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We propose a new type of topological surface modes having cubic dispersion in three-dimensional topological
superconductors. Lower order dispersions are prohibited by the threefold rotational symmetry and time-reversal
symmetry. Cooper pairing in the bulk changes sign under improper rotations, akin to 3He-B. The surface
manifestations are a divergent surface density of states at the Fermi level and isospins that rotate three times as
they circle the origin in momentum space. We propose that Heusler alloys with band inversion are candidate
materials to harbor the novel topological superconductivity.
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I. INTRODUCTION

Topological superconductors (TSCs) are a novel class of
superconductors where Fermi surface topology and uncon-
ventional Cooper pairing in the bulk lead to gapless Majorana
surface excitations [1]—aptly named [2] as the particle-hole
symmetry (PHS) renders their on-site creation and annihilation
operators equal. The possibility of finding these new fermions,
long sought in high energy physics, in condensed matter
systems has excited a wave of interesting studies [3–16].

In three dimensions (3D), TSCs are predicted in doped
semiconductors having conduction/valence bands inverted by
spin-orbit coupling containing Cooper pairing that is odd
under inversion and invariant under time-reversal symmetry
(TRS) [7,8,17]. The surface Bogoliubov quasiparticle exci-
tations of these TSCs form linear, spin-split Dirac cones as
opposed to the spin-degenerate cones in graphene [3,5,18].
More recently, both theoretical and experimental studies
show that crystalline symmetries protect new classes of
topological phases. References [19–22] show that mirror
reflection symmetry protects gapless excitations in several
IV-VI semiconductors and superconductors possessing mirror-
odd Cooper pairing. It then follows that a gap may only be
opened in the system by spontaneously breaking TRS or by
forming a surface topologically ordered state [23,24].

In this paper, we show that the threefold rotation symmetry
and TRS can protect an exotic type of surface states in
TSCs whose dispersion consists of two cubic-dispersing
bands touching each other at �̄ in the surface Brillouin zone
(BZ). Lower order dispersions, i.e., linear and quadratic, are
excluded by the symmetry group generated by {C3,T }, if and
only if the doublet at �̄ of the surface BZ has angular momenta
±3/2� along the normal direction. The surface density of states
(DOS) at the Fermi level diverges due to the cubic dispersion,
and by deriving a generic kp model, we see that the spin
polarization makes three full rotations as a wave packet traces
an isoenergy contour. We then determine the requirement on
the bulk superconductivity for these surface modes to appear.

We show that the Fermi level in the bulk must cross bands
formed by the jz = ±3/2 states (� ≡ 1 hereafter), branching
from a �8 representation (denoting the four p states with total
angular momentum j = 3/2 in a spin-orbit split system) on
a cubic lattice. This requirement is met in a series of Heusler
alloys that are zero gap semiconductors [25–28]. Furthermore,
the Cooper pairs are required to transform nontrivially under
the cubic symmetry group: they change sign under improper
rotations but not under proper ones. We perform a concrete
model study of a spin-3/2 Fermi liquid with full O(3)
symmetry and TRS, showing its leading instability towards
this nontrivial singlet Cooper pairing, induced by screened
Coulomb repulsion. The resultant superconductivity is a close
analog of the superfluity in the B phase of 3He [29,30], but in
a Fermi liquid whose constituent particle is spin-3/2. Finally,
we discuss experimental signatures that characterize the new
TSC.

II. TRI-DIRAC SURFACE STATES

We start by considering a two-band kp theory for the surface
states of a TSC, in the Bogoliubov–de Gennes (BdG) form,
around �̄ where a doublet of Majorana modes are assumed
to exist. The symmetries are the TRS (T ), PHS (P ), and the
threefold rotation (C3). They commute with each other, as
they each act on different degrees of freedom: time, charge,
and space, respectively. The spin-orbit coupling has broken
the SU(2) symmetry of spin rotation so C3 simultaneously
rotates the position and the spin of a particle. For odd-half-
integer spins, C3

3 = −1 due to the Berry phase brought by
the spin. These constraints result in the following irreducible
representations of the group generators (up to an arbitrary
unitary transformation):

E1/2 : T = K(iσy), P = Kσx, C3 = eiσzπ/3,
(1)

E3/2 : T = K(iσy), P = Kσx, C3 = −I2×2.
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FIG. 1. (Color online) (a) The energy dispersion of the Bogoli-
ubov excitations around a tri-Dirac point. (b) The isoenergy contours
and the pseudospin structure of h3/2(k) along the contour taking
c2 = 2c3 = 1.

