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Most methods of optimal control cannot obtain accurate time-optimal protocols. The quantum
brachistochrone equation is an exception, and has the potential to provide accurate time-optimal protocols
for a wide range of quantum control problems. So far, this potential has not been realized, however, due to
the inadequacy of conventional numerical methods to solve it. Here we show that the quantum
brachistochrone problem can be recast as that of finding geodesic paths in the space of unitary operators.
We expect this brachistochrone-geodesic connection to have broad applications, as it opens up minimal-
time control to the tools of geometry. As one such application, we use it to obtain a fast numerical method to
solve the brachistochrone problem, and apply this method to two examples demonstrating its power.
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The ability to realize a prescribed evolution for a given
physical quantum device is important in a range of
applications. A powerful approach to this task is to vary
the Hamiltonian of the device with time [1–3]. A prescrip-
tion for a time-dependent Hamiltonian realizing a desired
evolution is called a “control protocol,” and a protocol that
achieves this task in the minimal time is called “time-
optimal” [4,5]. Because the ever-present noise from the
environment degrades quantum states over time, generating
the fastest possible evolution is important in information
processing [6–8], metrology [9–11], cooling [12,13], and
experiments that probe quantum behavior [14–17]. Finding
accurate time-optimal protocols is difficult because it is a
two-objective optimization problem: one must minimize
the error in the resulting evolution while simultaneously
minimizing the time taken by the protocol (hereafter, the
“protocol time”). Finding approximate protocols, on the
other hand, is relatively easy: one can minimize a weighted
sum of the two objectives [1], or search for protocols at a
range of fixed times to locate a likely minimum time. But
there is presently no practical way to refine these further.
Analytical methods that use the Pontryagin maximum
principle or the geometry of the unitary group are useful
only for specific kinds of problems and constraints [5,18–
26]. In view of this, the quantum brachistochrone equation
(QBE) was a significant development [27–29]. It has the
potential to provide accurate time-optimal protocols under
two physically relevant constraints: (i) the system has a
finite energy bandwidth (the norm of the Hamiltonian is
bounded); and (ii) the Hamiltonian is restricted to a subspace

of Hermitian operators. Nevertheless, an obstacle remains
that has prevented the QBE from becoming a practical tool:
the QBE transforms the optimization problem into that
of solving an ordinary differential equation (ODE) with
boundary values, but there exists no numerical method
that can solve such a boundary-value problem (BVP)
efficiently in high dimensions. The available methods,
namely “simple shooting,” “multiple shooting,” finite differ-
ence, and finite-element (or variational) methods [30],
convert the BVP into a set of nonlinear algebraic equations
which are then solved by a numerical search method
(e.g., quasi-Newton or conjugate gradient methods [31]).
These search methods fail unless provided with a suffi-
ciently good initial guess. Even for systems as small as two
qubits, a random guess is insufficient, with the result that the
QBE has been solved only for special cases that possess
analytic solutions [32–34].
Here we show that, under constraints (i) and (ii) above,

the minimum-time control problem can be transformed into
that of finding a shortest path—a geodesic—on a manifold.
If we imagine driving a car over some smooth but
undulating terrain, then if the speed of the car is bounded,
and we can always travel at the maximum speed, the
shortest time is achieved by the shortest route. We will see
that, for quantum dynamics, the norm of the Hamiltonian is
analogous to the speed of the car. Further, constraints of
type (ii) in the brachistochrone can be included in the
geodesic setting by choosing an appropriate norm. This
provides a new, fully geometric interpretation of minimal-
time problems. In fact, differential geometry has been
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found to be important to study quantum computation and
quantum control [4,35–37]. Our second primary result is an
effective numerical method for solving the brachistochrone
equation, obtained by exploiting the brachistochrone-
geodesic connection.
Preliminaries.—To generate a target unitary V on an

n-dimensional quantum system, we need to find a time-
varying Hamiltonian HðtÞ ¼ P

