
Freecursive ORAM: [Nearly] Free Recursion and
Integrity Verification for Position-based Oblivious RAM

Christopher W. Fletcher†, Ling Ren†, Albert Kwon†, Marten van Dijk‡, Srinivas Devadas†

†Massachusetts Institute of Technology − {cwfletch, renling, kwonal, devadas}@mit.edu
‡ University of Connecticut − vandijk@engr.uconn.edu

Abstract
Oblivious RAM (ORAM) is a cryptographic primitive that
hides memory access patterns as seen by untrusted storage.
Recently, ORAM has been architected into secure proces-
sors. A big challenge for hardware ORAM schemes is how
to efficiently manage the Position Map (PosMap), a cen-
tral component in modern ORAM algorithms. Implemented
naı̈vely, the PosMap causes ORAM to be fundamentally un-
scalable in terms of on-chip area. On the other hand, a tech-
nique called Recursive ORAM fixes the area problem yet
significantly increases ORAM’s performance overhead.

To address this challenge, we propose three new mech-
anisms. We propose a new ORAM structure called the
PosMap Lookaside Buffer (PLB) and PosMap compression
techniques to reduce the performance overhead from Recur-
sive ORAM empirically (the latter also improves the con-
struction asymptotically). Through simulation, we show that
these techniques reduce the memory bandwidth overhead
needed to support recursion by 95%, reduce overall ORAM
bandwidth by 37% and improve overall SPEC benchmark
performance by 1.27×. We then show how our PosMap
compression techniques further facilitate an extremely effi-
cient integrity verification scheme for ORAM which we call
PosMap MAC (PMMAC). For a practical parameterization,
PMMAC reduces the amount of hashing needed for integrity
checking by ≥ 68× relative to prior schemes and introduces
only 7% performance overhead.

We prototype our mechanisms in hardware and report
area and clock frequency for a complete ORAM design post-
synthesis and post-layout using an ASIC flow in a 32 nm
commercial process. With 2 DRAM channels, the design
post-layout runs at 1 GHz and has a total area of .47 mm2.
Depending on PLB-specific parameters, the PLB accounts
for 10% to 26% area. PMMAC costs 12% of total design
area. Our work is the first to prototype Recursive ORAM or
ORAM with any integrity scheme in hardware.

1. Introduction
With cloud computing becoming increasingly popular, pri-
vacy of users’ sensitive data has become a large concern
in computation outsourcing. In an ideal setting, users would
like to “throw their encrypted data over the wall” to a cloud
service that should perform computation on that data without
the service learning any information from within that data.
It is well known, however, that encryption is not enough to

get privacy. A program’s memory access pattern has been
shown to reveal a large percentage of its behavior [39] or the
encrypted data it is computing upon [16, 21].

Oblivious RAM (ORAM) is a cryptographic primitive
that completely eliminates the information leakage in a pro-
gram’s memory access trace (made up of reads/writes to
memory). Conceptually, ORAM works by maintaining all
of memory in encrypted and shuffled form. On each ac-
cess, memory is read and then reshuffled. Under ORAM, any
memory access pattern is computationally indistinguishable
from any other access pattern of the same length. ORAM
was first proposed by Goldreich and Ostrovsky [9, 11],
and there has been significant follow-up work that has re-
sulted in more efficient and cryptographically-secure ORAM
schemes [4, 5, 14, 18, 23, 24, 30, 34, 36].

An important use case for ORAM is in trusted hard-
ware [7, 21, 26, 31, 34]. In this setting, an on-chip ORAM
controller intercepts last-level cache (LLC) misses/evictions
and turns them into obfuscated main memory requests (i.e.,
the address pattern is randomized, data read/written is en-
crypted). Since program performance is very sensitive to
cache miss latency, the ORAM controller logic is imple-
mented directly in hardware.

1.1 Problem: Position Map Management
A big challenge for hardware ORAM controllers is that they
need to store and manage a large data structure called the
Position Map (PosMap for short). Conceptually, the PosMap
is a page table that maps data blocks to random locations in
external memory. Hence, the PosMap’s size is proportional
to the number of data blocks (e.g., cache lines) in main
memory and can be hundreds of MegaBytes in size.

PosMap size has been an issue for all prior hardware
ORAM proposals. First, Maas et al. [21] recently built Phan-
tom, the first hardware ORAM prototype on an FPGA. The
Phantom design stores the whole PosMap on-chip. As a re-
sult, to scale beyond 1 GB ORAM capacities, Phantom re-
quires the use of multiple FPGAs just to store the PosMap.
Second, Ren et al. [26] evaluate a technique called Recur-
sive ORAM [30] in the secure hardware setting. The idea is
to store the PosMap in additional ORAMs to reduce the on-
chip storage requirement. The cost of Recursive ORAM is
performance. One must access all the ORAMs in the recur-
sion on each ORAM access. Even after architectural opti-
mizations [26], a Recursive ORAM spends 39% to 56% of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78062071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

its time looking up PosMap ORAMs, and this percentage
only increases with ORAM capacity (§ 3.2.1).

We believe that to be practical and scalable to large
ORAM capacities, Recursive ORAM is necessary in secure
hardware. To that end, one focus in this paper is to explore
novel ways to dramatically reduce the performance overhead
of Recursive ORAM.

We then take a new direction and explore what other func-
tions the PosMap can perform on behalf of the processor. We
show how our optimized PosMap construction can also, for
very little additional cost, be used to perform extremely ef-
ficient integrity verification for ORAM. Obviously, integrity
verification is an important consideration for any secure stor-
age system where data can be tampered with. Yet, prior
ORAM integrity schemes based on Merkle trees [25] re-
quire large hash unit bandwidth to rate match memory. We
show how clever use of our optimized PosMap simplifies
this problem dramatically.

1.2 Our Contribution
To accomplish the above goals, we contribute the following
mechanisms:
1. We propose the PosMap Lookaside Buffer (§ 4), or

PLB for short, a mechanism that significantly reduces
the memory bandwidth overhead of Recursive ORAMs
depending on underlying program address locality.

2. We propose a way to compress the PosMap (§ 5), which
reduces the cost of recursion in practice and asymptoti-
cally, and improves the PLB’s effectiveness.

3. We then show how to further use PosMap compression to
create an ORAM integrity scheme, called PosMap MAC
(§ 6) or PMMAC for short, which is extremely efficient
in practice and is asymptotically optimal.
With the PLB and PosMap compression, we reduce

PosMap-related memory bandwidth overhead by 95%, re-
duce overall ORAM bandwidth overhead by 37% and
improve SPEC performance by 1.27×. As a standalone
scheme, PMMAC reduces the amount of hashing needed
for integrity checking by ≥ 68× relative to prior schemes.
Using PosMap compression and PMMAC as a combined
scheme, we demonstrate an integrity checking mechanism
for ORAM that increases performance overhead by only 7%.

In addition to evaluating our proposals using software
simulation, we prototype a complete ORAM design with
the PLB and PMMAC in a 32 nm commercial process and
evaluate the entire design post-synthesis and post-layout for
area and clock frequency. Our design is open source and
available at http://kwonalbert.github.io/oram.

Post-synthesis, PMMAC and the PLB cost < 13% and
10% (respectively) of total design area. Post-layout, the en-
tire ORAM controller parameterized for 2 DRAM channels
is .47 mm2 and runs at 1 GHz. Our prototype is the first
hardware implementation of Recursive ORAM and integrity
verification with ORAM.

2. Threat Model
In our setting, trusted hardware (e.g., a secure processor)
operates in an untrusted environment (e.g., a data center)
on behalf of a remote user. The processor runs a private
or public program on private data submitted by the user,
and interacts with a trusted on-chip ORAM controller, on
last-level cache misses, to access data in untrusted external
memory. We assume untrusted memory is implemented in
DRAM for the rest of the paper.

The data center is treated as both a passive and active
adversary. First, the data center will passively observe how
the processor interacts with DRAM to learn information
about the user’s encrypted data. Second, it may additionally
try to tamper with the contents of DRAM to influence the
outcome of the program and/or learn information about the
encrypted data.

Security definition (privacy)
We adopt the following security definition for ORAM that is
implicit in all prior hardware proposals [6, 21, 26]:

For data request sequence ←−a , let ORAM(←−a) be the
resulting randomized data request sequence of an ORAM
algorithm. Each element in a data request sequence fol-
lows the standard RAM interface, i.e., is a (address, op,
write data) tuple. We guarantee that for any polynomial-
length←−a and

←−
a′ , the resulting polynomial-length sequences

ORAM(←−a) and ORAM(
←−
a′) are computationally indistin-

guishable if |ORAM(←−a)| = |ORAM(
←−
a′)|.

Here, |ORAM(←−a)| denotes the length of ORAM(←−a). In
other words, the memory request sequence visible to the ad-
versary leaks only its length. Importantly, this definition al-
lows the processor to use conventional on-chip cache. In our
terminology,←−a is the sequence of load/store instructions in
the program. |ORAM(←−a)| is determined by, and thus re-
veals, the number of LLC misses in ←−a , but not |←−a |. The
definition captures the essence of ORAM’s privacy guaran-
tee: ORAM hides individual elements in the data request
sequence, while leaking a small amount of information by
exposing the length of the sequence. From an information-
theoretic point of view, the former grows linearly with the
request sequence length, while the latter only grows loga-
rithmically.

