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Abstract

We describe how to use Rabin’s “split-value” repre-
sentations, originally developed for use in secure auc-
tions, to efficiently implement end-to-end verifiable
voting. We propose a simple and very elegant com-
bination of split-value representations with “random-
ized partial checking” (due to Jakobsson et al. [16]).

Keywords: voting, end-to-end verifiable voting,
split-value representations, randomized partial check-
ing, Star-Vote.

1 Introduction

“End-to-end verifiable voting systems” provide high
confidence that the errors and fraud can be detected,
and that the election outcome is correct.

For brevity, we presume that the reader is generally
familiar with such systems. See [1, 2, 9, 15, 22, 17] for
some surveys, characterizations, and highlights of the
development of end-to-end verifiable voting (E2EVV)
systems.

Recently, E2EVV systems have been used in actual
elections [9] and are proposed for use in new sys-
tems, such as the Star-Vote system in Travis county
(Austin), Texas [5].

A key benefit of such systems is that they provid
a convincing proof that the outcome is correct, while

nonetheless protecting the privacy of individual vot-
ers’ ballot.

Typically, each ballot is encrypted and posted on
a secure public append-only bulletin board. A bal-
lot may be represented (encrypted) in any of several
ways, such as by using the El Gamal public-key en-
cryption method [13].

A voter can then check that her ballot (more pre-
cisely, the ciphertext for her ballot) has been prop-
erly posted, without being able to convince anyone
else how she voted.

Then the election outcome and associated tally,
and proof of its correctness, are also posted for ev-
eryone to verify.

Making this work securely requires additional sub-
tle protocols, such as a protocol to prove to a voter
that the ciphertext for her ballot decrypts to her
plaintext vote.

We show how using Rabin’s “split-value” repre-
sentation method can greatly simplify things. Split-
value representations have been proposed for use in
secure auctions [23, 21]; the extension to voting in-
volves further innovations, however.

This focus of this paper is narrow: we only consider
the combination of split-value representations with
the randomized partial checking method for proving
proof of the correctness of the election outcome.

The split-value method has considerable flexibil-
ity, however, and in a companion paper (to appear),
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we consider end-to-end verifiable voting systems that
combine split-value representations with other meth-
ods of providing proof of correct outcome.

The method proposed here is easily explained and
understood; the key properties are those of the split-
value representation, and those of randomized-partial
checking. Both methods are highly intuitive.

The proposed method is also extremely efficient;
each ballot choice only participates in a single com-
mitment, whose total size (input and output com-
bined) is 60 bytes. Digital ballot representations eas-
ily fit in a 2D barcode.

A key insight as to why split-value representations
pair so well with randomized partial checking is that
split-value commitments can be tested for equality,
but only with at most one other split-value commit-
ment, and randomized partial checking never needs
to check equality of a value with more than one other
value. This makes split-value representations an ideal
partner for working with RPC.

Outline of this note. Section 2 gives some gen-
eral orientation and working assumptions. Sections 3
and 4 discuss representations of plaintext votes and
the operation of “adding” votes. Section 5 reviews
the construction and properties of “split-value” rep-
resentations of votes. Sections 6 and 7 propose ways
of committing to values and to split values. Then
Section 8 describes a probabilistic method for prov-
ing the equality of values represented by split-value
commitments (without revealing the values commit-
ted to).

Section 9 reviews the more-or-less standard com-
ponents of an end-to-end verifiable voting system,
including the vote-casting procedure (including the
printing of receipts for voters), the posting of infor-
mation collected from cast votes on the election web
site, the online checking by voters that their informa-
tion is properly posted on the election web site, and
the computation and posting of the election outcome.

Section 10 sets out the general framework by which
the tally and proof servers can produce the correct
election outcome and a proof of its correctness, with-
out revealing individual votes. Mixnet technology
is reviewed, and the “randomized partial checking”
method for verifying the correct operation of a mixnet

is described, as it is realized in our proposal.
Section 12 proves the soundness of our method;

Section 13 provides some pointers to related work,
and Section 15 final conclusions and final remarks.

2 General framework

This section provides some general orientation and
working assumptions. These assumptions set the
stage for our exemplary implementation but are not
necessary. Our proposal is intentionally structured
to be similar to that of Star-Vote.

For simplicity we assume the election has only one
race; our methods extend naturally to handle elec-
tions with multiple races.

We assume that we are working within the frame-
work of an end-to-end verifiable voting system that
includes:

• A voter registration system that determines who
is eligible to vote. We denote the voters as V1,
V2, . . . , Vn, where n is the number of voters.

• A voting tablet upon which a voter makes her
choice.

• Paper ballots that record the voters’ choice.

• A printer which can print out a ballot with a
voter’s choice. The printer may also print out a
receipt for the voter.

• A ballot box which receives the paper ballot. The
ballot box may include a scanner that scans the
ballot and produces a digital representation of
the ballot.

• A tally server (TS) that receives the digital rep-
resentation of each cast ballot. The tally server
produces the final election outcome.

• A proof server (PS) that produces a proof that
the election outcome is correct.

• An web server that maintains a secure public
“bulletin board” for the election that includes
a digital representation of each cast ballot, the
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final election outcome, and proof that the elec-
tion outcome is correct. The names of voters
who have voted may also be posted.

In addition, we assume that the voting system has
the following components or characteristics:

• We assume that each device or program in the
system has a good and independent source of
random numbers. If some devices have pre-
dictable sources of random numbers, then the
privacy guarantees of our proposal are weak-
ened, but the guarantees of correctness are not
affected.

• We assume that each device or program in the
system is capable of performing any necessary
cryptographic operations, and that any neces-
sary keys have been generated and distributed
to the devices needing them before the election.
(For example, the ballot boxes should have the
public key of their tally server, and should be
able to encrypt messages to the tally server us-
ing the public key of the tally server.)

