condensation reactions involving the coordinated ammine ligands of cis- and trans-[Pt(NH3)2Cl2], as well as their diiodido

analogues.244,246
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Scheme 17.
Outer-sphere ligand-based reactivity pathways of several platinum(II) complexes.248–253

Wilson and Lippard Page 61

Chem Rev. Author manuscript; available in PMC 2015 April 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Scheme 18.
Oxidation of a platinum(II) complex with chlorine (top)264 and hydrogen peroxide266 (bottom). The products obtained for the

hydrogen peroxide-oxidation are dependent on the solvent used.273,274
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Scheme 19.
Peroxide oxidations of platinum(II) complexes in various acidic solvents.261,285,286,288
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Scheme 20.
Ring-closing oxidation reactions of [Pt(edma)Cl2] (top),248 [Pt(edda)Cl2] (middle),248,289 and [Pt(edta)Cl2] (bottom).290
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Scheme 21.
Preparation of platinum(IV) complexes using different oxidizing agents.291–293,299,303–305
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Scheme 22.
Oxidation of platinum(II) complexes with hypervalent iodine reagents.307,308
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Scheme 23.
Synthetic methods for the preparation of platinum(IV) carboxylates.129,288,324,325,328
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Scheme 24.
Synthesis of mixed trans hydroxo-carboxylato platinum(IV) complexes.258,288,331,336
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Scheme 25.
Reactivity of platinum(IV) hydroxides with electrophiles.129,323,337
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Scheme 26.
Outer-sphere reactivity of platinum(IV) complexes with organic functional groups.288,328,329,355–357
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Scheme 27.
Ligand substitution reactions facilitated by acidic conditions.310,364,366
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Scheme 28.
Ligand substitution reactions facilitated by basic conditions, presumably through a base hydrolysis mechanism.308,370
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