Security definition (integrity)
We guarantee that ORAM behaves like a valid memory with
overwhelming probability from the processor’s perspective.

Memory has valid behaviors if the value the processor
reads from a particular address is the most recent value that
it has written to that address (i.e., is authentic and fresh).

Security definition (integrity+privacy)
In the presence of active adversaries, we guarantee that

ORAM behaves like a valid memory and that the result-
ing ORAM request sequence is computationally indistin-
guishable up to the point when tampering is detected by
the ORAM controller (i.e., that the ORAM request sequence
achieves the privacy guarantees described above).

http://kwonalbert.github.io/oram

When tampering is detected, the processor receives an
exception at which point it can kill the program, or take
some measures to prevent leakage from integrity violation
detection time.

Threats outside of scope: timing channel leakage
Following Phantom [21], we assume that each DRAM
request made during an ORAM access occurs at data-
independent times and thus does not leak information. Also
following Phantom (and work in [26]), we do not obfuscate
when an ORAM access is made or the time it takes the pro-
gram to terminate. These two timing channels are orthogonal
to our work and have been addressed for ORAM by Fletcher
et al. [6]. The schemes in that work can be adopted on top of
our work if timing protection is needed.

3. Background
We will evaluate our techniques on top of Path ORAM [34],
which was the scheme used in [21, 26]. Path ORAM is not
only efficient but is also relatively simple algorithmically,
making it implementable in hardware. We remark, however,
that our optimizations apply to other Position-based (i.e., use
a PosMap) ORAM schemes including [8, 30, 32].

3.1 Basic Path ORAM
Hardware Path ORAM is made up of two components: a
(trusted) on-chip ORAM controller and (untrusted) external
memory.

The untrusted external storage is logically structured as
a binary tree, as shown in Figure 1, called the ORAM tree.
The ORAM tree’s levels range from 0 (the root) to L (the
leaves). Each node in the tree is called a bucket and has a
fixed number of slots (denoted Z) which can store blocks,
which are the unit of data requested by the processor (e.g.,
a cache line). Bucket slots may be empty at any point, and
are filled with dummy blocks. All blocks in the tree including
dummy blocks are encrypted with a probabilistic encryption
scheme such as AES counter mode [19] with a randomized
session key. Thus, any two blocks (dummy or real) are in-
distinguishable after encryption. We refer to a path from the
root to some leaf l as path l.

The ORAM controller is made up of the position map,
the stash and control logic. The position map, PosMap for
short, is a lookup table that associates each data block with
a random leaf in the ORAM tree. Managing and optimizing
the PosMap is the focus of this paper. If N is the maximum
number of real data blocks in the ORAM, the PosMap ca-
pacity is N ∗ L bits: one mapping per block. The stash is a
memory that temporarily stores up to a small number of data
blocks (we assume 200 following [26]).

3.1.1 Path ORAM Invariant and Operation
At any time, each data block in Path ORAM is mapped to
a random leaf via the PosMap. Path ORAM maintains the
following invariant: If a block is mapped to leaf l, then it
must be either in some bucket on path l or in the stash.

Blocks are stored in the stash or ORAM tree along with their
current leaf and block address.

Backend

ORAM tree: external memory (untrusted)

Return block
to LLC

From LLC: Req for addr a

3Stash

4

Frontend PosMap1

a, Leaf 1ORAM Controller (trusted)

Address logic

Chip pins

0 1 2 3 4 5 6 7

DRAM addrs
for Leaf 15

2

Figure 1. A Path ORAM of L = 3 levels and Z = 4 slots per
bucket. Suppose block a, shaded black, is mapped to path l = 1.
At any time, block a can be located in any of the shaded structures
(i.e., on path 1 or in the stash).

To make a request for a block with address a (block
a for short), the LLC calls the ORAM controller via
accessORAM(a, op, d′), where op is either read or write and
d′ is the new data is op =write (the steps are also shown in
Figure 1):
1. Look up PosMap with a, yielding the corresponding leaf

label l. Randomly generate a new leaf l′ and update the
PosMap for a with l′.

2. Read and decrypt all the blocks along path l. Add all the
real blocks to the stash (dummies are discarded). Due to
the Path ORAM invariant, block a must be in the stash at
this point.

3. Update block a in the stash to have leaf l′.
4. If op = read, return block a to the LLC. If op = write,

replace the contents of block a with data d′.
5. Evict and encrypt as many blocks as possible from the

stash to path l in the ORAM tree (to keep the stash occu-
pancy low) while keeping the invariant. Fill any remain-
ing space on the path with encrypted dummy blocks.
To simplify the presentation, we refer to Step 1 (the

PosMap lookup) as the Frontend(a), or Frontend, and
Steps 2-5 as the Backend(a, l, l′, op, d′), or Backend. This
work optimizes the Frontend and the techniques can be ap-
plied to any Position-based ORAM Backend.

3.1.2 Path ORAM Security
The intuition for Path ORAM’s security is that every
PosMap lookup (Step 1) will yield a fresh random leaf to
access the ORAM tree for that access. This makes the se-
quence of ORAM tree paths accessed independent of the
actual program address trace. Probabilistic encryption hides
which block is accessed on the path. Further, stash overflow

1 0 0 1 0 0 1

PosMap
Block a2

On-chip PosMap
(i.e., root page table)

Access ORAM2 for (a2, l2)
(i.e., page table lookup)

Access ORAM1 for (a1, l1)
(i.e., page table lookup)

a0:

l2

a2

a1

l1

l2
l1

PosMap
Block a1

l0 is used to lookup
Data ORAM (ORAM0)

l0

Figure 2. Recursive ORAM with PosMap block sizes X = 4,
making an access to the data block with program address a0 =
10010012. Recursion shrinks the PosMap capacity from N = 128
to 8 entries.

probability is negligible if Z ≥ 4 (proven for Z ≥ 5 [34]
and shown experimentally for Z = 4 [21]).

3.2 Recursive ORAM
As mentioned in § 3.1, the number of entries in the PosMap
scales linearly with the number of data blocks in the ORAM.
This results in a significant amount of on-chip storage (hun-
dreds of KiloBytes to hundreds of MegaBytes). To address
this issue, Shi et al. [30] proposed scheme called Recursive
ORAM, which has been studied in simulation for trusted
hardware proposals [26]. The basic idea is to store the
PosMap in a separate ORAM, and store the new ORAM’s
(smaller) PosMap on-chip. We make an important observa-
tion that the mechanics of Recursive ORAM are remarkably
similar to multi-level page tables in traditional virtual mem-
ory systems. We use this observation to help explain ideas
and derive optimizations.

We explain Recursive ORAM through the example in
Figure 2, which uses two levels of recursion. The system
now contains 3 separate ORAM trees: the Data ORAM, de-
noted as ORam0, and two PosMap ORAMs, denoted ORam1

and ORam2. Blocks in the PosMap ORAMs are akin to page
tables. We say that PosMap blocks in ORami store X leaf
labels which refer to X blocks in ORami−1. This is akin to
having X pointers to the next level page table and X is a
parameter.1

Suppose the LLC requests block a0, stored in ORam0.
The leaf label l0 for block a0 is stored in PosMap block
a1 = a0/X of ORam1 (all division is floored). Like a page
table, block a1 stores leaves for neighboring data blocks (i.e.,
{a0, a0 + 1, . . . , a0 + X − 1} in the case where a0 is a
multiple of X). The leaf l1 for block a1 is stored in the
block a2 = a0/X

2 stored in ORam2. Finally, leaf l2 for
PosMap block a2 is stored in the on-chip PosMap. The on-
chip PosMap is now akin to the root page table, e.g., register
CR3 on X86 systems.

To make a Data ORAM access, we must first
lookup the on-chip PosMap, ORam2 and ORam1 in
that order. Thus, a Recursive ORAM access is akin
to a full page table walk. Additional PosMap ORAMs
(ORam3,ORam4, . . . ,ORamH−1) may be added as needed

1 Generally, each PosMap level can have a different X . We assume the same
X for all PosMaps for simplicity.

30 32 34 36 38 40
log2(Data ORAM capacity in Bytes)

25
30
35
40
45
50
55
60
65
70

%
 a

cc
es

s
fro

m
 P

os
M

ap

b64_pm8
b128_pm8

b64_pm256
b128_pm256

Figure 3. The percentage of Bytes read from PosMap ORAMs
in a full Recursive ORAM access for X = 8 (following [26]) and
Z = 4. All bucket sizes are padded to 512 bits to estimate the effect
in DDR3 DRAM. The notation b64 pm8 means the ORAM block
size is 64 Bytes and the on-chip PosMap is at most 8 KB.

to shrink the on-chip PosMap further. H denotes the total
number of ORAMs including the Data ORAM in the recur-
sion and H = log(N/p)/ logX + 1 if p is the number of
entries in the on-chip PosMap. All logarithms will be base 2
for the rest of the paper.

