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Abstract

This paper considers a dynamic model of the evolution of open source software projects,

focusing on the evolution of quality, contributing programmers, and users who contribute

customer support to other users. Programmers who have used open source software are

motivated by reciprocal altruism to publish their own improvements. The evolution of

the open-source project depends on the form of the altruistic benefits: in a base case the

project grows to a steady-state size from any initial condition; whereas adding a need for

customer support makes zero-quality a locally absorbing state. We also analyze competition

by commercial firms with OSS projects. Optimal pricing policies again vary: in some cases

the commercial firm will set low prices when the open-source project is small; in other cases

it mostly waits until the open-source project has matured.



1 Introduction

Open source software (OSS) has many varieties, but common features are that code is

freely available and contributions are made by a diffuse set of programmers often working

as volunteers. Well-known success stories include Linux, Apache, which dominates the

market for web servers, and PERL and PHP, which are leaders in scripting software. But

OSS is a much broader phenomenon: as of July 2012, SourceForge.net hosted 324,000 OSS

projects developed by 3.4 million programmers. There is a great deal of diversity in project

characteristics and outcomes: projects aim to serve very different user bases; have different

internal organizations; and some have thrived while others have risen and fallen (or never

risen at all). There is also diversity in the relationships between commercial firms and OSS.

Some software companies compete directly with open source projects in critical areas, e.g.

Windows Server competes with Apache, but it is also common for firms to actively support

open source projects.1

Though recent, the literature on open-source software has developed rapidly. It now

contains both enlightening theoretical papers and convincing empirical analyses that present

findings derived from diverse methodologies. The largest part of this literature focuses

on why individual programmers join open-source projects and contains evidence for the

importance of both economic career-concern and noneconomic intrinsic motivations.2 A

smaller literature presents insights on competition between open-source and traditional

software products.3

1Lerner et al. (2006) report that the fraction of corporate contributors to open source projects ranges
from 22% for the smallest projects to 44% for the largest. IBM is a particularly noted supporter of open
source and claims to have invested billions. A sample description (in an interview of James Stallings by
Linuxplanet.com) is:

LP: I’d like to ask you a few things about IBM’s Linux Technology Center. You have about
250 people working there. Can you tell me exactly what they’re doing with their time? Are
they helping customers or developing the kernel, or doing other work?

Stallings: They’re making contributions. Their full time job is making contributions to the
kernel. That’s it. They don’t have another job sweeping the floor or working on Websphere
or anything like that.

2See, among many others Lerner and Tirole (2002) and Johnson (2002) for theoretical analyses, Fersht-
man and Gandal (2007) for empirical evidence on extrinsic motivations andd Lakhani and Wolf (2003) for
survey evidence

3Two noteworthy papers here are Casadesus-Masanell and Ghemawat (2006) and Economides and Kat-
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Our paper departs from most of the literature in a few ways. First, we conceptualize

an open source software project as a community of programmers within which reciprocally

altruistic preferences are a driving force. Second, our analysis differs in our focus on the

dynamic life cycle as projects take off, grow, and/or decline. Third, some of the specific

questions we examine differ: why programmers go to the effort to commit code to the

project; how projects are affected by competition with for-profit firms; and how development

is affected by the importance of customer support.

Our formal model assumes that at each point in time the open-source product can

meet a fraction of the “needs” of a community. We refer to the fraction of needs that

a product meets as its “quality” and assume that quality naturally depreciates over time

(perhaps because new needs such as compatibility with new hardware and software become

relevant). Quality increases if these declines are more than offset by improvements made

by a community of programmers. We assume that programmers are motivated both by

their own needs and by a form of reciprocal altruism akin to that in Akerlof (1982) and

Rabin (1993): altruistic feelings are activated when a programmer benefits from using the

product (which is more likely when the quality is high), and then disappear at some random

future time. The model is therefore at its core a dynamic system with two important state

variables: the current quality of the software product; and the size of the set of programmers

who currently have altruistic feelings toward the community.

Our choice to focus on reciprocal altruism is influenced by several descriptive papers.

Shah (2006), for example, reports that individuals typically first become involved with an

open source community when they have a need that they meet by using the software. She

reports that the most commonly cited reason for remaining involved for at least a brief

period is a sense of reciprocity, e.g. “Others helped me, so I should help them,” and that

participation becomes a hobby for a a much smaller number of deeply involved participants.

The relevance of such altruistic preferences is also supported by surveys which note that

programmers cite such motivations along with other intrinsic (enjoyment of intellectual

samakas (2006).
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stimulation) and extrinsic (career concerns) motivations.4 We do not wish to deny the

importance of these other factors. Instead, as in Johnson (2002) our view is that we have

incorporated them albeit crudely in the form of the fixed net benefits and effort costs that

programmers are assumed to accrue when they make use of the software and develop and

contribute improvements.

Our initial model yields some interesting baseline predictions. First, there is always a

steady state with zero quality and no altruistic programmers. However, so long as the flow

of opportunities to add software features and become altruistic are large enough relative to

the rates at which software features and programmer altruism depreciate, there is also a

positive steady state. The dynamics of our simple model are somewhat different from what

one might expect from informal discussions of open source software as being dependent

on “network externalities.” In our baseline model, starting from any initial condition with

some features implemented in the software, the system converges to this the higher steady

state. Hence, initial conditions and founder behavior have little to do with the long-run

success of the project. They only affect the path that the project takes along the way to

this steady state.

We turn next to consider competition between a commercial software firm and an OSS

project. The optimal strategy of the commercial firm is given by the solution to a dynamic

programming problem, which makes our model of competing with OSS somewhat different

from that standard analyses of strategic interactions between competing firms. In the

most natural case, the commercial firm strategically prices below its static best response

in an effort to slow the growth of the OSS project. The magnitudes of the strategic price

distortions depend on several factors including the loss in short-run profits from a price cut;

the degree to which a price cut affects the state variables; and the persistence of changes in

the state variables. We present some numerical examples, and note that strategic incentive

to cut prices can be largest when the OSS project is near its steady-state size, because in

other states evolutionary forces are more powerful and changes to the state variables are

less persistent.
4See Ghosh et al. (2002), Hertel et al. (2003), and Lakhani and Wolf (2005).
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Section 5 extends the model to incorporate another aspect of open-source communities

that features prominently in some descriptive papers: community members who lack the

expertise to contribute code, but are actively involved in providing “customer support”

to new users such as answering easy questions that expert programmers have neither the

time nor the inclination to deal with. The extended model adds a user population and the

fraction of this population currently feeling altruistic becomes a third state variable.5 The

literature on public goods has noted that outcomes in some models depend on the form

of altruism: action-oriented altruism in which agents receive “warm glow” utility from the

actions they take in the attempt to help others; and “pure” or outcome-oriented altruism in

which agents only care about the benefits others receive.6 A related modeling choice arises

in our model: agents could have “code-based” altruism in which they receive utility from

contributing to the open source project; or they could have “user-motivated” altruism in

which they value making contributions more when more users will take advantage of them.