• There is a unique ballot id (aka “bid”) that is
printed on the paper ballot, and that is used as
an index to look up a voter’s vote information on
the election web site. The ballot id is not tied to
the voter’s name; it is an anonymous pseudonym
for the voter. Ballot ids should be randomly as-
signed, but no two voters should have ballots
with the same ballot id.

• The voter’s printed receipt includes the ballot id
and a copy (or hash) of the information about a
voter’s vote that is posted on the web site. The
receipt acts as a commitment and as a backup
for the information posted on the web site for a
ballot id. We assume there is some way to assure
the receipt’s authenticity.

• The voting process includes a means (ballot cast-
ing assurance) by which the voter can assure
herself that the information to be posted next
to her ballot id correctly represents her choice.
Benaloh’s “cast or challenge” protocol [4] may
be used here.

• The system provides a dispute process whereby
a voter may protest that her receipt is not con-
sistent with the information posted on the web
site. For example, there may be no entry at all
on the web site for her ballot id, or the informa-
tion may be incorrect. The dispute process may
include a process for updating or correcting the
web site.

Our proposal does not use any “custom cryp-
tography;” commitments are implemented with a
NIST-standardized hash function, and encryption
and digital signatures are implemented with NIST-
standardized symmetric and public-key algorithms.

We note that our proposal considers only “poll-
site” voting; remote voting and voting over the inter-
net are not within the scope of this proposal.

3 Representation of Votes

Let V denote a set of values that contains a represen-
tation of each possible choice a voter may make. We
might have

V = {yes,no,Abstain},

V = (The set of all possible candidate names)

V = {0, 1, 2, . . . , 99},

The set V may also contain elements that do not
represent valid choices. For example, one may rep-
resent choices with two decimal digits in an election
with only 79 candidates.

With a suitable V, one may even represent write-in
candidate names or ranked-choice votes.

However, one should ensure that any value in V
requires the same number of bytes to represent, so
that information isn’t leaked by the representation
lengths. We assume that d = 4 bytes suffices.

As a running example, we consider the last example
above, so that each possible voter choice (including
not voting) is coded as a decimal number of fixed
length (two digits, in this example).
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4 Adding values

To support split-value representations there needs to
be a “addition operator” Add allowing one to com-
bine two values in V yielding a third value in V.

For any pair of values u, v in V let Add(u, v) the
member of V that is the “sum” of u and v. We may
write Add(u, v) as u+ v.

The addition operation must admit inverses, or
equivalently “subtraction”, so that given u+ v and v
we can compute u as (u+v)−v, and that given u+v
and u we can compute v as (u+ v)− u.

In technical terms, the set V with binary operation
“+” forms a commutative group with identity 0; the
inverse of element u is written −u, so u+ (−u) = 0.

For our running example, where V is the set of
two-digit decimal numbers, the operation “+′′ might
mean “addition modulo 100”, so that 66 + 58 = 24.

5 Split-Value Representations

A split-value representation of a value x in V is a
two-part additive representation of x.

More precisely, a split-value representation of x is
a pair (u, v) of elements in V such that

x = u+ v . (1)

A value x will have many split-value representa-
tions. In our running example (with two-digit val-
ues modulo 100), the value 24 may be split-value-
represented as (66, 58), as (97, 27), or as (16, 8).

One may pick at random a split-value representa-
tion (u, v) of x by first choosing u uniformly at ran-
dom from V, and then computing the unique value v
such that x = u+ v.

Key property. For a randomly-chosen split-value
representation (u, v) of x, revealing just u or just v
reveals nothing about x.

(Note that a given value u may be the first com-
ponent of a split-value representation for any x.)

6 Commitments to values

We now consider cryptographic commitments to val-
ues in V. Cryptographic commitments are well stud-
ied; we review only the essentials here. The reader
familiar with commitments may skip this section and
presume that Com(u, r) defines an acceptable cryp-
tographic commitment function that commits to a
value u using randomization parameter r.

Given a value u ∈ V, a device may compute a com-
mitment to u as a value c = Com(u, r) using a suit-
able procedure Com and an additional secret random
input r.

The values u and r remain secret until the commit-
ment is opened, at which time u and r are revealed.
Others can then verify the correctness of the commit-
ment by recomputing c.

We write Com(u) instead of Com(u, r) when ran-
dom input r may be understood from context.

Properties. A cryptographic commitment has prop-
erties similar to those of a sealed envelope.

The commitment should be binding : for a given
commitment c no one should be able to produce
more than one value u with an associated r such that
c = Com(u, r). It shouldn’t be possible to “open the
envelope” in more than one way (revealing different
u values within).

The commitment should also be hiding : someone
seeing the commitment c = Com(u, r) should not
thereby improve his chances of guessing u. An ob-
server should not learn anything about u by seeing c.
The envelope hides its contents.

Specifics. There are many good ways to implement
a commitment scheme.

We suggest using the hmac (hashed message-
authentication code) construction due to Krawczyk
et al. [19] as a basis for a commitment function.
hmac uses an arbitrary hash function h. hmac
does exceptionally well as an implementation of a
pseudo-random function, and thus provides an ex-
cellent foundation for a commitment function.

We suggest h = sha3-224 (the NIST Secure Hash
Algorithm Standard 3 with 224-bit (28-byte) out-
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put).1. Thus,

Com(u, r) = hmach(r, u) , (2)

where r is the hmac key and u is the message. Then
Com takes a 28-byte random value r, an arbitrary-
length message u, and produces a 28-byte output c
that is a commitment to u. Thus, a triple (u, r, c)
where c = Com(u, r) requires 60 bytes to represent,
with our assumption that u may be represented in
four bytes.