mumðtÞHm such that UðtÞ
satisfies the Schrödinger equation _U ¼ −iHðtÞU, with
boundary conditions Uð0Þ ¼ I and UðTÞ ¼ V (we set
ℏ ¼ 1). Here fHmg is the set of Hamiltonian terms that
we can physically implement for the system, and fumðtÞg is
a set of real functions that will constitute the control
protocol. If we neglect a global phase in V, we can restrict
HðtÞ to the (n2 − 1)-dimensional space of traceless
Hermitian matrices, which we will denote by M. We
divide M into two subspaces A and B, where A is the
subspace of Hamiltonians that we can implement, and B is
the subspace we cannot. We denote a basis for A by fAjg
and a basis for B by fBkg, so that fAj; Bkg is an
orthonormal basis for M. We consider the two physical
constraints on H described above: (i) ∥HðtÞ∥ ≤ E, where
∥ · ∥ is the Hilbert-Schmidt norm; and (ii) HðtÞ is restricted
to the space A, so that HðtÞ ¼ P

jμjðtÞAj.
Shortest time vs shortest distance.—The following

analysis shows why a bound on the norm of the
Hamiltonian is a bound on the speed of evolution, meaning
that every minimal-time path is a minimal distance path,
where distance is defined by the norm. First, because the
Hamiltonian appears in the expression Uðtþ dtÞ ¼
e−iHðtÞdtUðtÞ multiplied by dt, in any infinitesimal time
step, scaling the norm of H by s is equivalent to scaling dt

by 1=s. It follows that for any curve UðtÞ ¼ T ðe−i
R

HðtÞdtÞ
with ∥HðtÞ∥ ≤ E, T being the time-ordering operator, the
Hamiltonian can be rescaled so that the norm is equal to E
at all points on the path, and the path is unchanged but
takes a shorter time. This implies that every minimal-time
path has ∥HðtÞ∥ ¼ E. Finally, since the length of every
minimal-time path is given by L ¼ R

T
0 ∥HðtÞ∥dt ¼R

T
0 Edt ¼ ET, minimizing the duration T also minimizes
the distance L. Thus the minimum-time curve must also be
the minimum-distance curve connecting I and V.
Brachistochrone equation.—By virtue of the analysis

above, constraint (i) can be replaced by the equality
Tr½H2ðtÞ� ¼ E2. Because all the constraints are now
equalities, we can use the Lagrangian approach to opti-
mization. The resulting Euler-Lagrange equation, often
referred to as the QBE, is [28]

_H þ
X
k

_λkBk ¼ −i
X
k

λk½H;Bk�; ð1Þ

or in terms of the components fμjg,

_μj ¼ i
X
l

λlTrðH½Aj; Bl�Þ; ð2aÞ

_λk ¼ i
X
l

λlTrðH½Bk; Bl�Þ: ð2bÞ

The solution to the QBE involves the two sets of compo-
nents μðtÞ ¼ fμjðtÞg and λðtÞ ¼ fλkðtÞg, where HðtÞ ¼P

jμjðtÞAj and λ are the Lagrange multipliers, introduced
by the constraint (ii). Together with the Schrödinger
equation, the QBE [Eq. (1)] defines a boundary value
problem for a nonlinear ODE, with the boundary values
Uð0Þ ¼ I and UðTÞ ¼ V. Since the minimum-time curve
UðtÞ is uniquely determined by the initial values
fμjð0Þ; λkð0Þg, solving the BVP involves finding the values
of fμjð0Þ; λkð0Þg and T that give UðTÞ ¼ V. As discussed
above, all conventional numerical methods for this BVP
convert it into that of solving a set of nonlinear equations.
As a result, all these methods suffer a rapidly decreasing
performance as the dimension of the ODE increases, failing
even for moderately large dimensions.
Geodesic interpretation.—When the control

Hamiltonian HðtÞ is restricted to the subspace A, the
shortest-distance curves that it can generate are no
longer the geodesics in the full space of unitaries [38].
Nevertheless, it is possible to derive the geodesic equation
for these shortest-distance curves by using a clever trick
[35,39]: one introduces a Riemannian metric on M that
applies a penalty to the forbidden subspace B, so that in the
limit when the penalty is large, minimizing the path length
also forces HðtÞ to stay within A. To do this, we allow the
Hamiltonian to be chosen from the entire space M, so that
H ¼ P

jαjAj þ
P

kβkBk, and define a new inner product,
which we will call the “q inner product,” by

hH1; H2iq ≡
�X

j

αð1Þj αð2Þj þ q
X
k

βð1Þk βð2Þk

�
1=2

: ð3Þ

With this inner product, the metric is ∥H∥q ¼ hH;Hiq,
and the length of a curve UðtÞ under this q metric is
L ¼ R