One result of this section is that the system dynamics are qualititatively different depending

on the form of programmers’ altruism. Another is that the model can have “critical mass”

effects: with user-motivated altruism the model can be such that a substantial initial push

is needed to prevent the project from collapsing to a zero-quality state. (This in turn can

qualitatively affect the behavior of competitors.)

As noted above, our paper is contributing to a literture on open source that is now

substantial. Two benchmark models are Lerner and Tirole (2002) and Johnson (2002).

The former focuses on the economics of open source contributions. Immediate benefits

include monetary compensation (for contributors paid by other employers, or rarely, those

employed by the OSS project), own-use benefits, and the opportunity cost of time; long-

term benefits include ego gratification from peer recognition and the more standard career

concerns, since contributors may signal their ability to a wide community through OSS

participation. Johnson (2002) models open source software as a public good contribution

problem. This provides a framework for welfare comparisons and brings out issues like
5Kuan (2001) examines the problem of fixing bugs which is another way in which low-skilled users may

contribute.
6See, for example, Andreoni (1989), Rose-Ackerman (1996), and Francois and Vlasopoulos (2008).
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free-riding, duplication of effort, and the potential for mismatch between developer effort

and user preferences. Other noteworthy papers on user motivations and their implications

for open source organization include Lerner and Tirole (2005a) and Johnson and Myatt

(2006).

Our focus on altruistic preferences is motivated by the survey literature including Ghosh

et al. (2002), Herter et al. (2003), Shah (2004), and Lakhani and Wolf (2005). Lakhani

and von Hippel (2003) and Shah (2006) highlight the importance of user support.

There is also a prior literature addressing questions related to those in our analysis of

competition between commercial and open source products. Schmidt and Schnitzer (2003)

discuss welfare issues in competition between open source and commercial software. Mus-

tonen (2003) models both product-market competition and competition for programmers.

Economides and Katsamakas (2006) study a platform-competition problem in which a crit-

ical consideration is the variety of complementary applications that will be developed on

each platform. Casadesus-Masanell and Ghemawat (2006) analyze a dynamic competi-

tion model in which consumer demand has network externalities and commercial firms are

forward-looking in their pricing. Our approach is complementary in that we allow for much

richer dynamics in the OSS product and model the forces behind these dynamics. We do

not, however, incorporate exogenous network externalities in the product market–instead,

the size of the installed base affects quality and can be thought of as an endogenous network

externality.

Our paper is also broadly related to the recent literature on boundely rational industrial

organization.7 Whereas most of this literature is concerned with how rational firms price

when confronted with behavioral consumers, our paper can be thought of as more closely

related to the older literatures discussed in Ellison (2006) in which the firms were non-

rational entities.
7See among others Della Vigna and Malmendier (2004), Ellison (2005), Gabaix and Laibson (2006),

Spiegler (2006a, 2006b), Eliaz and Spiegler (2008), Heidhues and Koszegi (2008), Kamenica (2008), and
Ellison and Ellison (2009).
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2 A Baseline Model

This section introduces our baseline model, where we focus only on software contributors

(henceforth “programmers”). Consider a population of software programmers of unit mass.

At Poisson random times each programmer is confronted with a need drawn from a set of

needs N = [0, 1]. Assume that the arrival times and the needs themselves are independent

across programmers. Let λ be the parameter of the need arrival process.

At each time t the open source software package meets some subset St ⊂ N of the needs.

Write qt for the Lebesgue measure of St. We’ll refer to qt as the quality of the software.

The quality is a key outcome variable for the OSS project, and so we will be interested

in how it evolves over time. In our baseline model, quality does not directly affect the set

of programmers who consider using the product, although (as we see below) it indirectly

affects the provision of new code through the encouragement of altruistic behavior.

Software programmers are myopic utility maximizers. Assume that an increment to

utility is received whenever a need arises. The increment depends on the action taken

by the programmer. Our assumptions about these increments are intended to capture

reciprocal altruism. Specifically, assume that the increment to programmer i’s utility when

he faces need nit at t is:

Bit if the need is met using the open source software (possible if nit ∈ St);
Bit − E if the need is met by programming;

Bit − E −K + ait
if the need is met by programming and the programmer then adds

the code to the open source project (possible if nit 6∈ St);
B0 if the need is instead met with an outside good.

The benefit Bit of meeting the need with open source software is assumed to be a

random variable revealed to the programmer when he must decide on an action. The

programming and sharing costs, E and K are assumed to be strictly positive. The altruism

parameter ait ∈ {0, a} is stochastic and varies across programmers and over time. Assume

that Prob{ait = a|ait−dt = 0} = α if programmer i meets his need using open source

software at t. In intervals in which programmer i does not meet a need by open source

altruism decays at a Posson random time, i.e. it follows a continuous time Markov process
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with Prob{ait = 0|ait−dt = a} = δdt and Prob{ait = a|ait−dt = 0} = 0.

The set of needs that can be met with the open source software grows when agents share

code they have written. Assume that each feature of the software exogenously disappears

at Poisson rate β. The motivation is that features become obsolete due to changes in

interacting hardware and software.

Note that although we have not explicitly included any career-concerns or intrinsic-

enjoyment motivation for contributing to the open source project, one can think of such

motivations as being reflected in the exogenous costs E and K of programming and con-

tributing code to the project. For example, K can be thought of as the net cost of con-

tributing code, which is the difference between the effort costs incurred in going through

the submission process and any enjoyment or career concerns benefit that accrue.8

We assume that agents can only observe aggregate behavior when they make their

decisions. They understand the primitive parameters of the model, and they observe St

(and thus qt), as well as the realizations of random variables corresponding to their own

outcomes. Whenever they are called on to take an action they myopically maximize their

payoff from the current action.9

3 Developer Behavior and Community Dynamics

In this section we analyze the model described in Section 2. Our main result is a char-

acterization of the dynamic system showing that two qualitatively different behaviors are

possible: for some parameters the project is doomed to fail; for others there is both a

zero-quality-zero-participation steady state and a steady state where the project achieves
8The empirical evidence in Fershtman and Gandal (2007) and other papers and the simple fact that open

source projects establish hierarchies and are careful to credit contributors suggest that such motivations are
important. The degree to which our model can capture them is limited by our assumptions that K is
positive and that K does not vary with the size of the community, the quality of the project, etc.