3.2.1 Overhead of Recursion
It should now be clear that Recursive ORAM increases total
ORAM access latency. Unintuitively, with small block sizes,
PosMap ORAMs can contribute to more than half of the
total ORAM latency as shown in Figure 3. For a 4 GB
Data ORAM capacity, 39% and 56% of bandwidth is spent
on looking up PosMap ORAMs (depending on block size),
and increasing the on-chip PosMap only slightly dampens
the effect. Abrupt kinks in the graph indicate when another
PosMap ORAM is added (i.e., when H increases).

We now explain this overhead from an asymptotic per-
spective. We know a single Path ORAM (without recursion)
with a block size B of bits transfers O(B logN) bits per
access. In Recursive ORAM, the best strategy to minimize
bandwidth is to set X to be constant, resulting in a PosMap
ORAM block size of Bp = Θ(logN). Then, the number
of PosMap ORAMs needed is Θ(logN), and the resulting
bandwidth overhead becomes

O

(
logN +

HBp logN

B

)
= O

(
logN +

log3N

B

)
The first term is for Data ORAM and the second term ac-
counts for all PosMap ORAMs combined. In realistic pro-
cessor settings, logN ≈ 25 and data block size B ≈ log2N
(512 or 1024 in Figure 3). Thus, it is natural that PosMap
ORAMs account for roughly half of the bandwidth over-
head.

In the next section, we show how insights from traditional
virtual memory systems, coupled with security mechanisms,
can dramatically reduce this PosMap ORAM overhead (§ 4).

4. PosMap Lookaside Buffer
Given our understanding of Recursive ORAM as a multi-
level page table for ORAM (§ 3.2), a natural optimiza-
tion is to cache PosMap blocks (i.e., page tables) so that

LLC accesses exhibiting program address locality require
less PosMap ORAM accesses on average. This idea is the
essence of the PosMap Lookaside Buffer, or PLB, whose
name obviously originates from the Translation Lookaside
Buffer (TLB) in conventional systems. Unfortunately, un-
less care is taken, this idea totally breaks the security of
ORAM. This section develops the scheme and fixes the se-
curity holes.

4.1 High-level Idea and Ingredients
4.1.1 PLB Caches
The key point from § 3.2 is that blocks in PosMap ORAMs
contain a set of leaf labels for consecutive blocks in the next
ORAM. Given this fact, we can eliminate some PosMap
ORAM lookups by adding a hardware cache to the ORAM
Frontend called the PLB. Suppose the LLC requests block
a0 at some point. Recall from § 3.2 that the PosMap block
needed from ORami for a0 has address ai = a0/X

i. If this
PosMap block is in the PLB when block a0 is requested, the
ORAM controller has the leaf needed to lookup ORami−1,
and can skip ORami and all the smaller PosMap ORAMs.
Otherwise, block ai is retrieved from ORami and added to
the PLB. When block ai is added to the PLB, another block
may have to be evicted in which case it is appended to the
stash of the corresponding ORAM.

A minor but important detail is that ai may be a valid
address for blocks in multiple PosMap ORAMs; to disam-
biguate blocks in the PLB, block ai is stored with the tag
i||ai where || denotes bit concatenation.

4.1.2 PLB (In)security
Unfortunately, since each PosMap ORAM is stored in a dif-
ferent physical ORAM tree and PLB hits/misses correlate
directly to a program’s access pattern, the PosMap ORAM
access sequence leaks the program’s access pattern. To show
how this breaks security, consider two example programs in
a system with one PosMap ORAM ORam1 (whose blocks
store X = 4 leaves) and a Data ORAM ORam0. Program
A unit strides through memory (e.g., touches a, a + 1, a +
2, . . .). Program B scans memory with a stride of X (e.g.,
touches a, a + X, a + 2X, . . .). For simplicity, both pro-
grams make the same number of memory accesses. Without
the PLB, both programs generate the same access sequence,
namely: 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . where 0 denotes an
access to ORam0, and 1 denotes an access to ORam1. How-
ever, with the PLB, the adversary sees the following access
sequences (0 denotes an access to ORam0 on a PLB hit):

Program A : 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, . . .
Program B : 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . .

Program B constantly misses in the PLB and needs to access
ORam1 on every access. Clearly, the adversary can tell pro-
gram A apart from program B in the PLB-enabled system.

4.1.3 Security Fix: Unified ORAM Tree
To hide PosMap access sequence, we will change Recur-
sive ORAM such that all PosMap ORAMs and the Data

ORAM store blocks in the same physical tree which we de-
note ORamU. This is remotely similar to storing all data in
one ORAM “bank” as described in [20], which we com-
pare to further in § 8. Organizationally, the PLB and on-chip
PosMap become the new Path ORAM Frontend, which in-
teracts with a single ORAM Backend (§ 3.1). Security-wise,
both programs from the previous section access only ORamU

with the PLB and the adversary cannot tell them apart (see
§ 4.3 for more discussion on security).

4.1.4 TLB vs. PLB
We remark that while a traditional TLB caches single ad-
dress translations, the PLB caches entire PosMap blocks
(akin to whole page tables). The address locality exploited
by both structures, however, is the same.

4.2 Detailed Construction
4.2.1 Blocks Stored in ORamU

Data blocks and the PosMap blocks originally from the
PosMap ORAMs (i.e., ORam1,. . . ,ORamH−1) are now
stored in a single ORAM tree (ORamU) and all accesses
are made to this one ORAM tree. Both data and PosMap
blocks now have the same size. Since the number of blocks
that used to be stored in some ORami (i > 0) is X times
smaller than the number of blocks stored in ORami−1, stor-
ing PosMap blocks alongside data blocks adds at most one
level to ORamU.

Each set of PosMap blocks must occupy a disjoint ad-
dress space so that they can be disambiguated. For this
purpose we re-apply the addressing scheme introduced in
§ 4.1.1: Given data block a0, the address for the PosMap
block originally stored in ORami for block a0 is given by
i||ai, where ai = a0/X

i. This address i||ai is used to
fetch the PosMap block from the ORamU and to lookup the
PosMap block in the PLB. To simplify the notation, we don’t
show the concatenated address i||ai in future sections and
just call this block ai.

4.2.2 ORAM readrmv and append Operations
We use two new flavors of ORAM access to support PLB
refills/evictions (i.e., op in § 3.1): read-remove and append.
The idea of these two type of accesses appeared in [26]
but we describe them in more detail below. Read-remove
(readrmv) is the same as read except that it physically
deletes the block in the stash after it is forwarded to the
ORAM Frontend. Append (append) adds a block to the
stash without performing an ORAM tree access. ORamU

must not contain duplicate blocks: only blocks that are cur-
rently not in the ORAM (possibly read-removed previously)
can be appended. Further, when a block is appended, the cur-
rent leaf it is mapped to in ORamU must be known so that
the block can be written back to the ORAM tree during later
ORAM accesses.

4.2.3 PLB Architecture
The PLB is a conventional hardware cache that stores
PosMap blocks. Each PosMap block is tagged with its block

(Unmodified) Backend for ORamU

On-chip PosMap

leafaddr PosMap block leaves

For i=0,…,H-2: Hit for
leaf of block ai?

liai+1

PLB

PLB
hit?

1

ah-1,…,a12
For i...1:

PLB refills

From LLC: Req for addr a0

AddrGen:
Derive
a1,...aH-1
from a0

PLB lookup
loop

Figure 4. PLB-enabled ORAM Frontend with X = 4. Access-
ing the actual data block a0 (Step 3 in § 4.2.4) is not shown.

address ai. On a hit, one of the X leaves in the block is read
out and remapped. PosMap blocks are read-removed and ap-
pended from/to ORamU. Thus, each block is stored in the
PLB alongside its current leaf. The PLB itself has normal
cache parameters (size, associativity), and we explore how
this space impacts performance in § 7.1.3.

4.2.4 ORAM Access Algorithm
The steps to read/write a data block with address a0 are given
below (shown pictorially in Figure 4):
1. (PLB lookup) For i = 0, . . . ,H − 2, look up the PLB

for the leaf of block ai (contained in block ai+1). If one
access hits, save i and go to Step 2; else, continue. If no
access hits for i = 0, . . . ,H − 2, look up the on-chip
PosMap for the leaf of block aH−1 and save i = H − 1.

2. (PosMap block accesses) While i ≥ 1, perform a
readrmv operation (§ 4.2.2) to ORamU for block ai and
add that block to the PLB. If this evicts another PosMap
block from the PLB, append that block to the stash.
Decrement i. (This loop will not be entered if i = 0.)

3. (Data block access) Perform an ordinary read or write
access to ORamU for block a0.

Importantly, aside from adding support for readrmv and
append, the above algorithm requires no change to the
ORAM Backend.

4.3 Security
We now give a proof sketch that our PLB+Unified ORAM
tree construction achieves the security definition in § 2. To
do this, we use the fact that the PLB interacts with a normal
Path ORAM Backend. We make the following observations,
which we will use to argue security:

Observation 1. If all leaf labels li used in {read, write,
readrmv} calls to Backend are random and independent of
other lj for i 6= j, the Backend achieves the security of the
original Path ORAM (§ 3.1.2).

Observation 2. If an append is always preceded by a
readrmv, stash overflow probability does not increase (since
the net stash occupancy is unchanged after both operations).