∥HðtÞ∥qdt. Since the q metric applies a penalty
proportional to q to the basis operators Bk, we can expect
that when q → ∞ the geodesics for the q metric (the “q
geodesics”) will be confined exactly to A [40]. The q
geodesics obey the following geodesic equation, which is
the Euler-Lagrange equation for L under the constraint
∥H∥q ¼ E [41]:

Gqð _HqÞ ¼ −i½Hq;GqðHqÞ�; ð4Þ

where Gqð·Þ ¼ PAð·Þ þ qPBð·Þ, and PA and PB project
onto the subspaces A and B, respectively. In terms of the

parameters fαðqÞj ; βðqÞk g, the geodesic equation is
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_αðqÞj ¼ Tr

�
iHq

�X
n

αðqÞn ½Aj; An� þ
X
l

qβðqÞl ½Aj; Bl�
��

;

_βðqÞk ¼ Tr

�
iHq

�X
n

αðqÞn

q
½Bk; An� þ

X
l

βðqÞl ½Bk; Bl�
��

:

ð5Þ
We have added the sub- and superscript q to remind us that
the control protocol HðtÞ depends on q.
It is now straightforward to show that when q → ∞ the

geodesic equation becomes the brachistochrone equation,

under the assumption that the values qβðqÞk remain finite in
this limit. First, we note that each of the geodesic equations
for the parameters has two terms on the right-hand side,
and the second of these constitutes precisely the brachis-

tochrone equation under the replacement αðqÞj ↔ μj and
qβqk ↔ λk. By substituting H into the first term in each of
the geodesic equations, we find that the contribution from
the components inA vanishes identically, and that from the
components in B tends to zero as q → ∞. Minimum-time
quantum control protocols can therefore be obtained as the
limit of a continuum of geodesics, which makes time-
optimal control amenable to the use of geometric tools.
This also gives a geometric meaning to the Lagrange
multipliers fλkg: as Hq is increasingly restricted to A,

and the parameters βðqÞk vanish, when scaled by q these
values remain finite and become the Lagrange multipliers.
Solving the brachistochrone equation.—Together with

the Schrödinger equation, the solution to the geodesic
equation is completely determined by specifying the initial
value of the HamiltonianHqð0Þ. As in the case of the QBE,
we do not know what choice for Hqð0Þ will satisfy the
boundary conditions Uð0Þ ¼ I and UðTÞ ¼ V, and thus
solve the control problem. However, the geodesic equation
has three properties that the brachistochrone does not, and
that we can exploit to find fast methods of solving it. These
properties are as follows. (i) Since there is a continuum of
geodesics, the solution for q ¼ 1 can be transformed
continuously into the solution for q ¼ ∞. This will allow
us to obtainHqðtÞ for q ≫ 1 fromH1ðtÞ. (ii) For q ¼ 1, the
solution is trivial: the geodesic equation is merely _H1 ¼ 0,
so the minimal-time control Hamiltonian is constant. Thus
V ¼ expð−iH1TÞ and H1 ¼ i logðVÞ=T. Since the loga-
rithm is multiple-valued (has multiple branches), this
formula gives a countably infinite set of solutions for
H1. Further, the choice of T merely scales the norm of H1.
Thus, it is convenient to set T ¼ 1, and the minimum-
length protocol is given by the solution for H1 with the
smallest norm (usually the first branch). We expect that
it is the minimal-length geodesic that will transform into
the minimal-time brachistochrone, although this is not
guaranteed. (iii) Any geodesic curve will be uniquely
determined by the initial value of Hqð0Þ, unlike the
brachistochrone, which requires both Hð0Þ and λð0Þ.