9The myopic maximization can reflect some long-run thinking, e.g. career concerns benefits, by including
the net present value of the long-run benefit in the instantaneous payoff that programmers receive upon
contributing. Given that agents only observe aggregates when making their decision, the assumption of
myopic play is similar to assuming that players maximize their lifetime discounted utility given the specified
payoffs. The one difference is that a patient programmer would in some situations use open source software
even though this is suboptimal in the short run, because he knows that will change his future utility function
and allow him to receive the benefits that altruists receive when they behave altruistically. We do not think
that this sophisticated behavior seems realistic.
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a degree of long run success. We derive expressions for participation levels and software

quality in the successful steady state and describe the dynamics of the system.

3.1 Programmer Behavior

We begin with some fairly straightforward observations about programmer behavior in the

baseline model. We organize the discussion by listing the observations as propositions.

First, we note that it is only when altruism is sufficiently strong that open source projects

can succeed in our model.

Proposition 1 If initial quality q0 is positive but altruism is limited in the sense that

a < K, then no features are ever added to the open source software. Software quality decays

at an exponential rate, qt = q0e
−βt.

Next, we present a few results on programmer behavior. What programmers do when

open source software can meet their needs is an immediate consequence of our assumptions.

Proposition 2 Programmers use open source if it can meet their need and Bit > B0.

Meeting the need by programming is dominated by using open source because E > 0.

The other ‘program-and-contribute’ option is assumed to only be available if the feature is

not already in the open source package.10 When the open source project cannot meet the

need programmer behavior is a little more complicated.

Proposition 3 Suppose that an programmer’s need cannot be met by the open source soft-

ware, that is, nit 6∈ St. Then

(a) If a < K then the programmer develops the feature if Bit > B0 + E.

(b) If a > K then the programmer develops the feature and contributes it to the code base

if Bit > B0 + E − (a−K).

A few comments about this proposition are in order. First, there is clearly a public

goods problem. In the absence of altruism, programmers will develop features accounting
10Note that we are assuming away the coordination problem discussed in Johnson (2002) which would arise

if programmers were unaware of whether others were simultaneoulsly working on the same improvement.
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only for their own private benefits, and they will never share their code after developing

it.11 Second, altruism mitigates the public goods problem, and in fact there may be too

much or too little development relative to the social optimum, depending on the magnitude

of a. Altruism leads to strictly more features being developed if a > K. Programmers

anticipate the utility they will gain from sharing the code (net of publication costs), and

this offsets somewhat the private cost of effort. Indeed, agents may develop features where

Bit < B0 (no private benefits) if altruism is important enough.

To simplify the discussion in the remainder of the paper, we will assume that altruism

is sufficiently strong so that altruistic programmers will contribute any improvements they

have made:

Assumption 1 Assume a > K.

It then follows immediately that:

Corollary 1 Under Assumption 1 the equilibrium strategies are

s∗i (nit; ait) =



use open source if nit ∈ St and Bit > B0,
program and contribute if nit 6∈ St, ait = a, and Bit > B0 + E − (a−K),
program if nit 6∈ St, ait = 0, and Bit > B0 + E,
use outside good if nit 6∈ St and Bit < B0 + E −max(0, ait −K)

or nit ∈ St and Bit < B0.

3.2 Dynamics

The status of the software and its future evolution is described by two state variables: the

quality qt of the software and the mass bt of software programmers with ait = a, i.e. the

fraction who are currently altruistic.

We make the standard continuum-of-agents assumption that the law of large numbers

holds exactly. We let γb denote the flow rate at which an programmer is confronted with

a need for which an open source solution (assuming it exists) would dominate the outside

option: γb ≡ λProb{Bit > B0}. Similarly, we let γq denote the flow rate at which a

11In practice there could be some private benefits from publishing code either of the career-concerns
variety or because publishing code leads others to support or improve it. Our assumption that K > 0 is an
assumption that any such benefits are less than the costs of submitting code to the project.
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programmer is confronted with a need that (assuming it is not already in the OSS) he

would be willing to meet by programming and then contribute to the code if he were

altruistic: γq ≡ λProb{Bit > B0 + E − (a−K)}.

Proposition 4 The dynamics of quality qt and of the mass of programmers bt are

q̇t = γq(1− qt)bt − βqt

ḃt = αγb(1− bt)qt − δbt

We now provide a series of results to characterize the behavior of this dynamic sys-

tem. Roughly, the results say that the dynamic system will exhibit one of two behaviors

depending on the parameter values. One possibility is that the project is doomed: there

could be a temporary improvement on one dimension from some initial conditions but the

project eventually decays to a zero quality-zero altruism limit. The second more interesting

possibility is that there long-run success is possible. In this case, there is a unique steady

state quality-altruism pair that the system evolves to from almost any initial condition (a

zero quality, zero altruism steady state exists but is unstable.)

An outline of the argument is that we begin by deriving two relevant threshold func-

tions: the fraction of the programmer population who must be altruistic in order to replace

depreciating features and thereby sustain quality at its current level; and the minimum

quality level that the software would have to have in order to attract enough programmers

to sustain the the altruistic population. The relative positions of these two curves turns

out to be crucial to the nature of the dynamics. Intuitively, software quality and the size of

the altruistic population can grown in tandem only if there is a growth path that remains

above both curves.

We begin by describing the q̇ = 0 curve which gives the minimum size b of the altruistic

population needed to maintain quality at any given quality level q. It is defined only for

some values of q because when q > γq/(β+γq) quality depreciation is unavoidable: we have

q̇ < 0 even if all programmers are altruistic. For q ∈ [0, γq/(β+ γq)] we let bq̇(q) denote the
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value of b at which q̇ = 0, that is, the function defined implicitly by

q̇(q, bq̇(q)) = 0.

The solution to his equation is

bq̇(q) =
βq

γq(1− q)
.

Thus, the function is proportional to the ratio of the rate of decay of quality to the arrival

rate of needs that would lead an altruistic programmer to develop and contribute (β/γq) as

well as the ratio of the fraction of features currently incorporated to the fraction of features

that need to be written (q/(1− q)). This implies some properties of bq̇(·) that will be useful

for deriving steady states.