This method provides 112 bits of binding security
(collision-resistance) and 224 bits of hiding security
(pre-image resistance).

Other commitment schemes may be used to obtain
different efficiency/security tradeofs. One might de-
fine Com(u, r) as hmacsha1(r, u) or as sha1(u ‖ r)
(for fixed-length u).

7 Commitments to split values

We also use split-value commitments: commitments
to a value x in V produced as a pair of commitments
to the components u, v of a split-value representation
(u, v) of x:

ComSV(x) = (Com(u, r),Com(v, s))

where r and s are random values (28 bytes each). The
length of ComSV(x) is 56 bytes, since it consists of
two 28-byte commitment values.

Such a split-value commitment may be opened by
opening both of its component commitments.

We let Val(A) denote the value committed to by
split-value commitment A.

However, sometimes only one of the two compo-
nent commitments is opened. In that case, the value
committed to remains information-theoretically se-
cret.

In the next section we see how this “half-opening”
idea enables probabilistic proofs that two split-value
commitments are commitments to the same value,
without revealing what that value is.

1http://en.wikipedia.org/wiki/SHA-3

8 Proving equality of split-
value commitments

We now show how one may (probabilistically) prove
that two split-value commitments are to the same
value, without revealing that value.

Suppose a device has produced two split-value
commitments

c1 = ComSV(x) = (Com(u, r),Com(v, s))

c2 = ComSV(x′) = (Com(u′, r′),Com(v′, s′)) .

The device now wishes to prove to an examiner that
x = x′, without disclosing x (or equivalently, x′).
How can it do so? We describe an efficient procedure
for doing so, following Rabin et al. [23]. See Figure 1.

Claim of shift value. The device first outputs the
claimed “shift” value t such that both of the following
equations hold:

t = u− u′ and (3)

t = v′ − v . (4)

Such a value exists if and only if x = x′.

Challenge. Then the device is challenged by the
examiner. The examiner generates a random “chal-
lenge bit” (for example, by flipping a coin or using
some other unpredictable random bit generator). De-
pending on the random challenge bit, the examiner
asks for either the “left” commitments to be opened,
or for the “right” commitments to be opened.

Response. If the random challenge bit is 0, the de-
vice must “open the left commitments’ and produce

u, r, u′, and r′ ;

the examiner checks that Com(u, r) and Com(u′, r′)
are correctly computed, and that t = u− u′.

Similarly, if the random challenge bit is 1, the de-
vice must “open the right commitments” and produce

v, s, v′, and s′ ;

the examiner checks that Com(v, s) and Com(v′, s′)
are correctly computed, and that t = v′ − v.
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97 27 16 8

97 27 16 8

97 27 16 8

Start

Prover: “shift is 81”

If challenge = 0

If challenge = 1

Figure 1: Proving equality of two split-value commitments. To start, there are two split-value commitments
to the same value: in this example, to 24 (modulo 100): (97, 27) and (16, 8)). The prover states that the
“shift” value is 81, since 81 = 97− 16 and 81 = 8− 27 (modulo 100). Then the prover is given a challenge
bit. If the challenge bit is 0, he opens the left-hand side of each commitment, and the examiner may verify
that they differ by the given shift value. If the challenge bit is 1, the prover opens the right-hand side of
each commitment, and the examiner may similarly verify that they differ by the shift value (subtracting in
the reversed order). The opened values are shown with a white background, while the unopened values are
shown with a dark gray background. No matter what the challenge bit, the examiner learns nothing about
the value committed to (24, in this case). Yet the prover fails with probability at least 1/2 if the split-value
commitments are to different values.
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17

23

44

69

80

92

bid’s A

Y

Y

N

N

Y

Y

Figure 2: Initial posting for a six-voter election for a yes/no (Y/N) ballot question. The six voters’
receipts are posted, each with a ballot-id and split-value commitment to a vote (which is either Y or N).
The split-value commitments are unopened (shown as dark gray), so voter privacy is protected.
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bid’s A B C

17

23

44

69

80

92

Y

Y

N

N

Y

Y

Y

N

Y

Y

Y

N

Y

N

Y

Y

N

Y

Figure 3: The first posting for the proof of correctness. Two new columns (B and C) are added. Column
B split-value commits to a permutation of the votes committed to in column A. Column C lists in plaintext
a permutation of the votes committed to in column B. The permutations are represented as dashed edges;
these edges are committed to but not yet revealed. Values in column C are plaintext, enabling the election
outcome to be computed by anyone. The final tally is 4 Y’s to 2 N’s; the ayes have won.
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Q = 253145643215623162536524123456 .

Figure 4: Rolling dice to get the random number seed. Here thirty six-sided dice have been rolled to obtain
the thirty-digit seed Q. The seed may be extended by appending the hash of the current state of the election
web site.
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17

23

44

69

80

92

bid’s A B C

Y

Y

N

N

Y

Y

Y

N

Y

Y

Y

N

0

1

1

0

1

0

Y

N

Y

Y

N

Y

Figure 5: Revealing some AB edges. Six challenge bits are derived from the dice roll; they are shown
above the corresponding B nodes. For those B nodes with a 0 challenge bit, the commitment to the edge
connecting it to an A node is opened (so the edge is shown solid/revealed). The B node and the A node
participate in a split-value commitment equality test, so each is half-opened (and shown in light gray).
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bid’s A B C
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23

44

69

80

92

Y

Y

N

N

Y

Y

Y

N

Y

Y

Y

N

0

1

1

0

1

0

Y

N

Y

Y

N

Y

Figure 6: Revealing some BC edges. For those B nodes with a 1 challenge bit, the B node is fully opened
(shown in white) and the commitment to the edge connecting it to a C node is opened (so the edge is shown
solid). No solid path exists from an A node to a C node, since each B node is either proved equal to an A
node (for a 0 challenge bit) or proved equal to a C node (for a 1 challenge bit), but not both. This graph
represents the final state of the posted proof: all white B nodes are fully revealed, the light-gray nodes in
columns A and B are half-opened, the dark gray nodes in column A are unopened, all dashed edges are
unrevealed, and the all solid edges are revealed. Anyone may check the consistency of the revealed data.
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Proof. The proof of equality for the given pair of
split-value commitments then consists of the shift
value, the challenge, and the response. This is an
interactive proof, since the examiner produces his
challenge after the device states the shift value. Stan-
dard methods, such as the strong Fiat-Shamir heuris-
tic (see Bernhard et al. [7]), may be used if desired
to convert this proof into a non-interactive one.