In Eq. (1), the C3-rotation operator is exp(iĵz
2π
3 ) with ĵz =

σz/2 (ĵz = 3σz/2) for the E1/2 (E3/2). The kp Hamiltonian,
h(k), must satisfy the following symmetry constraints:

T h(k)T −1 = h(−k),

Ph(k)P −1 = −h(−k), (2)

C3h(k+,k−)C−1
3 = h(k+ei2π/3,k−e−i2π/3),

where k± = kx ± iky . Using Eqs. (1) and (2), we obtain

h1/2(k) = Re[c1k+]σx + Im[c1k+]σy,
(3)

h3/2(k) = Re[c2k
3
+ + c3k

3
−]σx + Im[c2k

3
+ + c3k

3
−]σy,

where c1,2 are complex numbers that are material dependent.
Hence, we find that while the dispersion of h1/2 is linear
around k = 0, the dispersion of h3/2 is cubic [see Fig. 1(a)],
E3/2(k) = |c2k

3
+ + c3k

3
−| without lower order terms. This can

be understood by examining the continuum limit of C∞
symmetry: a hopping from a state of jz = ±3/2 to jz = ∓3/2
changes the total angular momentum by ∓3, so, in order to
preserve rotation symmetry, this hopping should be “balanced”
by an orbital contribution of k3

±.
The wave function of h3/2(k) in Eq. (3) is described

by the pseudospin structure at each k. The pseudospin
up (down) states correspond to the first (second) basis
vector in the kp model, i.e., the two degenerate states at
k = 0. The pseudospin at any k is then given by a unit
vector in the xy plane, as is guaranteed by PHS, whose
two components are (Sx,Sy) = (Re[c2k

3
+ + c3k

3
−]/|c2k

3
+ +

c3k
3
−|,Im[c2k

3
+ + c3k

3
−]/|c2k

3
+ + c3k

3
−|). As the momentum

makes a full clockwise (counterclockwise) rotation enclosing
the origin, the pseudospin completes three full commensurate
rotations if |c2| > |c3| (counterclockwise if |c2| < |c3|) [see
Fig. 1(b)]. We denote the degeneracy point at h3/2(k) in Eq. (3)
at k = 0 as the tri-Dirac point (TDP), as the evolution of the
wave function around is topologically equivalent to that around
three Dirac points, resulting in a total winding number of ±3.
While a generic band crossing with linear dispersion (Dirac
point) has vanishing DOS, the DOS at a TDP is divergent,
given by ρ(E) = 1

2

∫
δ[E3/2(k) − E]dk2 ∝ E−1/3, where the

prefactor 1/2 results from each excitation close to the Fermi

level being roughly an equal weight linear superposition of
electron and hole states.

One may naturally infer from the divergence of DOS
at the band touching that the residual interaction between
Bogoliubov excitations may be relevant and open a gap in the
spectrum. As the surface states are of Majorana character, they
contain two species of Bogoliubov excitations, namely, γ1,2(k),
satisfying γi(k) = γ

†
i (−k) in k space, or γi(r) = γ

†
i (r) as a real

field in real space. The interaction hence must contain at least
two spatial derivatives, such as −gγ1(r)γ2(r)∇γ1(r) · ∇γ2(r).
Simple dimension counting shows that coupling constant g is
irrelevant, meaning that it flows to zero under renormalization
towards the long wavelength limit. Thus, the surface states of
a tri-Dirac cone are robust against weak residual interactions
between quasiparticles.