Theorem 1. The PLB+Unified ORAM tree scheme reduces
to the security of the ORAM Backend.

Proof. The PLB+Unified ORAM Frontend calls Backend in
two cases: First, if there is a PLB hit the Backend request is
for a PosMap or Data block. In this case, the leaf l sent to
Backend was in a PosMap block stored in the PLB. Second,
if all PLB lookups miss, the leaf l comes from the on-chip
PosMap. In both cases, leaf l was remapped the instant the
block was last accessed. We conclude that all {read, write,
readrmv} commands to Backend are to random/independent
leaves and Observation 1 applies. Further, an append com-
mand can only be caused by a PLB refill which is the result
of a readrmv operation. Thus, Observation 2 applies.

Of course, the PLB may influence the ORAM trace length
|ORAM(←−a)| by filtering out some calls to Backend for
PosMap blocks. Now |ORAM(←−a)| is determined by, and
thus reveals, the sum of LLC misses and PLB misses. We
remark that processor cache and the PLB are both on-chip
and outside the ORAM Backend, so adding a PLB is the
same (security-wise) to adding more processor cache: in
both cases, only the total number of ORAM accesses leaks.
By comparison, using a PLB in without a Unified ORAM
tree leaks the set of PosMap ORAMs needed on every Re-
cursive ORAM access (§ 4.1.2), which makes leakage grow
linearly with |ORAM(←−a)|.

5. Compressed PosMap
We now show how to compress the PosMap using pseudo-
random functions (PRFs, introduced below). The high level
goal is to store more leaves per PosMap block, thereby re-
ducing the number of Recursive PosMaps.

5.1 Background: PRFs
A pseudorandom Function, or PRF, family y = PRFK(x)
is a collection of efficiently-computable functions, where
K is a random secret key. A PRF guarantees that anyone
who does not know K (even given x) cannot distinguish
y from a truly random bit-string in polynomial time with
non-negligible probability [10]. For the rest of the paper, we
implement PRFK() using AES-128.

5.2 Construction
5.2.1 Main Idea
Following previous notation, suppose each PosMap block
contains X leaf labels for the next ORAM. For example,
some PosMap block contains leaf labels for the blocks with
addresses {a, a+1, · · · , a+X−1}. With the compressed
PosMap scheme, the PosMap block’s contents are replaced
with an α-bit group counter (GC) and X β-bit individual
counters (IC):

GC || IC0 || IC1 || IC2 || · · · || ICX−1
With this format, we can then compute the current leaf label
for block a + j through PRFK(a + j||GC||ICj) mod 2L.
Note that with this technique, the on-chip PosMap is un-
changed and still stores an uncompressed leaf per entry.

5.2.2 Block Remap
For PRFK() to generate a uniform random sequence of
leaves, we must ensure that each GC||ICj strictly increases
(i.e., the PRFK() must never see the same input twice). This
is achieved by the following modified remapping operation:

When remapping block a + j, the ORAM controller
first increments its individual counter ICj . If the individual
counter rolls over (becomes zero again), the ORAM con-
troller will increment the group counter GC. This changes
the leaf label for all the blocks in the group, so we have
to read each block through the Backend, reset its indi-
vidual counter and remap it to the updated path given by
PRFK(a+ j||GC + 1||0) mod 2L. In the worst case where
the program always requests the same block in a group, we
need to reset X individual counters in the group every 2β

accesses.
We remark that this reset operation is very expensive for

baseline Recursive ORAM (§ 3.2). In that case, the ORAM
controller must make X full Recursive ORAM accesses to
reset the individual counters in a certain PosMap ORAM
block. Otherwise, it reveals that individual counters have
overflown in that certain ORAM, which is related to the
access pattern. On the other hand, using a single Unified
ORAM tree as we do to support the PLB (§ 4.1.3) reduces
this to X accesses to ORamU.

5.2.3 System Impact and the PLB
The compressed PosMap format can be used with or with-
out a PLB and, like the PLB, does not require changes to the
Backend. That is, PosMap blocks are stored in their com-
pressed format inside the PLB and ORAM tree/Backend.
Uncompressed leaves are generated using the PRF on-
demand by the Frontend. Each block stored in the Backend
or ORAM tree is still stored alongside its uncompressed leaf
label (a one time cost per block), to facilitate ORAM evic-
tions.

5.3 Benefit of Compressed Format (In Practice)
Our scheme compresses the PosMap block by setting α, β
andX such that α/X+β < L, implying that the (amortized)
bits needed to store each leaf has decreased. A larger X
means a fewer number of PosMap ORAMs are needed as
discussed in § 3.2. Further, this scheme improves the PLB’s
hit rate (§ 4.2.4) since more blocks are associated with a
given PosMap block.

For concreteness, suppose the ORAM block size in bits
is B = 512. The compressed PosMap scheme enables X ′ =
32 by setting α = 64 and β = 14, regardless of ORAM
tree depth L.2 In this configuration, the worst case block
remap overhead is X ′/2β = .2% (§ 5.2.2). By comparison,
the original PosMap representation (up to § 4) only achieves
X = 16 for ORAM tree depths of L = 17 to L = 32.

2 We restrict X′ to be a power of two to simplify the PosMap block address
translation from § 3.2.

5.4 Benefit of Compressed Format (Theoretical)
We now show that for small data block sizesB = o(log2N),
the compressed PosMap with a Unified ORAM asymptot-
ically improves Recursive Path ORAM. In the following
analysis, we assume there is no PLB or that the PLB never
hits, since there is no good way to model program-dependent
locality. We note that by setting β = log logN , and X ′ =
logN/ log logN , the overhead to reset individual counters
is X ′/2β = o(1) and we will assume this setting for the rest
of the section. Further, as discussed in § 3.2.1 and [33], we
always set Bp = Θ(logN), because a larger block size for
PosMap ORAMs is sub-optimal.

When B 6= Bp, we will break each data block into sub-
blocks of size Bp, and store them in the Unified ORAM
tree as independent blocks. We let these sub-blocks share
a single individual counter; the uncompressed leaf for each
sub-block is obtained by including the sub-block index
k in the PRF input, such that leaves are generated by
PRFK(GC || ICj || a + j || k) mod 2L. Now a full
ORAM access involves H Backend accesses to load the
above PosMap block, and another dB/Bpe Backend ac-
cesses to load all the data block sub-blocks. The asymptotic
bandwidth overhead is(

1 +X ′/2β
)
· 2

B
(Bp · logN) ·

(⌈
B

Bp

⌉
+H

)
= O

(
logN +

log3N

B log logN

)
.

When B = o(log2N), this result asymptotically outper-
forms Recursive Path ORAM; WhenB = ω(logN), it beats
Kushilevitz et al. [18], the best existing ORAM scheme un-
der small client storage and a small block size. This makes
it the best asymptotic ORAM so far for any block size in
between.

6. Integrity Verification: PosMap MAC
We now describe a novel and simple integrity verification
scheme for ORAM called PosMap MAC, or PMMAC, that
is facilitated by our PosMap compression technique from
the previous section. PMMAC achieves asymptotic improve-
ments in hash bandwidth over prior schemes and is easy to
implement in hardware.

6.1 Background: MACs
Suppose two parties Alice and Bob share a secret K and Al-
ice wishes to send messages to Bob over an insecure chan-
nel where data packets di (i = 0, . . .) can be tampered by
some adversary Eve. To guarantee message authenticity, Al-
ice can send Bob tuples (hi, di) where hi = MACK(di) and
MACK() is a Message Authentication Code (e.g., a keyed
hash function [3]). For the rest of the paper, we implement
MACK() using SHA3-224.

The MAC scheme guarantees that Eve can only produce a
message forgery (h?, d?) with negligible probability, where
h? = MACK(d?) and d? was not transmitted previously
by Alice. In other words, without knowing K, Eve cannot

come up with a forgery for a message whose MAC it has
never seen.

Importantly Eve can still perform a replay attack, violat-
ing freshness, by replacing some (hi, di) with a previous
legitimate message (hj , dj). A common fix for this prob-
lem is to embed a non-repeating counter in each MAC [29].
Suppose Alice and Bob have shared access to an oracle
that, when queried, returns the number of messages sent
by Alice but not yet checked by Bob. Then, for mes-
sage i, Alice transmits (h′i, di) where h′i = MACK(i||di).
Eve can no longer replay an old packet (h′j , dj) because
MACK(i||dj) 6= MACK(j||dj) with overwhelming proba-
bility. The challenge in implementing these schemes is that
Alice and Bob must have access to a shared, tamper-proof
counter.

6.2 Construction
6.2.1 Main Idea and Non-Recursive PMMAC
Clearly, any memory system including ORAM that requires
integrity verification can implement the replay-resistant
MAC scheme from the previous section by storing per-
block counters in a tamper-proof memory. Unfortunately,
the size of this memory is even larger than the original
ORAM PosMap making the scheme untenable. We make a
key observation that if PosMap entries are represented as
non-repeating counters, as is the case with the compressed
PosMap (§ 5.2.1), we can implement the replay-resistant
MAC scheme without additional counter storage.