Privacy. Note that the examiner gains no informa-
tion about x (or x′) from the information disclosed.

Soundness. A device that tries to cheat and per-
suade the examiner that two split-value commitments
are to the same value, when they are not, can satisfy
the examiner with probability at most 1/2, since at
most one of the two equations t = u−u′ and t = v′−v
is valid. Thus, the examiner has a chance of at least
1/2 of unmasking a cheating device. This suffices for
our needs.

Summary. One can probabilistically prove the
equality of the values x, x′ represented by two given
split-value commitments, without revealing any in-
formation about the value(s) x, x′ so represented.

However, an equality proof between two split-value
commitments involves opening one of the two com-
mitments in each split-value commitment pair. Thus,
each split-value commitment may be used in at most
one such equality test.

9 Vote Casting, Posting, On-
line Checking, and Outcome
Determination.

This section reviews the vote casting process, the
posting of (copies) of the voters’ receipts, the online
checking of these postings, and the posting of the
election outcome.

These procedures are fairly standard for an end-to-
end verifiable voting system, but are included here for
completeness.

These are the steps that take place before the post-
ing of the proof of correctness for the election out-
come, which is described in the next section.

9.1 Checking In, Tablets, and Vote
Casting

This section gives an overview of the vote-casting pro-
cess from the voter’s perspective.

Check-in. Voter Vi checks in, and receives a random
ballot id bid i. No record is kept of the association
between the voter’s name or index i and the ballot
id she receives. Every voter receives a distinct ballot
id.

Making a choice. The voter uses a touch-screen
“voting tablet” to compose her vote. The voter ini-
tializes the tablet using a ballot-style code she ob-
tained at check-in. The ballot style code is not the
same as her ballot id, which she also enters into the
tablet.

After the voter has entered her choice xi (remem-
ber that we assume there is only a single race, for
expository simplicity), the tablet computes a split-
value commitment to xi:

ComSV(xi) = (Com(ui),Com(vi)) .

Printing ballot and receipt. The voter requests
that her completed ballot and associated receipt be
printed.

The printed ballot gives the ballot id, the split-
value commitment to her choice, and the values re-
quired for opening the split-value commitment:

(bid i,ComSV(xi), ui, ri, vi, si) (5)

where

ComSV(xi) = (Com(ui, ri),Com(vi, ri)) . (6)

The printed receipt contains just the barcode and
split-value commitment:

(bidi,ComSV(xi)) . (7)

Alternatively the receipt may contain just the bal-
lot id and a hash of the split-value commitment. We
don’t consider this simple variant further.
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The printed ballot and receipt have information in
human-readable form, but may also have a 2D bar-
code (e.g. pdf417 format2) giving the same informa-
tion.

If, as we assume, the paper ballot is the only means
of communication between the tablet and the ballot
box, a 2D barcode is a good way to represent infor-
mation on the ballot. Similar voting systems might
instead use an available electronic link between the
tablet and the ballot box.

Ballot-casting assurance. The voter has some way
to ensure that her ballot and receipt correctly repre-
sents her choice (in both printed and barcode form).
This may be accomplished, for example, using Be-
naloh’s “cast or challenge” protocol [4].

Casting. The voter casts her ballot in the ballot
box, which contains a scanner. The information on
the ballot is scanned and transmitted to the tally
server. The voter keeps the receipt, and may take it
home.

The vote-casting process should ensure that the
voter may not take the receipt home unless the cor-
responding ballot has actually been cast.

9.2 Posting of receipts

When the ballot is cast and scanned, the tally server
obtains the information given in equation (5), from
which it also obtains the subset available on the re-
ceipt (equation (7)).

The transmission of the information of equation (5)
from the ballot box to the tally server is cryptographi-
cally protected, say by using encryption with the pub-
lic key of the tally server, and authentication via the
ballot box’s digital signature. We omit details, as the
desired confidentiality and integrity can be assured in
any number of standard ways.

After the polls close the tally server posts (via the
web server) a copy of all of the receipts the voters
have been given. That is, it posts the values

(bid i,ComSV(xi)) .

2See http://www.makebarcode.com/specs/pdf417.html;
this format can store up to 686 bytes per square inch.

obtained from each cast vote. Note that ui, ri, vi,
and si are not posted, as these values would reveal xi.
The receipts are posted in order by ballot id.

All information posted on the election web site is
digitial signed by the poster.

Privacy. Note that the tally server knows how each
voter voted (more accurately, it knows the associa-
tion between bid i and xi). We trust the tally server
not to reveal this correspondence. Perhaps it runs a
trusted implementation on a hardware security mod-
ule. Voter privacy is primarily assured through this
combination of anonymous ballot id numbers and a
trusted tally server implementation.

9.3 Online checking

A few days are allowed for voters to confirm that the
web site correctly posts their receipts. Voters may
check using a home computer, or using some service
(perhaps provided by political parties). Note that
receipts do not need to be protected from disclosure;
they are posted on the web site.