III. TOPOLOGICAL SUPERCONDUCTIVITY
IN THE BULK

With the nature of the surface states understood, we now
seek the form of the bulk superconductivity that gives rise
to these surface states. As the TDP derives its protection
from both C3 symmetry and TRS, it may only appear on
terminations that preserve both these symmetries, namely, the
�̄ point, in the surface BZ. Other C3-invariant points K̄ and
K̄ ′ which are invariant under C2 ∗ T do not have degeneracy
because (C2 ∗ T )2 = +1. Further, we need a pair of Majorana
modes at �̄, which depend on band structure along the line,
parametrized by kz, in the 3D BZ that projects onto �̄. In the
weak-coupling limit, the topology of this line depends on the
signs of pairing amplitude at the Fermi points where the line
crosses the Fermi surface: it is nontrivial/trivial if there are an
odd/even number of Fermi points that have negative pairing
signs in the region kz > 0. Finally, the Majorana modes need
to have angular momenta ±3/2. In the weak-coupling limit,
the surface Bogoliubov excitations are linear combinations
of particle and hole states on the Fermi surface in the bulk,
so we need the Fermi level to cross bulk bands that have
angular momenta ±3/2. In many Heusler alloys, the (111)
terminations are C3 symmetric; the Fermi level is at the �8

representation, branching into two sets of doublet bands having
angular momenta ±3/2 (the conduction band) and ±1/2 (the
valence band) along �L from �, respectively [27]. In thin-film
samples, chemical doping may be utilized [31] to tune the
chemical potential into the jz = ±3/2 bands in this system.
The next question is, what interaction induces a Cooper pairing
that changes sign between the two bands having |jz| = 3/2? As
the Fermi level is close to the �8 representation, it is reasonable
to consider a continuum model with TRS and a full O(3)
symmetry group, of which the point groups of half Heusler (Td )
and full Heusler alloys (Oh) are subgroups. The surface states
obtained in this symmetry-enhanced model would certainly
change as O(3) breaks down to Td or Oh, but the TDP on the
surface would not be broken because only C3 and TRS are
needed for its protection. The normal-state Hamiltonian for a
Fermi gas having O(3) and TRS around �8 representation is
given by the following four-band kp model

H0(k) = (
λ1 + 5

2λ2
)
k2 − 2λ2(k · S)2 − μ, (4)
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where λ1,2 are Luttinger parameters [e.g., (λ1,λ2) ∼ (−2.5, −
3.8)2me/�

2 in ScPtBi [27]] and S = (Sx,Sy,Sz) are the spin
operators of a spin-3/2 fermion, physically realized by spin-
orbit splitting of the p orbitals. The isotropic dispersion
of H0(k) is given by ε1/2,3/2(k) = (λ1 ± 2λ2)k2 − μ, where
both bands are doubly degenerate. The general form of
short-range density interaction is V̂ = ∑

q V (|q|)n(q)n(−q),
where n(q) is the Fourier transform of local density operator
and V (|q|) = V0 − V2q

2 + O(q4) is the Fourier transform of
the interaction in the long wavelength limit (kF 
 1). For a
screened Coulomb repulsion V (r) = e2

r
e−r/r0 , V0 = e2r2

0 , and
V2 = e2r4

0 , where r0 is the screening length. Decomposing
the interaction into various channels of instability, we have
(modulo nonsuperconducting channels)

V̂ = V0

∣∣∣∣∣
∑

k,m,m′

(
1 − V2

V0
k2

)
bmm′ (k)

∣∣∣∣∣
2

− 2V2

∑
k1,k2,m,m′

k1 · k2b
†
mm′ (k1)bmm′(k2), (5)

where bmm′ (k) = cm(k)cm′ (−k) is the electron pair operator
and the spin index m runs in (−3/2, − 1/2,1/2,3/2). All
pairing channels decompose into squares of irreducible repre-
sentations of SO(3), a process which we briefly sketch before
providing detailed derivation. Generally, a Cooper pair of zero
momentum is determined by the total spin of the constituent
electrons, S, and the angular momentum describing the relative
motion between them, L. In the presence of spin-orbit coupling
(SOC), the conserved quantities are S2, L2, J 2, and Jz, where
J is the total angular momentum of the pair, or, J = L + S.
The order parameters are denoted by three quantum numbers
(L,S,J ), and the ground state is (2J + 1)-fold degenerate.