Proposition 5 The function bq̇(·), which describes the size of the altruistic population

needed to sustain quality at q, is convex and strictly increasing in q on (0, γq/(β + γq)). It

satisfies bq̇(0) = 0, bq̇(γq/(β + γq)) = 1, and b′q̇(q) = β/γq(1− q)2.

Intuitively bq̇(q) is increasing when more altruistic programmers are required to sustain

software quality at a higher level. This follows immediately from our assumptions that

quality depreciates proportionally, and that new code is only published if a programmer

develops the code and feels enough altruism to outweigh the publication costs. The con-

vexity results from a second mechanism acting on top of the the proportional depreciation:

when quality is high fewer new features are being developed because the software already

meets many needs.12

Now we turn to consider the ḃ = 0 curve – the relationship that describes how high

quality must be in order to attract newly altruistic programmers at a rate sufficient to

sustain the size of the altruistic population at any given size b. For the purposes of the

analysis, however, we will also characterize this as a function of q, i.e. we ask how large of
12Note that we could consider other models of the potential for quality improvements that do not have

this “crowding” phenomenon; for example, in some settings, it might be that each new feature makes it
possible for many more features to “build on it” and expand the appeal of the product in new directions.

11



an altruistic population can be sustained if the quality level is q. Observe that ḃ = 0 if and

only if

αγbq = (αγbq + δ)b.

For a given q, let bḃ(q) denote the value of b at which ḃ = 0, that is, the function defined

implicitly by

ḃ(q, bḃ(q)) = 0.

Solving this equation we find

bḃ(q) =
αγbq

αγbq + δ
.

Proposition 6 The function bḃ(·) is concave and strictly increasing on (0, 1). It satisfies

bḃ(0) = 0, bḃ(1) ∈ (0, 1), and b′
ḃ
(q) = δαγb/(αγbq + δ)2.

Intuitively, bḃ(q) is increasing if for higher values of quality a larger altruistic population

can be sustained. This holds because the number of programmers who benefit from the

software is larger when q is high, this leads to a larger inflow of newly altruistic population,

which can offset the proportional depreciation of altruism in a larger altruistic population.

The function bḃ(q) is concave if this effect is less pronouced at higher levels of quality.

Note that the system has ḃ > 0 when b < bḃ(q) and ḃ < 0 when b > bḃ(q), so one can

think of b as evolving toward the ḃ = 0 curve. Similarly, the one can think of q as evolving

in the direction of the q̇ = 0 curve.

The system is in steady state where bq̇(·) and bḃ(·) intersect: quality is attracting new

altruistic programmers at the exact rate at which altruistic programmers are leaving; and

the altruistic programmer population is developing new features at a rate that exactly

offsets the quality depreciation. Note that the two curves always intersect at b = q = 0.

Hence, (0, 0) is always a steady state of the system. The full behavior of the system follows

fairly simply from the properties noted in the two propositions. Essentially, there are only

two possibilities as pictured in Figure 1 below, which graphs the bḃ and bq̇ curves in q-b

space. The bḃ curve is concave and the bq̇ is convex. If the bq̇ curve is steeper at the

12



origin, the two curves will have no intersections other than at (0, 0), as in the panel on the

left. If the bḃ curve is steeper at the origin, then the fact that the bḃ curve intersects the

right side of the square (i.e. bḃ(1) ∈ (0, 1)) and the bq̇ curve intersects the top side of the

square implies that there is an unique interior intersection. The right panel illustrates such

a system.
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Figure 1: Model Dynamics: the left panel has p = 0.5 and γb = γq = β = δ = 1. The right
panel has p = γb = γq = 1 and β = δ = 0.5.

Evaluating the derivatives of the two curves at the origin we have.

b′
ḃ
(0) =

αγb
δ

b′q̇(0) =
β

γq

This brings us to the main result of this section: the dynamic system may be of one of

two qualitatively different forms depending on the parameters of the model.

Proposition 7 If αγbγq < βδ then the only steady-state of the system is q = b = 0.

If αγbγq > βδ then the model also has a second steady-state with q and b positive.

The condition that αγbγq > βδ has a very straightforward interpretation: the frequency

with which programmers encounter needs that can be met using a complete open-source

product, the consequently triggered feelings of altruism, and the arrival of situations where

altruistic programmers would contribute new features must be sufficiently large relative to

the speed at which altruism and features depreciate. Note that the depreciation of altruism

and the depreciation of features enter symmetrically.
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In addition to knowing whether success is possible it is interesting to ask the quantitative

question of how successful the project will be in the successful steady state. Solving for the

positive steady state state we find:

Proposition 8 If αγbγq > βδ then the nonzero steady state of the model is

q∗ =
αγbγq − βδ
αγbγq + αβγb

b∗ =
αγbγq − βδ
αγbγq + δγq

From here, we see that the steady-size of the project (and of the altuistic community) is

increasing in αγbγq−βδ, the gap between opporunities to add features and develop altruism

relative to the depreciation of features and altruism. We can also compare the growth rate

of quality to the growth rate of altruistic programmers, finding that it depends on the decay

rates. In some extreme cases, we get clear answers: when the decay rate of altruism is low

(δ ≈ 0) we find that the steady state fraction of altruistic programmers is 1 (b∗ ≈ 1); and

when the decay rate of features is close to zero (β ≈ 0), we get a steady state quality of 1

(q∗ ≈ 1).

Simple inspection of the phase diagram for the system leads to the following conclusions.

Proposition 9 If αγbγq < βδ then the steady state at (q, b) = (0, 0) is globally stable.

If αγbγq > βδ then the system converges to the (q∗, b∗) steady-state from every initial

condition other than (q0, b0) = (0, 0).

This result implies that the dynamics of the system are deterministic and do not have

history-dependence. Any project that gets off the ground with a few features or a few

committed (altruistic) programmers will eventually reach a steady state that is predeter-

mined given parameters. This contrasts with some informal characterizations of open source

projects as needing some kind initial “big push” to have a chance of success. This suggests

that empirical analyses of whether a big push is necessary would be interesting, and that it

would be interesting to investigate modifications that could be made to our model to create

big-push dynamics if that is the empirical reality.13

13We present one model that has this feature in Section 5.
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It can also be shown that projects tend to grow with quality and fraction of programmers

who are altruistic roughly proportional to the steady state values all along the way. Finally,

we observe that the system can exhibit some nonmonotone behavior if we start from a

skewed initial condition. For example, if some formerly commercial software is made public

and thereby starts with q large and b small, then q may drop for a long time and become

quite low before b catches up and allows quality to increase back toward the steady-state

level.