We first describe PMMAC without recursion and with
simple/flat counters per-block to illustrate ideas. Suppose
block a which has data d has access count c. Then, the on-
chip PosMap entry for block a is c and we generate the leaf
l for block a through l = PRFK(a||c) mod 2L (i.e., same
idea as § 5.2.1). Block a is written to the Backend as the
tuple (h, d) where

h = MACK(c || a || d)

When block a is read, the Backend returns (h?, d?) and
PMMAC performs the following check to verify authentic-
ity/freshness:

assert h? == MACK(c || a || d?)

where ? denotes values that may have been tampered with.
After the assertion is checked, c is incremented for the re-
turned block.

Security follows if it is infeasible to tamper with block
counters and no counter value for a given block is ever re-
peated. The first condition is clearly satisfied because the
counters are stored on-chip. We can satisfy the second condi-
tion by making each counter is wide enough to not overflow
(e.g., 64 bits wide).

As with our previous mechanisms, PMMAC requires no
change to the ORAM Backend because the MAC is treated
as extra bits appended to the original data block.3 As with

3 That is, the MAC is encrypted along with the block when it is written to
the ORAM tree.

PosMap compression, the leaf currently associated with each
block in the stash/ORAM tree is stored in its original (un-
compressed) format.

6.2.2 Adding Recursion and PosMap Compression
To support recursion, PosMap blocks (including on-chip
PosMap entries) may contain either a flat (64 bits) or com-
pressed counter (§ 5.2.1) per next-level PosMap or Data
ORAM block. As in the non-Recursive ORAM case, all
leaves are generated via a PRF. The intuition for security is
that the tamper-proof counters in the on-chip PosMap form
the root of trust and then recursively, the PosMap blocks be-
come the root of trust for the next level PosMap or Data
ORAM blocks. Note that in the compressed scheme (§ 5.3),
the α and β components of each counter are already sized so
that each block’s count never repeats/overflows. We give a
formal analysis for security with Recursive ORAM in § 6.5.

For realistic parameters, the scheme that uses flat coun-
ters in PosMap blocks incurs additional levels of recursion.
For example, using B = 512 and 64 bit counters we have
X = B/64 = 8. Importantly, with the compressed PosMap
scheme we can derive each block counter from GC and ICj
(§ 5.2.1) without adding levels of recursion or extra counter
storage.

6.3 Key Advantage: Hash Bandwidth and Parallelism
Combined with PosMap compression, the overheads for
PMMAC are the bits added to each block to store MACs and
the cost to perform cryptographic hashes on blocks. The ex-
tra bits per block are relatively low-overhead — the ORAM
block size is usually 64-128 Bytes (§ 7.1.5) and each MAC
may be 80-128 bits depending on the security parameter.

To perform a non-Recursive ORAM access (i.e.,
read/write a single path), Path ORAM reads/writes
O(logN) blocks from external memory. Merkle tree con-
structions [2, 25] need to integrity verify all the blocks on
the path to check/update the root hash. Crucially, our PM-
MAC construction only needs to integrity verify (check and
update) 1 block — namely the block of interest — per ac-
cess, achieving an asympotic reduction in hash bandwidth.

To give some concrete numbers, assume Z = 4 block
slots per ORAM tree bucket following [21, 34]. Then there
are Z ∗ (L + 1) blocks per path in ORAM tree, and our
construction reduces hash bandwidth by 68× for L = 16
and by 132× for L = 32. We did not include the cost of
reading sibling hashes for the Merkle tree for simplicity.

Integrity verifying only a single block also prevents a se-
rialization bottleneck present in Merkle tree schemes. Con-
sider the scheme from [25], a scheme optimized for Path
ORAM. Each hash in the Merkle tree node must be recom-
puted based on the contents of the corresponding ORAM
tree bucket and its child hashes, and is therefore fundamen-
tally sequential. If this process cannot keep up with memory
bandwidth, it will be the system’s performance bottleneck.

6.4 Adding Encryption: Subtle Attacks and Defenses
Up to this point we have discussed PMMAC in the context
of providing integrity only. ORAM must also apply a proba-

bilistic encryption scheme (we assume AES counter mode as
done in [26]) to all data stored in the ORAM tree. In this sec-
tion we first show how the encryption scheme of [26] breaks
under active adversaries because the adversary is able to re-
play the one-time pads used for encryption. We show how
PMMAC doesn’t prevent this attack by default and then pro-
vide a fix that applies to PMMAC.

We first show the scheme used by [26] for refer-
ence: Each bucket in the ORAM tree contains, in addi-
tion to Z encrypted blocks, a seed used for encryption (the
BucketSeed) that is stored in plaintext. (BucketSeed is
synonymous to the “counter” in AES counter mode.) If the
Backend reads some bucket (Step 2 in § 3.1) whose seed
is BucketSeed, the bucket will be re-encrypted and writ-
ten back to the ORAM tree using the one-time pad (OTP)
AESK(BucketID||BucketSeed+ 1||i), where i is the cur-
rent chunk of the bucket being encrypted.

The above encryption scheme breaks privacy un-
der PMMAC because PMMAC doesn’t integrity verify
BucketSeed. For a bucket currently encrypted with the pad
P = AESK(BucketID||BucketSeed||i), suppose the ad-
versary replaces the plaintext bucket seed to BucketSeed−
1. This modification will cause the contents of that bucket to
decrypt to garbage, but won’t trigger an integrity violation
under PMMAC unless bucket BucketID contains the block
of interest for the current access. If an integrity violation is
not triggered, due to the replay of BucketSeed, that bucket
will next be encrypted using the same one-time pad P again.

Replaying one-time pads obviously causes security prob-
lems. If a bucket re-encrypted with the same pad P contains
plaintext data D at some point and D′ at another point, the
adversary learns D⊕D′. If D is known to the adversary, the
adversary immediately learns D′ (i.e., the plaintext contents
of the bucket).

The fix for this problem is relatively simple: To encrypt
chunk i of a bucket about to be written to DRAM, we will
use the pad AESK(GlobalSeed||i), where GlobalSeed is
now a single monotonically increasing counter stored in the
ORAM controller in a dedicated register (this is similar to
the global counter scheme in [27]). When a bucket is en-
crypted, the current GlobalSeed is written out alongside the
bucket as before and GlobalSeed (in the ORAM controller)
is incremented. Now it’s easy to see that each bucket will al-
ways be encrypted with a fresh OTP which defeats the above
attack.

6.5 Security
We now give an analysis for our complete scheme’s integrity
and privacy guarantees.

6.5.1 Integrity
We show that breaking our integrity verification scheme is
as hard as breaking the underlying MAC, and thus attains
the integrity definition from § 2. First, we have the following
observation:

Observation 3. If the first k − 1 address and counter
pairs (ai, ci)’s the Frontend receives have not been tam-

pered with, then the Frontend seeds a MAC using a unique
(ak, ck), i.e., (ai, ci) 6= (ak, ck) for 1 ≤ i < k. This further
implies (ai, ci) 6= (aj , cj) for all 1 ≤ i < j ≤ k.

This property can be seen directly from the algorithm de-
scription, with or without the PLB and/or PosMap compres-
sion. For every a, we have a dedicated counter, sourced from
the on-chip PosMap or the PLB, that increments on each ac-
cess. If we use PosMap compression, each block counter will
either increment (on a normal access) or jump to the next
multiple of the group counter in the event of a group remap
operation (§ 5.2.2). Thus, each address and counter pair will
be different from previous ones. We now use Observation 3
to prove the security of our integrity scheme.

Theorem 2. Breaking the PMMAC scheme is as hard as
breaking the underlying MAC scheme.

Proof. We proceed via induction on the number of accesses.
In the first ORAM access, the Frontend uses (a1, c1), to
call Backend for (h1, d1) where h1 = MACK(c1||a1||d1).
(a1, c1) is unique since there are no previous (ai, ci)

′s. Note
that a1 and c1 cannot be tampered with since they come
from the Frontend. Thus producing a forgery (h′1, d

′
1) where

d′1 6= d1 and h′1 = MACK(c1||a1||d′1) is as hard as breaking
the underlying MAC. Suppose no integrity violation has
happened and Theorem 2 holds up to access n − 1. Then
the Frontend sees fresh and authentic (ai, ci)’s for 1 ≤
i ≤ n − 1. By Observation 3, (an, cn) will be unique and
(ai, ci) 6= (aj , cj) for all 1 ≤ i < j ≤ n. This means the
adversary cannot perform a replay attack (§ 6.1) because all
(ai, ci)’s are distinct from each other and are tamper-proof.
It is also hard to generate a valid MAC with unauthentic
data without the secret key. Being able to produce a forgery
(h′i, d

′
i) where d′i 6= di and h′i = MACK(ci||ai||d′i) means

the adversary can break the underlying MAC.

6.5.2 Privacy
The system’s privacy guarantees require certain assumptions
under PMMAC because PMMAC is an authenticate-then-
encrypt scheme [17]. Since the integrity verifier only checks
the block of interest returned to the Frontend, other (tam-
pered) data on the ORAM tree path will be written to the
stash and later be written back to the ORAM tree. For exam-
ple, if the adversary tampers with the block-of-interest’s ad-
dress bits, the Backend won’t recognize the block and won’t
be able to send any data to the integrity verifier (clearly an
error). The adversary may also coerce a stash overflow by re-
placing dummy blocks with real blocks or duplicate blocks
along a path.