If a voter’s receipt (with her ballot id) does not
appear on the web site, or appears incorrect, the
voter may protest, effecting an investigation and pos-
sible web site correction. We omit details, which are
admittedly delicate, as voter privacy must be main-
tained as much as possible. Note that the voter may
be protesting maliciously to discredit the election or
the voting system. The corresponding paper ballot
(which has the unique ballot id printed on it) may
need to be consulted during an investigation.

As usual with E2EVV systems, it is recommended
but not mandatory that voters check online for their
receipts. It assumed that a sufficient sample of voters
do check, so that significant web site manipulation
would almost certainly detected. (If a problem is
detected, the best remedy may well be to count the
paper ballots.)

Checking names. The web site may also post the
names of all voters casting votes. There should be
as many names as receipts, but voter names are not
associated with receipts. Voter names are posted al-
phabetically, while receipts are posted in order by
ballot id.
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Members of the public may notice and report
names of non-voters on the list (who had perhaps
died or moved away). It isn’t clear what remedy there
is for such occurrences, other than to clean up the
voter registration list for the next election. (Some
versions of E2EVV voting enable one to delete re-
ceipts from ineligible voters; in the simple version we
propose here this isn’t possible, since there are no
records linking voter names with ballot ids.)

Deadline. Once the protest period is over, the on-
line record of receipts becomes the official electronic
record of the cast votes.

9.4 Outcome Determination.

The tally server now knows what it needs to compute
the election outcome and post it on the web site.

The tally server can compute the correct election
outcome, since it has not only all of the split-value
commitments to the voters’ choices, but also the val-
ues ui, ri, vi, and si. The tally server may thus
compute each xi as ui + vi. Once the tally server
computes all the xi’s it can apply the appropriate
voting rule to determine the election outcome, which
it posts on the election web site.

Our proposal handles arbitrary voting rules, not
just the standard plurality rule (where the candidate
with the most votes wins). “Instant-runoff voting”
or other complex rules may be used, since the values
xi are obtained in full plaintext form, and may have
any agreed-upon format or interpretation. For ex-
ample, xi may list candidates in order of preference.
Similarly, the value xi may be represent a write-in
vote.

10 Proving Correctness

This section describes how the proof server provides a
proof of correctness for the posted election outcome.

The tally server’s posted claim about the election
outcome should not be blindly trusted (elections are
too important!), so the voting system must also pro-
duce a compelling proof that the posted election out-
come is correct.

The proof server supplies such a proof. The proof
server may be the same computer as the tally server,
but now it is playing a new role. We assume that
the proof server knows all the information the tally
server knows.

The proof of correctness, however, must not reveal
the linkage between any given ballot id and its as-
sociated plaintext vote. Otherwise the proof would
enable coercion and vote-selling.

The proof server already knows the correspondence
between ballot ids and plaintext vote. So, our goal
is not to prevent the tally and proof servers from
knowing this correspondence; that is not possible.

Proof goal. The proof server must produce a com-
pellling proof that the election outcome is correct
without disclosing any correspondence between ballot
ids and plaintext votes.

Because the proof of correctness is available for all
to review, losing candidates are motivated to “throw
in the towel,” knowing they have really lost fair and
square.

This property is a major desideratum for any vot-
ing system, since if losing candidates and their sup-
porters believe they have been cheated of victory by
election fraud there may be riots or worse. Thus, the
proof of correctness should be compelling.

Proof review. Once the proof is posted, election
officials, losing candidates, and the public review this
proof.

If the proof is satisfactory, the stated election out-
come is accepted as final and official.

If the proof is not satisfactory or is not sufficiently
convincing (as might rarely happen when the margin
of victory is extremely small), additional assurance
may be gained by counting or sampling the paper
ballots. A procedure such as a ballot-polling risk-
limiting audit might be a reasonable procedure to
use in some cases (see Lindeman et al. [20]).

We emphasize that any discrepancy in the posted
proof is adequate justification for rejecting the en-
tire proof. If a commitment fails to open properly or
the split-value representations don’t add up properly,
then one has definitive evidence that there is either
fraud or serious error in the proof system. The best
remedy then is probably to count the paper ballots,
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in addition to performing an investigation as to the
cause of the discrepancy.

Proof structure. We suggest the proof take the fol-
lowing form, which is familiar in the voting literature,
as it is the proof structure for a verifiable mixnet:

• In addition to the first posted list of
(bid ,ComSV(xi)) pairs, one or more (two, in
our case) new lists are posted that omit ballot
ids, and which have different split-value commit-
ments to the same plaintext choices in different
(randomized) orders. See Figures 2–6.

• Proof is posted that each successive list contains
commitments to the same set of values as in the
preceding list. The final list is thus a list of split-
value commitments to the same plaintext values
as in the first list (but in different order).

• The commitments in the final list are all opened,
and the correct election outcome may be com-
puted by anyone from the world-readable list of
all of the plaintext votes.

Proving equality of lists. We know two general
approaches for providing proof of correctness that fol-
low the above model:

• an approach based on randomized partial check-
ing (RPC) due to Jakobsson et al. [16]), and

• an approach based on value consistency proofs
(VCP) due to Rabin et al. [23, 21] for secure
auctions.

We denote these approaches as SV/RPC (“split-
value/randomized partial checking”) and SV/VCP
(“split-value/value-consistency proof”).

The SV/RPC method is the focus of this pa-
per, and is described in the following sections. The
SV/VCP method will be described in a companion
paper.

The SV/RPC method takes advantage of the fol-
lowing beautiful coincidence:

• a split-value commitment may take part in at
most one equality test, and

• the randomized partial-checking method never
needs a value (a split-value commitment) to take
part in more than one equality test!