4 Competing with Open Source

Many software markets include both open source and commercial products. Microsoft’s

Windows Server competes with open Apache (and Nginx) in the web server market. MySQL

was seen by some to be an important competitor to Oracle in relational databases. The

open source Firefox browser competes with Microsoft’s Internet Explorer, Apple’s Safari,

and Google’s Chrome. An important question for both public and business policy concerns

how competition between an OSS product and a commerical product differs from compe-

tition between two commercial products or from monopoly pricing. Commercial firms also

sometimes support open source projects, although we will focus here on the competitive

interaction.

We model a single commercial software product competing with a single OSS project.

We incorporate this into the model of Section 2 by assuming that the “outside option” that

provides utility B0 is a choice between two goods: the commercial software that provides

utility v − p, where v is the customer value of the commercial software and p is its price;

and ignoring the need, which provides utility 0. For simplicity, we maintain the assumption

that the commercial software can meet all needs and that all consumers have the same

value for the commercial software.

Our model omits direct network effects of the form analyzed by Casadesus-Masanell

and Ghemawat (2006). Instead, we consider the “network effects” that arise endogenously

in our model through the provision of features by altruistic programmers, which has the
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effect of making users derive more utility from the open source product if more have used it

in the past. Indeed, a primary focus will be on how the commercial firm’s price will reflect

the desire to limit these network effects in both the short and long run.

We begin by deriving demands. If v < p, the commercial firm gets no demand. For

v > p, the commercial firm’s demand comes from:

1. Programmers whose needs could be met by open source but have Bit ≤ v − p;

2. Programmers whose needs cannot be met by open source, who are not altruistic, and

who have Bit − E ≤ v − p; and

3. Programmers whose needs cannot be met by open source, who are altruistic, and who

have Bit − E + (a−K) ≤ v − p.

Suppose that Bit has CDF G. Assume that the commercial firm has zero costs. Then, its

flow profit function as a function of the quality of the OSS, the set of altruistic programmers

in the OSS, and the price p of the commercial product (assuming v > p) is

π(p; q, b) = p (qG(v − p) + (1− q)(1− b)G(v − p+ E) + (1− q)bG(v − p+ E − (a−K))) .

A basic observation on the form of this profit function is:

Proposition 10 Flow profits are decreasing in the fraction b of programmers who are al-

truistic toward the open source project.

Flow profits are decreasing in the quality q of the open source project if altruistic pro-

grammers are not too altruistic a − K ≤ E, but otherwise will not be monotonically de-

creasing in q.

The case whre the commercial firm is worse off when OSS quality is lower seems unlikely

to be relevant in practice – in our model it requires that programmers’ altruistic motivations

be very strong and our model also omits customers who are not programmers and hence

clearly more likely to purchase commercial software when OSS quality is lower. But for

completeness we include the case in this and some other results.
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4.1 Static profit maximization

In this section we consider the commercial firm’s static monopoly pricing problem both in

general and in a tractable special case. The static profit maximization problem is

max
p:p≤v

p (qG(v − p) + (1− q)(1− b)G(v − p+ E) + (1− q)bG(v − p+ E − (a−K))) .(1)

Note that it is of the form

max
p
p

 3∑
j=1

djG(v̂j − p)

 , (2)

with d1 + d2 + d3 = 1, where dj is the fraction of total firm consumers coming from

j ∈ {1, 2, 3}, corresponding to the three groups of consumers described above, and v̂j is the

net benefit to the consumer of type j from using the commercial product rather than the

OSS at zero price. The first-order condition for such a problem is

∑
j

djG(v̂j − p)− p
∑

djg(v̂j − p) = 0,

which gives

p =
∑
j djG(v̂j − p)∑
j djg(v̂j − p)

=
Q(p)∑

j djg(v̂j − p)
,

where Q(p) ≡
∑
j djG(v̂j − p) is the total quantity that the commercial firm sells at price

p.

One case in which this expression takes a very simple form is if the distribution of Bit

is uniform on [0, v] for v > v + E. In this case, the solution reduces to

p =
∑
j

dj v̂j/2,

yielding

p∗(q, b) =
1
2

(v + (1− q)E − (1− q)b(a−K)) .

Firms charge a higher price when the effort costs E are higher and a lower price when the

altruistic motivation a is stronger. The maximum p∗ = (v + E)/2 occurs when q = b = 0.

It has p∗ = v/2 independent of b whenever q = 1. The price when q = 0 and b = 1 is
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(v − E − (a −K))/2. Note that if E is large enough, these calculations could yield p > v

which cannot be optimal; in such cases the firm chooses p = v.

Monopoly pricing in the absence of an OSS competitor is very simple in this example:

the firm charges p = v. Unsurprisingly, the presence of a competitor reduces the optimal

price. For the uniform case, we see that how the static optimum changes with the quality

of the OSS depends on parameters:

∂

∂q
p∗(q, b) =

1
2

(b(a−K)− E).

In the standard case (a−K < E) where the commercial firm is better off when OSS quality

is lower we obtain the intuitive result that a higher quality OSS product leads to a lower

price for the commercial firm. The commercial firm’s price is less sensitive to open source

quality when more programmers are altruistic. It is also straightforward to show that the

price is lower when more programmers are altruistic. In the extreme case mentioned earlier

where the commercial firm is better off when OSS quality is high, the commercial firm can

increase its price in response to a higher quality competitor.

4.2 Dynamic profit maximization

Our primary interest in this section is in how commerical firms strategically “distort” prices

away from the static optimum in order to affect the growth of open-source competitors.

Here we formulate the dynamic profit-maximization problem that we will analyze to address

this question. Specifically we consider the following dynamic problem:

max
p(q,b)

∫ ∞
t=0

π(p(qt, bt); qt, bt)e−rtdt (3)

subject to

q̇ = λ(1− q)b (1−G(v − p+ E − (a−K)))− βq

ḃ = αλq(1− b) (1−G(v − p))− δb

The latter two equations are the laws of motion for the OSS quality and the number of

altruistic programmers, given their choices between OSS and the commercial product. Note
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that we have not made OSS programmers forward-looking in this model. Instead, we con-

tinue to assume that they make myopic choices based on the flow benefits of programming,

publishing, or using the commercial product.14

The dynamic problem is pretty straightforward when the altruism parameter is not too

large: a − K < E. In this case, flow profits are decreasing in both q and b. Lowering p

decreases both q̇ and ḃ. This plus the montonicity of the (q, b) system implies that the firm

will always choose prices that are below the static profit-maximizing levels.