To address these cases, we have to make certain assump-
tions about how the Backend will possibly behave in the
presence of tampered data. We require a correct implementa-
tion of the ORAM Backend to have the following property:

Property 1. If the Backend makes an ORAM access, it only
reveals to the adversary (a) the leaf sent by the Frontend for
that access and (b) a fixed amount of encrypted data to be
written back to the ORAM tree.

If Property 1 is satisfied, it is straightforward to see that
any memory request address trace generated by the Backend
is indistinguishable from other traces of the same length.
That is, the Frontend receives tamper-proof responses (by
Theorem 2) and therefore produces independent and random
leaves. Further, the global seed scheme in § 6.4 trivially
guarantees that the data written back to memory gets a fresh
pad.

If Property 1 is satisfied, the system can still leak the
ORAM request trace length; i.e., when an integrity violation
is detected, or when the Backend enters an illegal state.
Conceptually, an integrity violation generates an exception
that can be handled by the processor. When that exception
is generated and how it is handled can leak some privacy.
For example, depending on how the adversary tampered with
memory, the violation may be detected immediately or after
some period of time depending on whether the tampered bits
were of interest to the Frontend. Quantifying this leakage is
outside our scope, but we remark that this level of security
matches our combined privacy+integrity definition from § 2.

7. Evaluation
We now evaluate our proposals in simulation and with a
complete hardware prototype.

7.1 Software Simulation
7.1.1 Methodology and Parameters
We first evaluate our proposals using the Graphite simula-
tor [22] with the processor parameters listed in Table 1. The
core and cache model remain the same in all experiments;
unless otherwise stated, we assume the ORAM parameters
from the table. We use a subset of SPEC06-int benchmarks
[15] with reference inputs. All workloads are warmed up
over 1 billion instructions and then run for 3 billion instruc-
tions.

We derive AES/SHA3 latency, Frontend and Backend
latency directly from our hardware prototype in § 7.2.
Frontend latency is the time to evict and refill a block from
the PLB (§ 4.2.4) and occurs at most once per Backend call.
Backend latency (approximately) accounts for the cycles lost
due to hardware effects such as serializers/buffer latency/etc
and is added on top the time it takes to read/write an ORAM
tree path in DRAM, which is given in § 7.1.2.

We model DRAM and ORAM accesses on top of com-
modity DRAM using DRAMSim2 [28] and its default
DDR3 micron configuration with 8 banks, 16384 rows and
1024 columns per row. Each DRAM channels runs at
667 MHz DDR with a 64-bit bus width and provides ∼
10.67 GB/s peak bandwidth. All ORAM configurations as-
sume 50% DRAM utilization (meaning a 4 GB ORAM re-
quires 8 GB of DRAM) and use the subtree layout scheme
from [26] to achieve nearly peak DRAM bandwidth.

7.1.2 ORAM Latency and DRAM Channel Scalability
ORAM latency is sensitive to DRAM bandwidth and for this
reason we explore how changing the channel count impacts
ORAM access time in Table 2. ORAM Tree latency refers to

Table 1. Processor Configuration.
Core, on-chip cache and DRAM

core model in order, single issue, 1.3 GHz
add/sub/mul/div 1/1/3/18 cycles
fadd/fsub/fmul/fdiv 3/3/5/6 cycles
L1 I/D cache 32 KB, 4-way, LRU
L1 data + tag access time 1 + 1 cycles
L2 Cache 1 MB, 16-way, LRU
L2 data + tag access time 8 + 3 cycles
cache line size 64 B

Path ORAM/ORAM controller
ORAM controller clock frequency 1.26 GHz
data block size 64 B
data ORAM capacity 4 GB (N = 226)
block slots per bucket (Z) 4
AES-128 latency 21 cycles (§ 7.2)
SHA3-224 latency (PMMAC) 18 cycles (§ 7.2)
Frontend latency 20 cycles (§ 7.2)
Backend latency 30 cycles (§ 7.2)

Memory controller and DRAM
DRAM channels 2 (∼ 21.3 GB peak bandwidth)
DRAM latency given by DRAMSim2 [28]

the time needed for the Backend to read/write a path in the
Unified ORAM tree, given the ORAM parameters in Table 1.
All latencies are in terms of processor clock cycles, and
represent an average over multiple accesses. For reference, a
DRAM access for an insecure system without ORAM takes
on average 58 processor cycles.

Table 2. ORAM access latency by DRAM channel count.
DRAM channel count 1 2 4 8
ORAM Tree latency (cycles) 2147 1208 697 463

Generally, ORAM latency decreases with channel count
as expected but the effect becomes increasingly sub-linear
for larger channel counts due to DRAM channel conflicts.
Since 2 channels represent realistic mid-range systems and
do not suffer significantly from this problem, we will use
that setting for the rest of the evaluation unless otherwise
specified.

7.1.3 PLB Design Space
Figure 5 shows how direct-mapped PLB capacity impacts
performance. For a majority of benchmarks, larger PLBs
add small benefits (≤ 10% improvements). The exceptions
are bzip2 and mcf, where increasing the PLB capacity from
8 KB to 128 KB provides 67% and 49% improvement, re-
spectively. We tried increasing PLB associativity (not shown
for space) and found that, with a fixed PLB capacity, a fully
associative PLB improves performance by ≤ 10% when
compared to direct-mapped. To keep the architecture sim-
ple, we therefore assume direct-mapped PLBs from now on.
Going from a 64 KB to 128 KB direct-mapped PLB, aver-
age performance only increases by only 2.7%, so we assume
a 64 KB direct-mapped PLB for the rest of the evaluation.

7.1.4 Scheme Composability
We now present our main result (Figure 6), the impact
on performance when we compose PLB (§ 4), PosMap

astar bzip2 gcc gob h264hmmer libq mcf omnet perl sjeng Avg
0.5
0.6
0.7
0.8
0.9
1.0
1.1

No
rm

al
iz

ed
 ru

nt
im

e 8K 32K 64K 128K

Figure 5. PLB design space, sweeping direct-mapped PLB ca-
pacity. Runtime is normalized to the 8 KB PLB point.

astar bzip2 gcc gob h264hmmer libq mcf omnet perl sjeng Avg
0
2
4
6
8

10
12
14
16

S
lo

w
d
o
w

n

17.5

R_X8

PC_X32

PIC_X32

Figure 6. Performance of PLB, Compressed PosMap and PM-
MAC. Slowdown is relative to an insecure system without ORAM.

compression (§ 5) and PMMAC (§ 6). To name our
schemes in the discussion, we use the letters P, I and C
to indicate the PLB, Integrity verification (PMMAC) and
Compressed PosMap, respectively. For example, PC X32
denotes PLB+Compressed PosMap with X = 32. PI X8 is
the flat-counter PMMAC scheme from § 6.2.2. For PC X32
and PIC X32, we apply recursion until the on-chip PosMap
is ≤ 128 KB in size, yielding 4 KB on-chip PosMaps
for both points. R X8 is a Recursive ORAM baseline with
X = 8 (32-Byte PosMap ORAM blocks following [26]) and
H = 4, giving it a 272 KB on-chip PosMap.

Despite consuming less on-chip area, PC X32 achieves
a 1.43× speedup (30% reduction in execution time) over
R X8 (geomean). To provide integrity, PIC X32 only adds
7% overhead on top of PC X32, which is due to the extra
bandwidth needed to transfer per-block MACs (§ 6.3).

To give more insight, Figure 7 shows the average data
movement per ORAM access (i.e., per LLC miss+eviction).
We give the Recursive ORAM R X8 up to a 256 KB on-
chip PosMap. As ORAM capacity increases, the overhead
from accessing PosMap ORAMs grows quickly for R X8.
All schemes using a PLB have much better scalability. For
the 4 GB ORAM, on average, PC X32 reduces PosMap
bandwidth overhead by 82% and overall ORAM bandwidth
overhead by 38% compared with R X8. At the 64 GB capac-
ity, the reduction becomes 90% and 57%. Notably the PM-
MAC scheme without compression (PI X8) causes nearly
half the bandwidth to be PosMap related, due to the large
counter width and small X (§ 6.2.2). Compressed PosMap
(PIC X32) solves this problem.

7.1.5 Comparison to Prior-art Recursive ORAM ([26])
While we have applied the ideas from [26] to our baseline in
Figure 6, we do change some processor/DRAM parameters
from that work to more realistic values or to be compatible
with existing processors, including DRAM bandwidth, pro-
cessor frequency and cache line size.