The “fit” here is excellent, and the resulting method
is exceptionally simple and elegant.

Our method enjoys the key property of the origi-
nal randomized-checking procedure that a “proof” of
a false election outcome will be accepted with a prob-
ability that decreases exponentially with the number
of votes changed in the false result. Therefore an ac-
ceptable proof is compelling evidence that the elec-
tion outcome is correct to within a few votes. (If
the margin of victory is just a few votes, jurisdictions
typically hand-count all of the paper ballots anyway
to provide the best assessment of the correct election
outcome.)

SV/VCP achieves a higher degree of assurance
than SV/RPC, at the cost of needing the tally server
to replicate split-value commitments a number of
times. (See paper to appear.)

Vote-selling and coercion. Note that the corre-
spondence between ballot ids and plaintext votes is
not publicly known but is known to the tally and
proof servers, and thus potentially known to election
officials. A corrupt election official might ask that a
voter reveal her ballot id, look up her plaintext vote
on the tally server, and then reward or punish the
voter depending on her vote. This issue also arises
when paper ballots are accessed for the purposes of
a post-election audit.

Protection against potentially corrupt election offi-
cials should be provided by running the tally server in
a hardware security module with limited functional-
ity, and by having strict access controls on the paper
ballots (which have the ballot ids printed on them).

We omit further discussion of these important and
rather tricky issues.

11 Mixnets and Randomized
Partial Checking

This section reviews mixnets and the randomized
partial checking method of Jakobsson et al. [16] for
producing a “verifiable mixnet.”
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Mixnets. David Chaum [10]) introduced mixnets
as a way of providing anonymity in voting or similar
applications.

A sequence of “mix-servers” successively permute
a list of encrypted values, each using its secret per-
mutation. The final list is thus scrambled by the
composition of the secret permutations. No single
mix-server knows how inputs correspond to outputs
overall. For voting, the final list is decrypted, and
an election outcome can be determined from the re-
vealed plaintext votes.

Mixnets normally use public-key technology. Each
mix server either decrypt its inputs, or re-randomizes
them. The former scenario is for decryption mix-nets,
where each element is an “onion” made by succes-
sively encrypting a value with the public key of each
mix-server, in reverse order. The latter scenario is for
re-encryption mix-nets, where inputs are encrypted
with a public-key encryption method (such as El-
Gamal’s [13]) that enables re-randomization without
knowledge of the secret key.

Perspective on our proof. Our situation is simi-
lar but we use split-value commitments rather than
public-key encryption. We are thus using shared-
secret-key methods, and the mix server(s) know all
of the plaintext votes.

It is important to realize that the first mix-server
knows how ballot ids correspond to plaintext votes,
although the second and later servers do not.

Our goal here is thus not to protect the correspon-
dence from being known to the server(s) (at least not
to the first server), but to allow the server(s) to pro-
duce a proof of correctness of the election outcome
that does not publicly reveal the correspondence.

We must trust the server(s) not to surreptitiously
reveal this correspondence.

Because we are using private-key technology (split-
value commitments), there seems little security ben-
efit in having more than one mix-net server. (Of
course, having a backup server available for reliabil-
ity might be a good idea! But this is a different issue,
and the backup knows everything the original server
knows.)

Our SV/RPC design therefore uses a simpli-
fied “mix-net” with split-value commitments (rather

than public-key encryption) and only a single “mix-
server”.

Our proof server plays the role of this single “mix-
server”, and effects two “rounds” of the mix-net, so
there will be a total of three lists (two of split-value
commitments, and a final list of plaintext votes).

Randomized partial checking. We now describe
how randomized partial checking allows the proof
server to produce convincing proof that the posted
election outcome is correct, without thereby reveal-
ing the correspondence between ballot ids and the
final list of fully opened split-value commitments.

Jakobsson, Juels, and Rivest [16] propose a method
called “randomized partial checking” (RPC) for pro-
viding such proof. Here mix-servers partially re-
veal correspondences between each pair of adjacent
columns, but in such a way that no path can be traced
from any value in the first column to a value in the
last column.

The reader may find it helpful to review the RPC
paper [16] before proceeding.

We now sketch a simplest possible instantiation of
this idea, with only three lists and a single mix server.

The approach is really a very straightforward com-
bination of the use of split-value representations and
the randomized partial-checking procedure. There is
little in the way of additional “engineering” needed
to make these ideas work well together.

The only point to notice is that the split-value
equality test is probabilistic rather than determin-
istic; this really doesn’t change much; a small adjust-
ment is needed in the computation of the potential
success probability for an adversary who tries to pro-
vide proof for an incorrect election outcome.

The proof server provides proof of correctness, us-
ing the RPC method, as follows. There are three
parts:

• Part I: Posting of the receipts, and the three-
column graph structure.

• Part II: Receiving the challenge.

• Part III: Responding to the challenge.

Part I: Posting receipts and the graph struc-
ture. The proof server posts the following values.
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The first two lists have already been described, as
they are the ballot ids and the associated split-value
commitments from the voters, and are exactly what
appears on the voters’ receipts. We assume that the
claimed election outcome has also been posted.

1. Receipts: ballot ids and split-value com-
mitments (A).
The receipts for the the voters, containing the
ballot ids bid1, bid2, ..., bidn and associated
split-value commitments A1, A2, ..., An; (where
Ai = ComSV(xi) is the split-value commitment
from the i-th ballot). We suggest that receipts
be listed in order of ballot id, assuming that bal-
lot ids were randomly assigned.