The dynamic price distortions are less straightforward when a − K > E. Recall that

in this case profits are increasing in q when b is large because programmers are sufficiently

altruistic so as to make them more likely to choose OSS when it works less well (because they

gain utility from improving it). Choosing a higher p increases q̇ (although it also increases ḃ)

so offsetting effects would need to be considered. This case could have interesting dynamics

to explore, but does not seem likely to be empirically relevant, so we will not focus on it in

the remainder of this paper.

4.3 Magnitudes of stratgic price distortions

Consider the “standard” case where a commercial firm does better when the open source

product is lower in quality (a −K < E). Lowering prices away from the static optimum

has no first-order cost and gives a first-order dynamic benefit, so the commercial firm

will “distort” prices downward from the static optimum. The magnitude of the difference

between static and dynamically optimal prices will depend on several fractors: there is

less cost to distorting prices when the commercial firm’s quantity is low; the benefit from

distorting prices by a given amount is larger when the effect on the state variables (q, b) is

larger; and the benefit of shifting the state variables by a given amount is larger when the

dynamics are such that the shifts will be more long-lived.

To get some feel for how these considerations play out, Figure 2 graphs the difference

between the static optimal and the dynamic optimal prices as a function of q and b for one
14Atomistic programmers would have no dynamic incentives other than that mentioned earlier – by

becoming altruistic a programmer affects future altruism utility – but strategic behavior by a forward-
looking leadership team could be an interesting topic for future research.
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Figure 2: Strategic price distortions: the difference between the static and dynamic optimal
price as a function of (q, b) for one set of parameters.
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set of parameters.15 In this case, strategic price distortion is largest when the system is

near the steady state of the static model ((q, b) ≈ (0.3174, 0.2876)) and drops sharply near

each of the extreme states, including that where the open-source product is very weak.

Most of the intuition for this is obtained from thinking about the vector field describing

the evolution of the system under static-optimal pricing, which is graphed in Figure 3. The

incentive to distort prices is high when the state is near the steady state, because the system

moves very slowly in these cases and hence manipulations that shift the state pay off for a

long period of time. Distortions are very small when the state is close to (1, 0), (0, 1), or

(1, 1) for analogous reasons: the dynamics move away from these points very quickly so the

benefits of manipulation are small. The reason for not pricing aggressively when the open-

source product is in its infancy are different. The system moves slowly in a neighborhood

of (0, 0) so shifts in the state yield long-lasting benefits. But price cuts have only a small

effect on the evolution of the system (dq̇dp and dḃ
dp are both zero at (q, b) = (0, 0)), so there is

not much incentive to sacrifice short-run profits for this reason.

Because the commercial firm mostly distorts prices when prices are near the steady state

for these parameter values, the dynamics are qualitatively similar regardless of whether the

monopolist practices static- or dynamic-optimal pricing. The steady state size of the open

source project, however, is somewhat lower with dynamic pricing.

5 Models with Customer Support

Our baseline model neglected a feature of OSS that has received a lot of attention in the

descriptive literature about OSS: only a small fraction of the OSS community actually

contributes to the code base.16 More people help out by providing support service to new

users, answering questions posted to bulletin boards. Providing this support is probably

quite important for many products. Shah (2004, 2006) notes that users providing this casual

support appear to have a shorter period of active involvement with the project. That is,
15Values Bit are assumed to be drawn from a uniform distribution on [0, 10]. Costs and benefits of adding

features are a = 2, K = 1, and E = 2. Probability of becoming altruistic is α = 0.7. Depreciation rates are
β = δ = 0.5. Other parameters are r = 0.05, v = 3, and λ = 1.

16Again, Shah (2004, 2006) does a very nice job of providing descriptions and analysis.
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Figure 3: The vector field (q̇, ḃ) of the system under static-optimal pricing.
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many consumers adopt the software, receive help from others, and then proceed to provide

help to others for a period of time. In contrast, experienced programmers rarely spend time

answering basic questions for “newbies.”

This type of phenomenon can have important implications for the dynamics of OSS,

since it suggests that a regular flow of new users is important for maintaining customer ser-

vice. The behavior of users can be understood through the lens of altruism that depreciates

over time, and perhaps also due to the decline in intellectual satisfaction from answering

similar questions over a long period of time. Thus, we consider a model like that of the

previous section but with two populations: a unit mass of software programmers and a

mass m of “users” who potentially contribute by providing service rather than new code.

Suppose that when a “user” encounters a need he or she cannot meet the need by open

source unless the code has that feature and he or she gets help from another user. To

keep the specification similar to the above model (but slightly simpler) we assume that

users’ needs that would be met with open source (if this is possible) arise according to

a Poisson process with parameter γu, that users who meet their needs using open source

become altruistic with probability αu, and that their altruism decays according to a Poisson

process with parameter δu. Assume that the probability of being able to use the code is

qtf(mct), where m is the mass of users, ct is the fraction of users who are altruistic at t

and f is some concave function with f(0) = 0.17

The results of this section turn out to highlight that the impact of the need for customer

services hinges on how one specifies altruism. We consider two separate formulations of

programmer altruism each of which can be motivated by some findings in the literature on

altruism.
17One might alternately want to specify this f(ct) to model situations where users provide one-on-one

assistance to other users. The f(mct) formulation in motivated by activities like compiling lists of answers
to FAQ’s in which a larger user base leads to a larger set of people who can produce support materials
without putting extra demands on those providing the support.
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5.1 Code-base altruism

One formulation of altruism that has received attention in the public goods literature is

that of “impure” or “warm-glow” altruism (Andreoni 1989). Warm glow altruism is an

inward-looking formulation in which atruists are assumed to derive benefits from the act

of giving (as opposed to from the benefits that others derive from their gifts).18 One way

to model programmer altruism along these lines is what we call “code-base” altruism. In

this formulation altruistic programmers (as before) derive utility simply from contributing

to the code base. This could also capture feelings of intellectual satisfaction or scientific

achievement from contributing to a high-quality product that Lakhani and Wolf (2005) find

to be important.