We can now present two simple, fast methods for solving
the QBE. The first involves using the fact that there is a
continuum of geodesic solutions, parametrized by q, to
obtain protocols for q ≫ 1 from the trivial solutions for
q ¼ 1. This can be done by deriving an equation for the
derivative of Hqð0Þ with respect to q, and then integrating
this equation starting at q ¼ 1, a method known as
“geodesic deformation” [36]. This procedure is slow,
however, and a much faster one, that we will refer to as
“q jumping,” is as follows. We exploit the fact that a
geodesic for one value of q is sufficiently close to that for
qþ Δq, for some Δq, that we can use it to seed the simple
shooting method to quickly obtain the solution for qþ Δq
from that for q. Starting with q ¼ 1, and a choice for Δq,
we use the shooting method n times to obtain H1þnΔqð0Þ
fromH1. When nΔq is large enough, we can useH1þnΔq to
seed the shooting method to obtain the brachistochrone.
There are two caveats to this method. The first is that not all
solutions for q ¼ 1 continuously deform into solutions for
q ¼ ∞; a given geodesic can abruptly disappear above
some value of q. Thus, we may have to try more than one
branch of the logarithm [more than one of the solutions
H1ðtÞ] to find the brachistochrone. In this case, we start
with the branch for which H1 has the smallest norm,
proceed to the next smallest, and so on. The second caveat
is that, if H1 satisfies ½PAðH1Þ;PBðH1Þ� ¼ 0, we cannot
start with q ¼ 1 (see the Supplemental Material [42]).
Fortunately, the shooting method is able to obtainHqð0Þ for
a low value of q (e.g., q ¼ 5) when seeded with a random
guess, and having obtained that we proceed as before.
Our second method, which we will call “geodesic

search,” is as follows. Due to property (iii) above, any
geodesic curve can be found efficiently if we can obtain a
good approximation to Hqð0Þ. This can be done by
optimizing a weighted sum of two quantities. The first is
a measure of the error of the protocol which we quantify
using d ¼ 1 − ∥Tr½V†UðTÞ�∥=N, with N being the dimen-
sion of the system. The second quantity is the length of the
path under the q norm. The optimal solution for this
weighted sum gives a close-to-minimal path that approx-
imately generates V at time T. It is thus a good approxi-
mation to Hqð0Þ, from which we can obtain Hqð0Þ exactly
via the simple shooting method, and subsequently the
brachistochrone solution, if q is chosen to be sufficiently
large. We cannot apply this method to the brachistochrone
directly, because there is no way to obtain a good
approximation to λð0Þ: the geodesic formulation is
essential.
Control in the presence of a drift Hamiltonian.—

The methods we have described above can also be
used when there is an additional drift Hamiltonian H0

that cannot be altered by the controller, and which is
contained in A (H0 ¼

P
jνjAj). The total Hamiltonian is

HtotðtÞ ¼ H0 þHðtÞ ∈ A, and it is the control Hamiltonian
that is bounded: ∥HðtÞ∥ ≤ E. In this case, it can be shown
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that the time-minimal path still satisfies ∥HðtÞ∥ ¼ E. The
brachistochrone solution can then be analogously derived
for this case, and a similar brachistochrone-geodesic con-
nection established. When H0∉A, the situation is more
subtle, and will be discussed in a future work.
Example 1: an arbitrary two-qubit evolution.—We con-

sider two qubits whose physical interaction is given by the
model

H ¼ ℏ
X
l;m

ωðlÞ
m σðlÞm þ ℏκ

X
m

σð1Þm ⊗ σð2Þm ; ð6Þ

where σðlÞm , m ¼ x; y; z, l ¼ 1; 2 are the Pauli operators for
the lth qubit. We assume that the experimenter has the

ability to vary the six parameters fωðlÞ
m g and the interqubit

coupling rate κ. The accessible and forbidden spaces for

this model are thus A ¼ spanfσðlÞm ; σð1Þm ⊗ σð2Þm g and
B ¼ M=A, respectively.
We choose the target unitary V to be a randomly selected