2. Reordered split-value commitments (B).
The split-value commitments B1, B2, . . . , Bn;
here each Bj is a split-value commitment to a
value yj :

Bj = ComSV(yj)

and the y′js are a permutation of the xi’s:

yj = xaj

for all j, where (a1, a2, . . . , an) is a secret
randomly-chosen permutation of {1, 2, . . . , n}.
Note that Bj will almost surely have a differ-
ent “split” of yj into (u′j , v

′
j), as well as different

randomization parameters than Aaj for the com-
mitments, so that Aaj and Bj , although they are
split-value commitments to the same value, are
different.

3. Reordered plaintext choices (C).
The values C1, C2, . . . , Cn where Cj is a plain-
text value zj :

Ck = zk

and the zk’s are a permutation of the yj ’s:

yj = zcj

for all j where (c1, c2, . . . , cn) is a secret
randomly-chosen permutation of {1, 2, ..., n}.

4. AB edge commitments (aj’s and corre-
sponding shift values).

For each j, j = 1, 2, . . . , n, a commitment to the
pair (aj , tj) where tj is the “shift” needed in the
split-value proof that Bj and Aaj

are commit-
ments to the same value.

5. BC edge commitments (cj’s).
For each j, j = 1, 2, . . . , n, a commitment to cj .

The proof server randomly chooses the permuta-
tions {aj} and {cj}, and the new splits and ran-
domization parameters for the split-value commit-
ments Bj .

For each vote, eight values are posted: the ballot
id, two values each for the split-value commitments
in A and B, one value for each value in C, one value
for each AB edge commitment, and one value for each
BC edge commitment.

This first part of the proof sets the stage for the
following challenge/response, which completes the
proof.

Graphical model. What has been posted so far
may be viewed as a graph with 3n vertices, with n
vertices in each of lists A, B, and C (see Figures 3–6):

• Column A and column B form a bipartite graph
that is a complete matching, with Bj connected
to Aaj

.

• Column B and column C form a bipartite graph
that is a complete matching, with Bj connected
to Ccj .

The graph structure is hidden; we only have for
each Bj a commitment to aj , saying where Bj ’s value
came from, and a commitment to cj , saying where
Bj ’s value goes to.

The proof server wishes now to prove that the
plaintext values C are to the same values as the com-
mitments A (in permuted order).

Opening all of the AB and BC edge commitments
would obviously work to demonstrate the desired
property, but this would reveal the correspondence
between ballot ids and plaintext vote values, since
one could then trace the path from each Ai to where
it ends up (as plaintext) in column C.
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So, the trick is to have the proof server only open
half of the “edge commitments” in the RPC manner
(see [16, 18]).

Part II: Obtaining the challenge bits.
This part involves producing a number of chal-

lenge bits qj for use in the RPC protocol deciding
which edge commitments to open, as well as a number
of bits q′j for deciding left-half/right-half split-value
commitment openings when the edge being opened is
an AB edge.

The challenge bits are determined by using a seed
for a suitable pseudo-random generator.

We emphasize that while the proof-generation pro-
cedure is randomized, the election outcome of course
is not! (At this point, the election outcome has al-
ready been determined and posted.)

Obtaining the seed and challenge bits.
The seed (call it Q) may be determined by rolling

thirty six-sided dice in a public ceremony, and follow-
ing those digits with the 56 hex digits of the SHA3-
224 hash of the current election web site, yielding
a 86-character string. The dice-rolling should take
place only after all the election web site data so far
has been posted and signed. Representatives from
different parties might each roll some of the dice.

We note that dice-rolling to pick a seed is some-
times done to determine which precincts are audited
in a post-election audit.

The seed Q is posted to the web site and signed.
Our proposal uses two sets of n challenge bits each,

which we call qj and q′j (j = 1, 2, . . . , n). These bits
will be unpredictable to an adversary (before the dice
roll). These bits should be unbiased: the probability
of a 0 is 1/2, and the probability of a 1 is 1/2.

With this goal in mind, we define lsb(x) as the
least-significant bit of x, and

qj = lsb(SHA3-224(j ‖ Q ‖ “0′′)) .

where j is represented in decimal. Similarly, we define

q′j = lsb(SHA3-224(j ‖ Q ‖ “1′′)) .

These details are rather arbitrary; there are many
reasonable ways to compute suitable pseudo-random

bits qj and q′j from Q and j. These bits appear to an
adversary to be independent and unbiased.

Part II: Posting the responses to the chal-
lenges.

For each j, j = 1, 2, . . . , n, the proof server must
produce one of two proofs:

• if qj = 0, a proof that Val(Bj) and Val(Aaj )
are equal, or

• if qj = 1, a proof that Val(Bj) and Val(Ccj )
are equal.

In the first case, the proof server opens the com-
mitment for (aj , tj), revealing the AB edge between
Bj and Aaj

. The split-value commitments Bj and
Aaj

are proven to represent equal values, using the
value q′j to determine whether “left-halves” or “right-
halves” should be opened.

In the second case, the proof server opens the com-
mitment for cj , revealing the BC edge between Bj

and Ccj . Both halves of split-value commitment Bj

are opened, and the value yj committed to is thereby
revealed (it should be equal to Cj).

The proof is not accepted by the verifier if any
revealed edge connects different values, if the revealed
aj ’s contain repeated values, or if the revealed cj ’s
contain repeated values.

No ABC paths. Because the proof provided links
each Bj either to an Ai or to a Ck, but not both, there
is no path in the revealed graph edges from any Ai

(with associated ballot id) through a Bj to a final
Ck (which is plaintext). Thus, the proof does not re-
veal the association between ballot ids and associated
plaintext vote choices.

At most one test per commitment. Note the
very important property that each split-value com-
mitment in column A, or column B participates in
at most one equality test. This means that the split-
value representation is really ideal for use with an
RPC method.