In this case, the q and b dynamics of the model are identical to those in the benchmark

model, since users do not have an impact on programmers’ objectives. It then remains only

to specify how the fraction of users who are altruistic evolves. Following the discussion

above we specify this as

ċt = αuγu(1− ct)qtf(mct)− δuct

From our analysis of the baseline model, we know that (qt, bt)→ (q∗, b∗) from any initial

condition other than (0, 0) provided that αγbγq − βδ > 0. When the latter condition holds,

the dynamics of c for large t are then approximately

ċt = αuγu(1− ct)q∗f(mct)− δuct

= αuγuq
∗f(mct)− δuct − αuγuq∗f(mct)ct.

Proposition 11 If αuγuq∗mf ′(0) < δu then in the limit use of the software goes to zero.

If αuγuq∗mf ′(0) > δu then use will not converge to zero if c0 > 0. In the special case

where f(x) = x/m, the fraction of users who are altruistic converges to c∗ = αuγuq∗−δu
αuγuq∗

.

This result shows that service issues can lead an OSS project to be something that is

tailored for programmers, but does not meet the needs of ordinary users. Industry observers
18See Andreoni (1993) for some related experimental evidence.
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have commented that OSS projects tend to be biased in this direction, and that commercial

products cater more to unsophisticated users. The result highlights the important role

played by the slope of the “service function” f at 0 : it is important that the first few

users are able to effectively support other users in order to prevent the collapse of service.

Clearly, if f ′(0) is large (e.g. if one user is able to answer all questions for incoming users),

collapse of the user base is not a concern. This suggests that when trying to get an OSS

project off the ground in terms of user adoption, it may make a big difference if a few

committed participants in an OSS project provide a lot of initial support.

Even when collapse of the user base is not a concern, when δu is large (so that user

altruism depreciates quickly), service issues can greatly limit the use of the product. Again,

this result is consistent with observations by industry observers that support is a critical

issue for OSS projects. However, by assumption, low support does not limit the development

of the project, just the rate of user adoption. We consider in the next section a perhaps

more realistic variant of the model, where programmer motivation depends on the size of

the user base.

5.2 User-motivated altruism

The more traditional formulation of altruism in the economics literature is the “pure” al-

truism model in which an altruistic agent’s utility is a function of his and others’ well being.

Arrow (1972) also notes a potential middle ground between this and the warm glow model:

“welfare is derived not merely from an increase in someone else’s satisfaction but from

the fact that the individual himself has contributed to that satisfaction.” Surveys of OSS

participants indicate that programmers want to have an impact with their contributions,

much as academics do. They appear to enjoy being part of important projects, including

projects that have a large user base.19 This suggests that a model should incorporate a

relationship between altruism and the extent to which code is helpful to casual users. In

this section we develop a model along these lines which we term “user-motivated altruism”
19Shah (2006) quotes one programmer on this: “Why work on something that no on will use? There’s no

satisfaction there.” Other supporting evidence includes that some programmers report that they monitor
discussions of features they have developed even though they rarely take part in them.
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and note that it leads to important qualitative changes in the dynamics.

The flow rate at which any feature will meet users’s needs is mγuf(mct). We assume

that programmers’ altruism benefits depend on the flow rate of use of the feature at the

time of development.20 Specifically, we assume that the altruism benefit from contributing

a feature at t is amγuf(mct).

A simple way to formulate a tractable model in which programmers will be more likely

to develop a feature if the feature will be used more is to assume that Bit is always greater

than B0 + E and that the publication cost K is a random variable distributed uniformly

on [0, a].21 This implies that the probability that an programmer decides to contribute a

feature to the code base is mγuf(mct).22

The evolution of qt and bt is no longer separable from the evolution of ct.

Proposition 12 The dynamics of the system are given by

q̇t = γq(1− qt)btmγuf(mct)− βqt

ḃt = αγb(1− bt)qt − δbt

ċt = αuγu(1− ct)qtf(mct)− δuct

As above, it is always a steady state to have no activity.

Proposition 13 The system always has (q, b, c) = (0, 0, 0) as a steady state.

The presence of a steady state at zero activity is not a difference from the previous

model, but the nature of the dynamics in the neighborhood of this steady state turns out

to be an important difference. To analyze the stability of the zero activity steady state we

linearize the dynamics in a neighborhood of (0, 0, 0). Assuming that f has a finite derivative
20One could alternately assume that altruistic benefits are some infinite horizon discounted measure

of total use, but this would make the model less tractable. We also assume as we have done implicitly
throughout that the fact that others might eventually have invented the feature in the future also does not
affect altruism benefits.

21The assumption on Bit implies that the active margin is between developing versus developing and
contributing. The expressions would be more complicated if lower “altruism” benefits led engineers to
switch to the outside good. The assumption also implies that γb = γq.

22This assumes that the expression for the altruism benefit is always less than one.
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at 0 the first order approximation to the dynamics is

q̇t ≈ −βqt

ḃt ≈ αγbqt − δbt

ċt ≈ −δuct

If we write this in matrix form as at (q̇, ḃ, ċ) = A(q, b, c), then the A matrix is negative

definite. This implies

Proposition 14 The steady state at (q, b, c) = (0, 0, 0) is locally asymptotically stable.

Note that the behavior of this model is qualitatively different from the model with

code-based altruism. In our model of user-motivated altruism, an open-source project will

need to be pushed to a sufficient level of development by some mechanism other than the

ordinary altruism-fed growth in order to have any chance of succeeding. This suggests an

important role for highly motivated and altruistic founding members of an OSS project,

and in particular, these members need to both develop software and provide user support.

Proposition 15 For some parameters, the steady state at (q, b, c) = (0, 0, 0) will be a global

attractor.

For other parameters the system will also have a steady state with q, b, and c positive.

To see that the zero-quality steady state can be unique, note that q̇ and ḃ in this model

are always less than they were in the baseline model. In that model, (qt, bt) always converged

to zero if αγbγq < βδ. Hence, with that parameter restriction q and b will also converge to

zero in this model. When this happens, c must also converge to zero.

To see that there can also be steady states in which the open source software is successful

note that for δc = 0 and c0 = 1 we have ct = 1 for all t. The system is then just like the

previous system with the substitutions γb′ = γb, γq′ ≡ γqmγuf(m) and α′ ≡ α. If we

assume the primitives of the model are such that α′γ′bγ′q > δβ, the system will have a

steady state with q∗ and b∗ positive.
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Note that the model of this section has more nuanced predictions about what makes

for a successful launch of an OSS project, i.e. how high (q, b, c) must be for the project

to to get off the ground. The example given above indicates that quality and programmer

altruism can be quite low if the customer base is high and altruism among customers does

not decay too much.