R_X8 P_X16 PC_X32 PI_X8 PIC_X32
0

10

20

30

40

50

D
a
ta

 m
o
v
e
d
 (

in
 K

B
)

 p
e
r

O
R

A
M

 a
cc

e
ss

4GB

16GB

64GB

PosMap

Figure 7. Scalability to large ORAM capacities. White shaded
regions indicate data movement from PosMap ORAM lookups.
Slowdown is relative to an insecure system without ORAM.

astar bzip2 gcc gob h264hmmer libq mcf omnet perl sjeng Avg
0

4

8

12

16

S
lo

w
d
o
w

n

16.7

R_X8

PC_X64

PC_X32

0

5

10

15

20

25

30

D
a
ta

 m
o
v
e
d
 (

in
 K

B
)

 p
e
r

O
R

A
M

 a
cc

e
ss

Figure 8. (Left) Performance of Recursive ORAM baseline and
our scheme using all parameters from [26]. Slowdown is relative to
an insecure system without ORAM. (Right) Average data move-
ment per access. White shaded regions indicate data movement
from PosMap ORAM lookups.

For a more apples-to-apples comparison with [26], we
now adopt all the parameters from that work: 4 DRAM chan-
nels, a 2.6 GHz processor, a 128-Byte cache line and ORAM
block size, Z = 3, etc. PC X64 is a PLB-enabled ORAM
with a 128-Byte block (cache line) size (thus X doubles).
PC X64 reduces PosMap traffic by 95% and overall ORAM
traffic by 37% over the Recursive ORAM configuration from
[26].

PC X32 is a PLB-enabled ORAM with a 64-Byte block
(cache line) size. This configuration has a smaller ORAM
latency but also fetches less data per ORAM access. As
shown in Figure 8, both PC X64 and PC X32 achieve about
1.27× speedup over Recursive ORAM baseline. This shows
our scheme is effective for both ORAM block sizes. The
larger ORAM block size of PC X64 benefits benchmarks
with good locality (hmmer, libq) but hurts those with poor
locality (bzip, mcf, omnetpp).

7.1.6 Comparison to Non-Recursive ORAM with
Large Blocks ([21])

In Figure 9, we compare our proposal to the parameteriza-
tion used by Phantom [21]. Phantom was evaluated with a
large ORAM block size (4 KB) so that the on-chip PosMap
could be contained on several FPGAs without recursion.

To match § 7.1.4, we model the Phantom parameters on 2
DRAM channels (which matches the DRAM bandwidth re-
ported in [21]) and with a 4 GB ORAM (N = 220, L = 19)
Z = 4, 4 KB blocks and no recursion. For these parame-
ters, the on-chip PosMap is ∼ 2.5 MB (which we evaluate
for on-chip area in § 7.2.3). To accurately reproduce Phan-
tom’s system performance, we implemented the Phantom
block buffer (Section 5.7 of that work) as a 32 KB memory

astar bzip2 gcc gob h264hmmer libq mcf omnet perl sjeng Avg

100

101

102

S
lo

w
d
o
w

n
 (

lo
g
 s

ca
le

)

Phantom

Ascend

Figure 9. PC X32 speedup relative to Phantom [21] w/ 4 KB
blocks.

Table 3. ORAM area breakdown post-synthesis.
DRAM channels (nchannel)

1 2 4

Area (% of total)

Frontend 31.2 30.0 22.5
PosMap 7.3 7.0 5.3
PLB 10.2 9.7 7.3
PMMAC 12.4 11.9 8.8
Misc 1.3 1.4 1.1

Backend 68.8 70.0 77.5
Stash 28.3 28.9 21.9
AES 40.5 41.1 55.6

Total cell area (mm2) .316 .326 .438

with the CLOCK eviction strategy and assume the Phantom
processor’s cache line size is 128 Bytes (as done in [21]).

On average, PC X32 from § 7.1.4 achieves 10× speedup
over the Phantom configuration with 4 KB blocks. The intu-
ition for this result is that Byte movement per ORAM access
for our scheme is roughly (26∗64)/(19∗4096) = 2.1% that
of Phantom. While PC X32 needs to access PosMap blocks
due to recursion, this effect is outweighed by the reduction
in Data ORAM Byte movement.

7.2 Hardware Prototype
We now evaluate a complete hardware ORAM prototype
pushed through Synopsis’ ASIC synthesis tool Design Com-
piler and Place and Route tool IC Compiler. Our design
(Verilog, tests, etc) is open source and can be found at
http://kwonalbert.github.io/oram.

Our first objective is to show that the PLB (§ 4) and PM-
MAC (§ 6) mechanisms impose a small area overhead. We
have not built the compressed PosMap (§ 5) in hardware, but
do not think the additional control logic will have a signifi-
cant effect on area or clock frequency. (Thus, our prototype
is equivalent to PI X8 from § 7.1.4.) More generally, our
work is the first to prototype any ORAM through an ASIC
hardware flow, and the first to build Recursive ORAM or
ORAM with integrity verification in any form of hardware.

7.2.1 Methodology
Our design is written in plain Verilog and was synthesized
using a 32 nm commercial standard cell library and memory
(SRAM and register file) generator. Our Frontend (the focus

of this paper) contains the PLB and PMMAC and has a
64-bit/cycle data interface with the last-level cache for all
experiments. ORAM parameters follow Table 1 except that
we use an 8 KB PosMap and 8 KB direct-mapped PLB by
default (we discuss a 64 KB PLB design in § 7.2.3). Our
Backend is similar to the Phantom Backend [21] and has a
64 ∗ nchannel bit/cycle datapath to/from DRAM.4

To implement cryptographic operations, we used two
AES cores from OpenCores [1]: a 21-cycle pipelined
core to implement the Backend’s read/write path decryp-
tions/encryptions (§ 3.1) and a non-pipelined 12 cycle core to
implement PRFK() (§ 5.1). We used a SHA3-224 core from
OpenCores to implement MACK() for PMMAC (§ 6.1).

For both synthesis and place and route, we built the de-
sign hierarchically as three main components: the Frontend,
the stash (Backend) and the AES units used to decrypt/re-
encrypt paths (Backend). For synthesis results, we report
total cell area; i.e., the minimum area required to imple-
ment the design. For layout results, we set a bounding box
for each major block that maximized utilization of avail-
able space while meeting timing requirements. The entire
design required 5 SRAM/RF memories (which we manually
placed during layout): the PLB data array, PLB tag array,
on-chip PosMap, stash data array and stash tag array. Nu-
merous other (small) buffers were needed and implemented
in standard cells.

7.2.2 Results
Post-Synthesis. Table 3 shows ORAM area across sev-
eral DRAM channel (nchannel) counts. All three config-
urations met timing using up to a 1.3 GHz clock with
a 100 ps uncertainty. The main observation is that the
Frontend constitutes a minority of the total area and that
this percentage decreases with nchannel. Area decreases
with nchannel because the Frontend performs a very small
DRAM bandwidth-independent amount of work (∼ 50
clock cycles including integrity verification) per Backend
access. The Backend’s bits/cycle throughput (AES, stash
read/write, etc), on the other hand, must rate match DRAM.
Thus, the area cost of the Frontend (and our PMMAC and
PLB schemes) is effectively amortized with nchannel (Ta-
ble 3).5

Post-Layout. We now report post-layout area for the
nchannel = 2 configuration to give as close an estimate for
tape-out as possible. Between synthesis and layout, area in-
creased per-block for nchannel = 2 as follows: Frontend
grew by 38%, the stash by 24% and AES by 63%. This
configuration met timing at 1 GHz and had a final area of
.47 mm2. In all cases, some space was sacrificed but the
overall picture remains the same.

4 Our design, however, does not have a DRAM buffer (see [21]). We remark
that if such a structure is needed it should be much smaller than that in
Phantom (<10 KB as opposed to hundreds of KiloBytes) due to our 64 Byte
block size.
5 We note the following design artifact: since we use AES-128, area in-
creases only slightly from nchannel = 1 to 2, because both 64-bit and
128-bit datapaths require the same number of AES units.

http://kwonalbert.github.io/oram

7.2.3 Alternative Designs
To give additional insight, we estimate the area overhead
of not supporting recursion or having a larger PLB with
recursion. For a 4 GB ORAM, the PosMap must contain 226

to 220 entries (for block sizes 64 Bytes to 4 KB). With a 220-
entry on-chip PosMap, without Recursion, the nchannel = 2
design requires ∼ 5 mm2 area — an increase of over 10×.
Doubling the ORAM capacity (roughly) doubles this cost.
Further, for performance reasons, we prefer smaller block
sizes which exacerbates the area problem (§ 7.1.6). On the
other hand, we calculate that using Recursion with a 64 KB
PLB (to match experiments in § 7.1) increases the area for
the nchannel = 1 configuration by 29% (and is 26% of total
area).

8. Related Work
Numerous prior works [8, 9, 11–14, 18, 32, 34, 36] have sig-
nificantly improved the theoretical performance of ORAM
over the past three decades. Notably among them, Path
ORAM [34] is conceptually simple and the most efficient
under small client (on-chip) storage. For these reasons, it
was embraced by trusted hardware proposals including our
work.

Phantom [21] is the first hardware implementation of
non-Recursive Path ORAM. In our terminology, Phantom
primarily optimizes the ORAM Backend and is therefore
complementary to our work. Our Frontend optimizations
(the PLB, PMMAC, and compressed PosMap) can be inte-
grated with the Phantom Backend and this is similar to the
design we evaluate in § 7.2. Ren et al. [26] explored the Re-
cursive Path ORAM design space through simulation and
proposed several optimizations to Recursive Path ORAM.
We use their optimized proposal as a baseline in our work.
Ascend [7, 38] is a holistic secure processor proposal that
uses ORAM for memory obfuscation and adds timing pro-
tection on top of ORAM [6]. We believe our techniques can
apply to that work as well.