Formally, a general pairing operator of zero total momen-
tum is represented by


̂mm′ =
∑

k

f (k)cm(k)cm′(−k). (6)

In a system with symmetry, it is necessary to decompose 
̂mm′

into irreducible representations of the symmetry group. For
SO(3), the procedure goes as follows: (i) The orbital part,
f (k), can be expanded in terms of irreducible representations
in the function space:

f (k) =
∑
L,M

fLM (k2)YM
L (k̂), (7)

where YM
L (k̂)’s are spherical harmonics and fLM (k2) is

a complex function depending only on the radius of k.
(ii) The spin part bmm′ (k) = cm(k)cm′ (−k) decomposes into
irreducible representations in the spin space:

bmm′ (k) =
∑
S,Sz

〈s,s; S,Sz|s,s; m,m′〉δ̂Sz

ssS(k), (8)

where δ̂
Sz

ssS is a pair operator annihilating a pair of electrons
of total spin S and total spin along z axis Sz, at ±k. δ̂

Sz

ssS(k)
is even/odd in k if and only if S = even/odd, due to Fermi
statistics. (In our case, there is s = 3/2, m,m′ = −3/2, −
1/2,1/2,3/2, S = 0,1,2,3, and Sz = −S, − S + 1, . . . ,S.)
(iii) Then we decompose the product of two irreducible

representations in the orbital part and the spin part into
irreducible representations of fixed total angular momentum
and total angular momentum along the z axis:∑

k̂

YM
L (k̂)δ̂Sz

ssS(k)

=
∑

J=|L−S|,...,L+S,Jz=−J,...,+J

〈L,S; J,Jz|L,S; M,Sz〉

× δ(Jz − M − Sz) ˆ̃
Jz

LSJ (k2), (9)

where

ˆ̃
Jz

LSJ (k2) ≡
∑
M ′,S ′

z

∑
k̂

〈L,S; M ′,S ′
z|L,S; J,Jz〉YM ′

L (k̂)δ̂
S ′

z

ssS(k)

(10)

is the Cooper pair operator with total angular momentum J

and total angular momentum along z axis Jz. The δ function in
Eq. (9) is written down explicitly only to show the conservation
of total angular momentum—it is already in the definition
of the Clebsch-Gordan coefficients. Using Eqs. (8)–(10), we
obtain∑

k̂

YM
L (k̂)bmm′ (k) =

∑
S,J,Jz,Sz

〈L,S; J,Jz|L,S; M,Sz〉

× 〈s,s; S,Sz|s,s; m,m′〉 ˆ̃
Jz

LSJ (k2).

(11)

Since YM
L (k) is odd/even in k when L = odd/even, and δ̂

Sz

ssS(k)
is odd/even in k when S = odd/even, L and S must have the
same parity, or ˆ̃
LSJ vanishes.

In this system where electrons are spin-3/2, the total spin
is S = 0,1,2,3 and the orbital angular momentum L = 0,1
as a pairing order parameter for L � 2 is at least quadratic
in k from decoupling a quartic term in the expansion of
V (q). As a result, the possible pairings are (L,S,J ) = (0,0,0),
(1,1,0), (1,1,1), (0,2,2), (1,1,2), (1,3,2), (1,3,3), and (1,3,4).
(L,S,J ) = (0,0,0) corresponds to the normal s-wave pairing
and is invariant under all symmetry operations; (L,S,J ) =
(1,1,0) pairing is analogous to the pairing in the B phase of
3He, invariant under all proper rotations but changes sign under
improper ones (parity odd) [8,32]. While we cannot determine
the complete phase diagram with all types of instabilities, we
note that all pairings with J > 0 are nodal (assuming that
the FS encloses �) and are generally less energetically
favorable than full gaps, if they are induced from the same
channel of instability. We note that it is purely due to SOC that
a pairing with nonzero orbital angular momentum (L 
= 0)
is consistent with a full gap. In a non-SOC system, any
two-electron bound state with L 
= 0 must be degenerate,
while SOC allows two electrons to form a unique bound state
with L = 1, by aligning the total spin and the orbital angular
momentum oppositely. Thus, we restrict the discussion to the
two singlet pairings:

V̂ ≈ |
̂000|2
V0

− 2|
̂110|2
3V2

, (12)
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in which


̂000

V0
≡

∑
k,m,m′

(
1 − V0

V2
k2

)