5.2.1 Competing with open source

The strategy for competing with an open-source product can be very different in our “user-

motivated altruism” model. If the model has multiple stable steady states, then there

is large permanent benefit from shifting the state into the basin of attraction of the zero-

quality state. Hence, one would expect a commercial firm to follow such a strategy whenever

the initial state is not too far from this basin.

How exactly this will be done can vary depending on the parameters of the model and

whether the commercial firm has additional instruments other than price. For example,

whenever f(0) = 0 the dynamics converge to the zero-quality from any state with ct = 0.

Hence, one strategy for eliminating the OSS competitor may be to take actions to attract

as many ordinary users as possible, for example providing high levels of support, which will

diminish the motivation of potential OSS developers. In general, an important consideration

will be how far the initial state is from the basin of attraction of the zero-quality equilibrium

in each dimension.

5.3 Supporting open source

Although we have focused our discussion on commercial firms competing with open source

products, many commercial firms also provide a great deal of support to open source

projects. The phenomenon is much broader than the well known examples of IBM’s sup-

port for open source and Red Hat’s building a business around Linux support: Lerner et al.

(2006) attribute 44% of the contributions to the largest open source projects to corporate

employees. One obvious reason for such support is that some firms profit from selling prod-

ucts and services that are complementary to OSS products and Mustonen (2005) notes that
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support can be optimal even when products are otherwise substitutes if there are shared

network-externality benefits.23 Firms selling complementary goods could in principle sup-

port OSS projects in multiple ways: they could contribute directly to programming; and

they could reduce the prices of the complements they sell to make OSS more attractive.24

How exactly firms would support open source would as above depend on which version

of the model we examine, the model parameters, and the initial conditions. The most

salient incentive is that which arises in our user-motivated altruism model when the initial

conditions are in a neighborhood of the (0, 0, 0) steady state. Here, a firm selling comple-

ments could potentially receive a substantial long-run benefit while incurring only a short

run cost by providing programmers (or lowering prices of complements) for a limited period

to push the project to the point where it becomes self-sustaining. When OSS projects are

established and near a positive steady-state firms selling complements will have incentives

similar to (but opposing) the competitors’ incentives noted earlier: there will be an incen-

tive to support the OSS project when it is near the steady-state quality level because the

slow dynamics make the effect of such support more long-lasting. The model also points

out that in some situations the form that support takes can be important. For example, in

the situation noted in our analysis of the code-based altruism case where the OSS project

is successful in terms of “quality” but does not attract a substantial user base because of a

collapse of customer support, a commercial firm could potentially have a substantial impact

by providing customer support.

6 Conclusion

In this paper, we have developed several simple models of the dynamics of OSS. We have

also explored the implications of these models for (i) successful initial launches of OSS

projects and (ii) competing with OSS projects.
23Other reasons can also be given including that allowing employees to work on open source projects can

improve their human capital and that it can be a perk which allows firms to attract employees at a lower
wage as in Stern (2004).

24Other possibilities exist as well. For example, Oracle purchased MySQL in 2010 and Google provides
most of Firefox’s revenues.
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In our base model OSS will always have a steady-state with zero activity even if it also

has a steady state with positive activity. Our model, however, is not like a standard network

externality model – the system converges to the higher steady state given any initial boost

no matter how small. We also found that, although the dynamics of OSS projects typically

vary with parameters and state variables in intuitive ways, it is possible that increasing the

quality of an OSS can have perverse effects. We can also observe nonmonotone dynamics

with quality or the population of committed programmers initially decreasing and then

later increasing toward the steady state.

Commercial firms competing with OSS projects can benefit from strategic foresight.

Generally, a far-sighted commercial firm should price lower than a short-sighted one. This

never eliminates OSS competition in our base model, but keeping price low does slow the

quality growth of the OSS. How far prices are distorted depends on the parameters of the

model and the current state of the OSS product. We noted that distortions may be largest

when the OSS project is near its steady-state quality, because the benefits of reducing OSS

quality are larger when the reductions are longer-lasting.

The fact that our base model does not have multiple stable equilibria may be a useful

insight into OSS movements, but we think of it more as pointing out that one must incor-

porate other elements into a model to explain why the way in which an OSS product is

launched could matter in the long run. Our analysis of user support is one such extension.

It illustrates that it may be difficult to get an OSS off the ground without a core group of

founders committed to providing customer support. If programmers are motivated by the

size of the user base, such considerations may make it impossible to get an OSS project

started, at least for some parameter values.

When user support is an important phenomenon, and when user altruism depreciates

over time, strategic pricing by a commercial firm can eliminate the user base of an OSS

project. If a primary motivation for programmers is the size of the user base who will use

additional features, strategic pricing can potentially push an OSS into a zero-quality steady

state. There is also greater scope for commercial firms to support OSS projects in such
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case as providing short-run support may change the long-run outcome in the market.

Many avenues remain to be explored. Our models are very stylized. We hope this may

be an advantage in two ways: one could develop microfoundations for some assumptions

to make them less sylized; or one could leave the model as it is and take advantage of the

tractability to add other considerations. Some of the most important future direction may

involve enriching our current specification of the costs and benefits of contributing to open

source. Career concerns benefits can be seen as crudely incorporated in our current model as

part of the net cost of contributing, but a richer model might incorporate interesting state-

dependent variation, e.g. benefits could be larger when projects are young and growing

because it is easier to advance in the project hierarchy and more future programmers will

see the contribution. On the other hand, commercial firms could be more supportive of

employees’ contributing to established projects because the benefits to the firm from selling

complementary goods and from having employees with expertise in the OSS software is

likely to be larger.

One aspect of OSS communities that strikes us as potentially interesting is the het-

erogeneity in the governance structures of OSS projects. It seems natural that different

structures could affect the rate at which programmers develop altruistic feelings. And we

have left out any model of the review process that programmers must go through to get

submissions of code accepted and the hierarchical structures around these reviews. Whether

one wants acceptance rates to be high or low, etc. could depend in interesting ways on the

form that altruism takes and could differ at different stages of the project lifecycle.

Finally, we have said little about the welfare effects of open source projects either in

isolation or in competition with commercial software. Given that some European govern-

ments have adopted pro-OSS policies it is policy relevant as well as intellectually interesting

to comment on whether supporting OSS projects (or even having them at all) will improve

social welfare. Johnson (2002) provides some intersting observations about welfare in a

public-goods model of open source, but there would be additional effects in a model like

ours. Results may also depend on how one counts altruistic benefits in the welfare function.
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