12 Security

Note that if the claim made by the proof server that
the vote values posted as described in Sections 10–11
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in column C are a permutation of the vote values hid-
den by commitments in column A is correct, then the
proof server can always construct a proof of correct-
ness acceptable to every verifier. Thus our method is
complete: a true statement can always be proved.

If the posted proof is not accepted, i.e. if even one
of the checks fails, then the announced election out-
come is not accepted and further actions are required.
We now turn to proof of soundness of the method, i.e.,
that if the posted election outcome is not correct then
the probability that the posted proof is accepted is
exponentially small. The precise formulation of this
statement follows.

Soundness. The usual RPC analysis then applies
with only small modifications. Note that an adver-
sary might undetectably modify a given ballot with
probability 3/4, since it could cheat on either the AB
link or the BC link, and a modification of one such
link might be missed since only the left commitments
(or only the right commitments) are opened.

Although an adversary might get away with prob-
ability 3/4 in cheating on one vote, we have the fol-
lowing.

Theorem 1 A malicious proof server who modifies
k votes has probability at most

(3/4)k

of producing an acceptable proof of election outcome
correctness.

The proof is given in the Appendix.

Example: A malicious prover who tries to modify
the tally by changing only 24 votes has a chance of at
most one in 1000 of not being caught, and a malicious
prover who changes only 40 votes has a chance of at
most one in 100,000 of not being caught. Trying to
change 100 votes has a probability of at most one in
3× 1012 of not being caught—truly negligible!

So unless the election is extremely close, fraud large
enough to have affected the election outcome will al-
most surely be caught. If the election is extremely
close, election officials (or the candidates) may any-
way insist on (or be legally required to have) a full
recount of the paper ballots.

13 Related Work

Rabin, Servedio, and Thorpe [23] give an initial auc-
tion design based on split-value representations. Mi-
cali and Rabin [21] extend this work to show how
split-value representations can be used to implement
secure Vickrey auctions, including a way to counter
collusion between bidders.

Damg̊ard and colleagues have recently extended
their earlier works [8, 11, 12] on efficient MPC to
that of publicly-verifiable secure multiparty computa-
tion [3]. This latest work is directly relevant here.
Indeed, they mention secure voting as a possible
application. And their representations are based
on information-theoretically secure additively-shared
representations, as are ours. But their constructions
(especially the setup) are relatively complex, and
require multiple rounds of interactions between the
servers.

The Eperio voting system [15] is worth pointing out
as another interesting E2EVV system, as it uses no
public-key operations and is quite efficient. It is de-
signed to work only with the common “mark-sense”
elections (pick one of several choices), rather than
more complex election types.

The SOBA ballot-auditing procedure [6] is com-
patible with the procedure described here, as we take
care to have matching ballot ids on the electronic and
paper records for a ballot.

14 Additional Results, Varia-
tions and Extensions

There are a number of ways that one can modify our
proposal to handle additional concerns or to achieve
different tradeoffs between competing goals.

For example, one could put more than one split-
value representation of a voter’s choice on a ballot,
for additional reliability or a higher degree of proof
assurance.

We can improve somewhat the error bound of The-
orem 1, using an idea from Ergün et al. [14, Section
3.1] on “permutation enforcement,” and by using bi-
ased qj bits; the bound can be improved to (2/3)k.
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We also have a rather different method, based on
multi-party computations, that provides enhanced
privacy against potentially malicious servers.

Our best soundness bound for k discrepancies, us-
ing the SV/VCP method, is

√
πn/22n + 2−k.

We also have additional results relating to the use
of special-purpose hardware and threshold computa-
tion by the servers for reliability.

As noted, these results will appear in papers under
preparation.

15 Conclusion

We have presented a very simple method for im-
plementing an end-to-end verifiable voting (E2EVV)
system, based on a combination of split-value com-
mitments and randomized partial checking.

The proposed system is easily understood and very
efficient.
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Appendix. Proof of Theorem 1.

Proof:

Our treatment otherwise follows the standard RPC
argument. Note however that we are not using Fiat-
Shamir, but rather fresh randomness, to generate
the seed Q (this makes the arguments simpler and
stronger).

Some B-list items are properly matched to A-list
items: call j “A-good” if

Val(Bj) = Val(Aaj
) and

there is no j′ > j such that aj = aj′ ;

else j is “A-bad,” meaning

Val(Bj) 6= Val(Aaj
) or

there is a j′ > j such that aj = aj′ .

Similarly some B-list items are properly matched to
C-list items: call j “C-good” if and only if

Val(Bj) = Ccj and

there is no j′ > j such that cj = cj′ ;

else j is “C-bad,” meaning

Val(Bj) 6= Val(Ccj ) or

there is a j′ > j such that cj = cj′ .

If the prover tries to show that an A-bad j is A-
good, then he will fail with probability at least 1/2
(either due to the split-value commitment equality
test, or the 1/2 chance that an aj′ for j′ > j that
duplicates aj will be revealed).

If the prover tries to show that a C-bad j is C-
good, then he will fail with probability at least 1/2,
similarly (although simpler, since Bj and Ccj both
get fully revealed).

The number of places where A and C differ is at
most the number of A-bad j’s plus the number of C-
bad j’s. (Note that the last aj equal to a given value

(the A-good one) may be considered as the one that
“counts,” and the others (the A-bad ones) correspond
to values corresponding to values in the A-list that
were thus missed. Similarly for the BC comparisons.)

Thus, we get a bound of

(3/4)k ,

where k is the sum of the number of A-bad j’s and
the number of C-bad j’s, since for each A-bad or C-
bad j there is a 1/2 chance the prover will pick the
wrong edge to reveal, or (if he picks the right edge)
will choose to reveal the wrong (left-side/right-side)
side of the commitments, allowing the cheating to be
undetected with probability at most 3/4.
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