×〈3/2,3/2; m,m′|3/2,3/2; 0,0〉bmm′ (k),


̂110

V2
≡

∑
k,M,Sz,m,m′

k(M)〈1,1; M,Sz|1,1; 0,0〉

× 〈3/2,3/2; m,m′|3/2,3/2; 1,Sz〉bmm′ (k), (13)

where k(±1) ≡ ∓√
3/2k±, k(0) ≡ √

3kz, and 〈j1,j2;
m1,m2|j1,j2; J,M〉’s are the Clebsch-Gordan coefficients,
expanding the eigenstate of total angular momentum |J,M〉
in the product basis of |j1,m1〉 ⊗ |j2,m2〉. The derivation of
Eq. (12) is given in Appendix A. The relative sign between
the two terms in Eq. (12) is because the attraction (repulsion)
favors the parity even (odd) pairs where the wave functions
of the two electrons have greater (smaller) overlap in real
space. The interaction leads to spontaneous superconducting
ordering of 
̂000 and 
̂110 if V0 < 0 (e.g., BCS attraction)
and V2 > 0 (e.g., screened Coulomb repulsion), respectively.

A standard mean-field calculation (see Appendix B) shows
that when V0 < 0, Te > To, where Te/o are transition temper-
atures for even/odd parity superconductivity, meaning that as
long as V0 is attractive, the conventional s-wave pairing is
energetically favored. The odd parity pairing is energetically
favored if V0,V2 > 0; in other words, the interaction is
repulsive. Here the 
000 channel becomes attractive for k >

V0/V2, as we did not keep higher order terms in the expansion
of V (|q|). Generally, a repulsive screened Coulomb potential
disfavors pairs of zero angular momentum. Additionally, we
remark that while our truncation of V (|q|) cannot be rigorously
justified, this is a simple way to obtain an attractive channel
with L > 0, and a more serious treatment requires re-deriving
the Kohn-Luttinger theorem for a Fermi surface with strong
SOC near �8.

IV. THREE TOPOLOGICAL SUPERCONDUCTING
PHASES

When the (L,S,J ) = (1,1,0) phase is favored, there are
three possible scenarios (see Fig. 2), in which the Fermi level
crosses: (i) the E1/2 bands, (ii) the E3/2 bands, and (iii) all
four �8 bands. In case (i), there is a Dirac point at the �̄ with
linear dispersion at its vicinity; in case (ii), the Dirac point
is replaced by a TDP, having cubic dispersion and divergent
DOS; in case (iii), there are two doublets at �, having angular
momentum jz = ±1/2 and jz = ±3/2, respectively. This is
the first example where two surface Dirac cones are pinned to
the same point in a superconductor, thus deserving additional
discussion. The two doublets are forbidden to hybridize and
open a gap at �̄ due to the rotation symmetry. We choose the
basis such that

jz =

⎛
⎜⎜⎝

1
2 0 0 0
0 − 1

2 0 0
0 0 3

2 0
0 0 0 − 3

2

⎞
⎟⎟⎠ , (14)

T = Kσy ⊕ σy. (15)

E /2

E /2

E /2

E /2

E3/2 E1/2

Ef

Γ L Γ L Γ L

Γ̄ Γ̄ Γ̄

Ef

FIG. 2. Three possible scenarios for the Fermi level crossing the
bulk �8 bands and the schematic dispersions of the surface states
[from left to right: case (ii), (i), and (iii)]. Solid and dotted lines
mean that the corresponding band has positive and negative pairing
amplitude, respectively, in the nontrivial superconducting phase. See
Ref. [41] for a discussion of the case of degenerate bands in the
presence of inversion.

Note that this choice is valid since σy ⊕ σy is antisymmetric
so T 2 = −1 as required for fermions. Symmetry requires
that

eijzθHeff(k+,k−)e−ijzθ = Heff(k+eiθ ,k−e−iθ ),
(16)

T Heff(k)T −1 = Heff(−k).

To the first order in k, the Hamiltonian is in the following
general form:

Heff(k) =

⎛
⎜⎜⎝

0 c1k− c2k+ 0
c∗

1k+ 0 0 −c∗
2k−

c∗
2k− 0 0 0
0 −c2k+ 0 0

⎞
⎟⎟⎠ , (17)

whose dispersion can be solved as

E = ±
√

|c1|2 + 2|c2|2 ± |c1|
√

|c1|2 + 4|c2|2k/
√

2. (18)

All four bands are linear in k. As we claim above, on the surface
there are two Dirac cones pinned to the same time-reversal
invariant momentum.