Liu et al. [20] define memory trace obliviousness which
can apply to secure processor settings like this paper. That
work allocates different program variables into different
ORAM trees to increase performance, when the ORAM tree
access sequence can be proven to not leak secrets. Similarly,
we store PosMap blocks in the same tree because PosMap
accesses do leak secrets (§ 4.1). Our complete scheme,
the PLB plus Unified ORAM tree, however, is completely
counter-intuitive given Liu et al.: we show how using a sin-
gle ORAM tree can unlock great performance improvement.

Wang et al. [35] develop mechanisms to reduce the over-
head of Recursive ORAM, as does our PLB construction.
That work only applies in situations when the data stored in
ORAM is a part of a common data structure (such as a tree
of bounded degree or list). The PLB can be used given any
program access pattern.

Splitting PosMap block entries into two counters (which
we do for PosMap compression, § 5.2.1) is similar to the
split counter scheme due to Yan et al [37], although the mo-
tivation in that work is to save space for encryption initial-

ization vectors. Additionally, that work does not hide when
individual counters overflow, which we require for privacy
and describe in § 5.2.2.

9. Conclusion
In this paper we presented three techniques to manage and
optimize the Oblivious RAM Position Map (PosMap). We
introduced the PosMap Lookaside Buffer (PLB) to decrease
the performance overhead of recursion. We then presented
a technique to compress the PosMap, which improves the
PLB and improves the Recursive Path ORAM construc-
tion asymptotically and in practice. Finally, facilitated by
PosMap compression, we propose PosMap MAC (PMMAC)
to get integrity verification for≥ 68× less hashing than prior
schemes.

Our simulation results show our techniques decrease
PosMap (overall) ORAM performance overhead by 95%
(37%), which translates to a 1.27× speedup for SPEC work-
loads. Using PosMap compression, PMMAC degrades per-
formance by only 7%. Our hardware prototype shows how
integrity verification costs≤ 13% of total design area across
various DRAM bandwidths.

Acknowledgments: We thank Charles Herder for help-
ful suggestions and for reviewing early versions of this pa-
per. We also thank the anonymous reviewers for many con-
structive comments. This research was partially supported
by QCRI under the QCRI-CSAIL partnership and by the
National Science Foundation. Christopher Fletcher was sup-
ported by a DoD National Defense Science and Engineering
Graduate Fellowship.

References
[1] Open cores. http://opencores.org/.
[2] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable

oblivious storage. In PKC. 2014.
[3] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash func-

tions for message authentication. In CRYPTO, 1996.
[4] D. Boneh, D. Mazieres, and R. A. Popa. Remote oblivious

storage: Making oblivious RAM practical. Manuscript,
http://dspace.mit.edu/bitstream/handle/1721.1/
62006/MIT-CSAIL-TR-2011-018.pdf, 2011.

[5] I. Damgård, S. Meldgaard, and J. B. Nielsen. Perfectly secure
oblivious RAM without random oracles. In TCC, 2011.

[6] C. Fletcher, L. Ren, X. Yu, M. Van Dijk, O. Khan, and S. De-
vadas. Suppressing the oblivious ram timing channel while
making information leakage and program efficiency trade-
offs. In HPCA, 2014.

[7] C. Fletcher, M. van Dijk, and S. Devadas. Secure Processor
Architecture for Encrypted Computation on Untrusted Pro-
grams. In STC, 2012.

[8] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova,
and D. Wichs. Optimizing oram and using it efficiently for
secure computation. In PET, 2013.

[9] O. Goldreich. Towards a theory of software protection and
simulation on oblivious rams. In STOC, 1987.

[10] O. Goldreich, S. Goldwasser, and S. Micali. How to construct
random functions. Journal of the ACM, 1986.

http://opencores.org/
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf

[11] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. In Journal of the ACM, 1996.

[12] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Oblivious ram simulation with efficient worst-
case access overhead. In CCSW, New York, NY, 2011.

[13] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Practical oblivious storage. In CODASPY, New
York, NY, 2012.

[14] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Privacy-preserving group data access via state-
less oblivious RAM simulation. In SODA, 2012.

[15] J. L. Henning. Spec cpu2006 benchmark descriptions. Com-
puter Architecture News, 2006.

[16] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and
mitigation. In NDSS, 2012.

[17] H. Krawczyk. The order of encryption and authentication
for protecting communications (or: How secure is ssl?). In
CRYPTO, 2001.

[18] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in) security
of hash-based oblivious ram and a new balancing scheme. In
SODA, 2012.

[19] H. Lipmaa, P. Rogaway, and D. Wagner. Comments to NIST
concerning AES-modes of operations: CTR-mode encryption.
In Symmetric Key Block Cipher Modes of Operation Work-
shop, 2000.

[20] C. Liu, M. Hicks, and E. Shi. Memory trace oblivious program
execution. In CSF, 2013.

[21] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi,
K. Asanovic, J. Kubiatowicz, and D. Song. Phantom: Prac-
tical oblivious computation in a secure processor. In CCS,
2013.

[22] J. E. Miller, H. Kasture, G. Kurian, C. G. III, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal. Graphite: A Distributed
Parallel Simulator for Multicores. In HPCA, 2010.

[23] R. Ostrovsky. Efficient computation on oblivious rams. In
STOC, 1990.

[24] R. Ostrovsky and V. Shoup. Private information storage (ex-
tended abstract). In STOC, 1997.

[25] L. Ren, C. Fletcher, X. Yu, M. van Dijk, and S. Devadas.
Integrity verification for path oblivious-ram. In HPCA, 2013.

[26] L. Ren, X. Yu, C. Fletcher, M. van Dijk, and S. Devadas.
Design space exploration and optimization of path oblivious
ram in secure processors. In ISCA, 2013.

[27] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin. Using
address independent seed encryption and bonsai merkle trees
to make secure processors os- and performance-friendly. In
MICRO, 2007.

[28] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A
cycle accurate memory system simulator. Computer Architec-
ture Letters, 2011.

[29] L. F. G. Sarmenta, M. van Dijk, C. W. O’Donnell, J. Rhodes,
and S. Devadas. Virtual Monotonic Counters and Count-
Limited Objects using a TPM without a Trusted OS. In STC,
2006.

[30] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram
with o((logn)3) worst-case cost. In Asiacrypt, 2011.

[31] E. Stefanov and E. Shi. Oblivistore: High performance obliv-
ious cloud storage. In S&P, 2013.

[32] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious
RAM. In NDSS, 2012.

[33] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas. Path oram: An extremely simple oblivious
ram protocol. volume abs/1202.5150, 2012.

[34] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas. Path oram: An extremely simple oblivious
ram protocol. In CCS, 2013.

[35] X. Wang, K. Nayak, C. Liu, E. Shi, E. Stefanov, and Y. Huang.
Oblivious data structures. IACR, 2014.

[36] P. Williams and R. Sion. Single round access privacy on
outsourced storage. In CCS, 2012.

[37] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Soli-
hin. Improving cost, performance, and security of memory
encryption and authentication. Computer Architecture News,
2006.

[38] X. Yu, C. W. Fletcher, L. Ren, M. van Dijk, and S. Devadas.
Generalized external interaction with tamper-resistant hard-
ware with bounded information leakage. In CCSW, 2013.

[39] X. Zhuang, T. Zhang, and S. Pande. HIDE: an infrastructure
for efficiently protecting information leakage on the address
bus. In ASPLOS, 2004.

	Introduction
	Problem: Position Map Management
	Our Contribution

	Threat Model
	Background
	Basic Path ORAM
	Path ORAM Invariant and Operation
	Path ORAM Security

	Recursive ORAM
	Overhead of Recursion

	PosMap Lookaside Buffer
	High-level Idea and Ingredients
	PLB Caches
	PLB (In)security
	Security Fix: Unified ORAM Tree
	TLB vs. PLB

	Detailed Construction
	Blocks Stored in ORamU
	ORAM readrmv and append Operations
	PLB Architecture
	ORAM Access Algorithm

	Security

	Compressed PosMap
	Background: PRFs
	Construction
	Main Idea
	Block Remap
	System Impact and the PLB

	Benefit of Compressed Format (In Practice)
	Benefit of Compressed Format (Theoretical)

	Integrity Verification: PosMap MAC
	Background: MACs
	Construction
	Main Idea and Non-Recursive PMMAC
	Adding Recursion and PosMap Compression

	Key Advantage: Hash Bandwidth and Parallelism
	Adding Encryption: Subtle Attacks and Defenses
	Security
	Integrity
	Privacy

	Evaluation
	Software Simulation
	Methodology and Parameters
	ORAM Latency and DRAM Channel Scalability
	PLB Design Space
	Scheme Composability
	Comparison to Prior-art Recursive ORAM (oram-isca13)
	Comparison to Non-Recursive ORAM with Large Blocks (phantom)

	Hardware Prototype
	Methodology
	Results
	Alternative Designs

	Related Work
	Conclusion