two-qubit operator in SU(4) (the V we use is given in the
Supplemental Material [42]). All numerics are run on a
2.6 GHz Intel Core i5. We first attempt to use conventional
methods to solve the boundary-value QBE. Running the
simple shooting method 100 times with randomly chosen
initial guesses fails to obtain a solution, and the multiple-
shooting and finite-difference methods have similar behav-
ior. All have great difficulty finding solutions from random
initial guesses. We then apply the new methods presented
above. Calculating H1ð0Þ ¼ i logðVÞ gives a sequence of
solutions which we label with the branch number of the
logarithm, m ¼ 1; 2;…. The norms of these solutions for
H1ð0Þ, and thus the corresponding protocol times, increase
monotonically with m. Starting with m ¼ 1, we attempt to
use q jumping to obtainH100ðtÞ fromH1 using steps of size
Δq ¼ 1. This fails for both m ¼ 1 and m ¼ 2, indicating
that these geodesics cannot be extended to q ¼ 100. The
solution form ¼ 3 succeeds, and takes 32 min. We then use
this geodesic to seed the shooting method to find the
brachistochrone, which takes 19 s. Of course, to increase
our confidence that this is the global minimal-time solution,
we must also check that higher values of m do not produce
solutions of the QBE with shorter times. We have checked
10 values of m, including those that do not converge, and
each takes approximately 30 min, so the total time to obtain
the minimal-time protocol is about 5 h.
Next, we use the geodesic-search method. Discretizing

the path into 20 segments, minimizing the sum of the error
and the path length to obtain an approximate H100ðtÞ
usually takes no more than 20 s from an initial random
guess. To increase the chance of finding the global
minimal-time solution we run 50 searches, which alto-
gether provides 5 different approximate geodesic solutions
with ∥H100∥q < 7. This takes about 14 min. Using these
approximate solutions to seed the shooting method, we find
five distinct geodesics H100ðtÞ, each taking about 40 s. The

final step is to obtain the brachistochrone starting from the
shortest geodesic, just as we did in the method above, and
so takes 19 s. The geodesic-search method therefore takes a
total time of about 18 min, and thus beats the q jumping
method hands-down. Both methods arrive at the same
minimum-time protocol, which has a time of T ¼ 6.69=E.
Example 2: a CNOT logic gate.—As our second example,

we find a time-optimal implementation of the CNOT gate
[43], also for the Hamiltonian in Eq. (6). To do so, we first
add a global phase of π=4 to the standard CNOT, so that
V ¼ eiπ=4UCNOT is in SU(4). Discretizing the path into 20
segments as above, the geodesic-search method takes about
15 min [about 14 min for the minimization to find the
approximation to H100ðtÞ, 16 s for the shooting method to
obtain H100ðtÞ, and 29 s for the shooting method to obtain
the brachistochrone.] Using the q jumping method for
m ¼ 1 to obtain first H5ðtÞ and then H100ðtÞ, using a step
size Δq ¼ 1, takes a total time of 21.5 min, and finding the
brachistochrone from q ¼ 100 takes 28 s for a total time of
22 min. In fact, for this problem, we find that q ¼ 50 is
sufficient to obtain the brachistochrone, reducing the total
time to 9 min. We similarly determine the solutions of the
QBE that result from the branches m ¼ 2; � � � ; 10, which
takes a total of about 1.5 h. The geodesic-search method is
thus faster for this example as well. The minimum protocol
time we obtain is T ¼ 5.75=E. We plot the seven compo-
nents fμjðtÞg of the brachistochrone HðtÞ in Fig. 1, along
with the seven components fαjðtÞg of the geodesic solution
H100ðtÞ for comparison.
Although q jumping is slower than the geodesic-search

method, it has the advantage of enumerating a set of
solutions, providing confidence that we have obtained the
global time-optimal solution. To maximize the probability
of obtaining this global optimum, we suggest applying both
methods to compare their solutions.

FIG. 1 (color online). Solid lines: the seven control functions
μkðtÞ, k ¼ 1; � � � ; 7, that implement the minimal-time (brachis-
tochrone) CNOT gate for a given two-qubit interaction. Dashed
lines: the seven functions αkðtÞ for the geodesic protocol with
q ¼ 100 (see text), which is used to obtain the brachistochrone.
Two pairs of control functions are identical, so only five distinct
curves appear for both protocols.
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Conclusion.—We have revealed a fundamental connec-
tion between time-optimal control and geodesics in the space
of unitary operators. This connection opens up time-optimal
control to the tools of geometry, and as such we expect it to
have broad applications within quantum control. One such
application we presented here, obtaining a practical method
for solving the quantum brachistochrone. We suggest that
further applications could include time-optimal control in
the presence of arbitrary drift Hamiltonians, and the com-
putational complexity of quantum control under constraints
on the available Hamiltonians.
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