It is interesting to consider the Z index of the class DIII
superconductors for these cases and one obtains ±1, ±3, and
±2. In the first two cases the Chern numbers of the Fermi
surface (FS) associated with the E1/2,3/2 bands are ±1 and
±3. Therefore if the sign of pairing changes between its
two pieces, we have z = ±1, ± 3, respectively [9]. For case
(iii), there are a pair of sign-changing E1/2-FS and another
of sign-changing E3/2-FS, thus we can have either ±2 or
±4. An expansion of 
̂110 in Eq. (13) shows a relative
minus sign between the pairing on E1/2 and E3/2 bands,
leaving ±2 the only possibility. Therefore, only in case (ii)
does the phase exhibit protected tri-Dirac surface states with
cubic dispersion. To realize this scenario, the conduction
and the valence bands, which touch at � due to the point
group symmetry, must bend oppositely, making the normal
state a doped zero gap semiconductor. Heusler alloys offer
a wide spectrum of zero gap semiconductors, where SOC
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dI/dV

0 VΔ−Δ

(a) (b)

FIG. 3. (Color online) (a) Schematic plot of the differential con-
ductance on the surface of TSCs with Dirac (blue) and tri-Dirac
surface states inside the bulk superconducting gap. (b) Typical
symmetry-forbidden scattering vectors on the isoenergy contour of
the tri-Dirac surface states. Black arrows indicate scattering vectors
forbidden by TRS, and red arrows are vectors strongly suppressed
due to the special pseudospin structure of tri-Dirac surface states,
also plotted on the contour.

is stronger than hybridization [27,33,34]. When hole doped,
these materials have Fermi level in the E3/2 bands. As we
adopt the most general form of short-range electron interaction
in the long wavelength limit (small |q|), our results suggest
that superconducting Heusler alloys such as YPtBi [28] and
LaPtBi [25] be candidate materials.

V. EXPERIMENTAL PREDICTIONS

Experimentally, the new TSCs can be identified by measur-
ing its surface DOS using canning tunneling microscopy [35].
The dI/dV curve diverges as dI/dV ∝ V −1/3 in the vicinity,
as opposed to dI/dV ∝ V in TSCs with simple Dirac surface
states [see Fig. 3(a)]. Quasiparticle interference on the surface
can be used to verify the pseudospin structure [36,37]. The

isoenergy contour is generically a hexagram even at low
energy, similar to the contour in the surface states of the Bi2Te3

topological insulator away from the linear Dirac regime. In
the latter, the strongest peaks in quasiparticle interference
result from scattering vectors indicated by the red arrows in
Fig. 3(b) [38–40]. These peaks indicate strong interference
between states having opposite velocity and not related by
TRS. On a hexagram contour, the two momenta of the
interfering states make an angle of ∼60◦. However, for the
tri-Dirac surface states, these scattering channels are strongly
suppressed, because the pseudospins are exactly opposite to
each other between states related by a 60◦ rotation, a signature
of the new topological surface states.
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APPENDIX A: DECOMPOSITION OF THE INTERACTION

With the technique developed in the text, we can now
decompose the pairing channels in the interaction into pairings
that are irreducible representations of SO(3). Here we only
consider an isotropic interaction expanded to the second order
in the momentum space as shown in Eq. (12).

1. The first term in Eq. (5)

Following the procedure, we rewrite
∑

k̂ bmm′ (k) as∑
k̂

∑
S,Sz

Y 0
0 (k̂)〈3/2,3/2; S,Sz|3/2,3/2; m,m′〉δ̂Sz

3
2

3
2 S

(k)

=
∑

k̂

Y 0
0 (k̂)

⎡
⎣〈3/2,3/2; 0,0|3/2,3/2; m,m′〉δ̂0

3
2

3
2 0

(k) +
∑

Sz=−2,...,+2

〈3/2,3/2; 2,Sz|3/2,3/2; m,m′〉δ̂Sz

3
2

3
2 2

(k)

⎤
⎦

= 〈3/2,3/2; 0,0|3/2,3/2; m,m′〉 ˆ̃

0

000(k2) +
∑

Jz=−2,...,+2

〈3/2,3/2; 2,Sz|3/2,3/2; m,m′〉 ˆ̃

Jz

022(k2), (A1)

where only J = even terms are included as J = odd terms vanish by Fermi statistics.
The first term in Eq. (5) can thus be put in the form

∑
m,m′

∣∣∣∣∣
∑

k

(
1 − V2

V0
k2

)
bmm′ (k)

∣∣∣∣∣
2

= V0

∑
S=0,2;Jz=−S,...,S

∣∣∣∣∣
∑

k

(
1 − V2

V0
k2

)
ˆ̃
Jz

0SS(k2)

∣∣∣∣∣
2

. (A2)

Then after defining


̂000 =
∑

k

(
1 − V2

V0
k2

)
ˆ̃
0

000(k2)/V0, 
̂
Jz

022 =
∑

k

(
1 − V2

V0
k2

)
ˆ̃
Jz

022(k2)/V0, (A3)
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we have decomposed the first term in Eq. (5) into irreducible representations of SO(3):

∑
mm′

∣∣∣∣∣
∑

k

bmm′ (k)

∣∣∣∣∣
2

=
⎛
⎝|
̂000|2 +

∑
Jz=−2,...,2

∣∣
̂Jz

022

∣∣2

⎞
⎠ /

V0. (A4)

2. The second term in Eq. (5)

The second term in Eq. (5) can be rewritten as

− 2V2

∑
k1,k2,m,m′

k1 · k2bmm′ (k1)b†mm′ (k2) = −2V2

3

∑
M,m,m′

∣∣∣∣∣
∑

k

kYM
1 (k̂)bmm′ (k)

∣∣∣∣∣
2

. (A5)

From Eq. (11), we have∑
k̂

YM
1 (k)bmm′(k) =

∑
S,Sz,J,Jz,M

〈1,S; J,Jz|1,S; M,Sz〉〈3/2,3/2; S,Sz|3/2,3/2; m,m′〉 ˆ̃
Jz

1SJ (k2). (A6)

Using the normalization conditions∑
m,m′

〈3/2,3/2; S,Sz|3/2,3/2; m,m′〉〈3/2,3/2; m,m′|3/2,3/2; S ′,S ′
z〉 = δSS ′δSzS ′

z
,

(A7)∑
M,Sz

〈1,S; J,Jz|1,S; M,Sz〉〈1,S; M,Sz|1,S; J ′,J ′
z〉 = δJJ ′δJzJ ′

z
,

we obtain

∑
M,m,m′

∣∣∣∣∣
∑

k

k1k2Y
M
1 (k̂)bmm′ (k)

∣∣∣∣∣
2

=
∑

S,J,Jz

∑
k1,k2

k1k2
ˆ̃
Jz

1SJ (k1) ˆ̃
Jz†
1SJ (k2) =

∑
S,J,Jz

∣∣∣∣∣
∑

k

k ˆ̃
Jz

1SJ (k)

∣∣∣∣∣
2

. (A8)

Defining



Jz

1SJ =
∑

k

k ˆ̃
Jz

1SJ (k)/V2, (A9)

we have

− 2V2

∑
k1,k2,m,m′

k1 · k2bmm′(k1)b†mm′ (k2) =− 2

3V2

∑
S=1,3,J=|S−1|,...,|S+1|,Jz

∣∣
Jz

1SJ

∣∣2
. (A10)

APPENDIX B: PHASE DIAGRAM OF THE SUPERCONDUCTING PHASES

We use mean-field approximation to obtain the BdG Hamiltonian, and use that to calculate the free energy and hence the
phase diagram. The interaction in Eq. (12) is mean-field decoupled as

|
̂000|2
V0

− 2|
̂110|2
3V2

= 
̂
†
000〈
̂000〉 + H.c.

V0
− 2(
̂†

110〈
̂110〉 + H.c.)

3V2
+ 2|〈
̂000〉|2

3V2
− |〈
̂110〉|2

V0

+ |
̂000 − 〈
̂000〉|2
V0

− 2|
̂110 − 〈
̂110〉|2
3V2

. (B1)

The mean-field decoupled BdG Hamiltonian is obtained by ignoring the last term of fluctuation:

ĤBdG =
∑
k∈BZ

c†(k)H0(k)c(k) − 2
o
̂
†
110

3V2
+ 
e
̂

†
000

V0
+ H.c. + 2|
o|2

3V2
+ |
e|2

−V0
,

where we have defined 
e ≡ 〈
̂000〉 and 
o ≡ 〈
̂110〉. The dispersion of the BdG Hamiltonian is very easy to solve by utilizing
SO(3) symmetry. Due to the symmetry, the dispersion must be isotropic, and we hence only need to solve it at k = (0,0,k).
Writing ĤBdG in Nambu basis

ψ(k) ≡ [c3/2(k),c1/2(k),c−1/2(k),c−3/2(k),c†3/2(−k),c†1/2(−k),c†−1/2(−k),c†−3/2(−k)]T , (B2)
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we have

Ho
BdG[k = (0,0,k)] = ψ†(k)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε3/2(k) 0 0 0 0 0 0 −
ok√
5

0 ε1/2(k) 0 0 0 0 
ok√
45

0

0 0 ε1/2(k) 0 0 
ok√
45

0 0

0 0 0 ε3/2(k) −
ok√
5

0 0 0

0 0 0 −
ok√
5

−ε3/2(k) 0 0 0

0 0 
ok√
45

0 0 −ε1/2(k) 0 0

0 
ok√
45

0 0 0 0 −ε1/2(k) 0

−
ok√
5

0 0 0 0 0 0 −ε3/2(k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ψ(k),

He
BdG[k = (0,0,k)]

=ψ†(k)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε3/2(k) 0 0 0 0 0 0

e

(
1− V2k2

V0

)
2

0 ε1/2(k) 0 0 0 0 −
e

(
1− V2k2

V0

)
2 0

0 0 ε1/2(k) 0 0

e

(
1− V2k2

V0

)
2 0 0

0 0 0 ε3/2(k) −
e

(
1− V2k2

V0

)
2 0 0 0

0 0 0 −
e

(
1− V2k2

V0

)
2 −ε3/2(k) 0 0 0

0 0

e

(
1− V2k2

V0

)
2 0 0 −ε1/2(k) 0 0

0 −
e

(
1− V2k2

V0

)
2 0 0 0 0 −ε1/2(k) 0


e

(
1− V2k2

V0

)
2 0 0 0 0 0 0 −ε3/2(k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ψ(k).

(B3)

The mean-field transition temperatures are determined by the following gap equations:

1

−V0
=

∑
n=1/2,3/2

∫ 


0

k2dk

2π2
tanh

|εn(k)|
2Te

∂2Ee
n(k)

∂
e
2

∣∣∣∣

e=0

,
1

3V2/2
=

∑
n=1/2,3/2

∫ 


0

k2dk

2π2
tanh

|εn(k)|
2To

∂2Eo
n(k)

∂
o
2

∣∣∣∣

o=0

, (B4)

where

Ee
n(k) =

√
ε2
n(k) + 
2

e

(
1 − V2

V0
k2

)2/
4, Eo

1/2(k) =
√

ε2
1/2(k) + 
2

o

45
k2, Eo

3/2(k) =
√

ε2
1/2(k) + 
2

o

5
k2 (B5)

are the quasiparticle dispersions of ĤBdG.
We now provide a simple proof that as long as V0 < 0, the system always energetically favors the conventional even parity

pairing. The free energy of the two phases is given by

Fo(
o,T ) = − 2T

(2π )3

∑
n=1/2,3/2

∫
dk3 ln cosh

[
Eo

n(k)/2T
] + 2|
o|2

3V2
,

(B6)

Fe(
e,T ) = − 2T

(2π )3

∑
n=1/2,3/2

∫
dk3 ln cosh

[
Ee

n(k)/2T
] + |
e|2

−V0
.

Assume V0 < 0 and define 
1 = 
e/
√−V0 and 
2 = √

2
o/
√

3V2 to make the two terms 2
2
o/(3V2) and 
2

e/(−V0) have the
same functional dependence. Then we have

Ee
n(k,
1) =

√
ε2
n(k) + 
2

1|V0|
(

1 − V2

V0
k2

)/
4 =

√
ε2
n(k) + 
2

1

(
|V0| + V2k2

2
+ V 2

2 k4

4|V0|
)

,

(B7)

Ee
1/2(k,
2) =

√
ε2

1/2 + V2

2
2

30
k2, Ee

3/2(k,
2) =
√

ε2
3/2 + 3V2


2
2

10
k2.

Obviously we have

Ee
n(k,
) > Eo

n(k,
) (B8)
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for n = 1/2,3/2. This means that

Fo(
,T ) > Fe(
,T ) (B9)

for any 
 and T . Therefore the transition corresponding to 
e must happen at a higher temperature.
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