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An Empirical Bayes Approach to Estimating Ordinal

Treatment Effects

R. Michael Alvarez Delia Bailey Jonathan N. Katz

Abstract

Ordinal variables — categorical variables with a defined order to the cat-
egories, but without equal spacing between them — are frequently used in
social science applications. Although a good deal of research exists on the
proper modeling of ordinal response variables, there is not a clear directive
as to how to model ordinal treatment variables. The usual approaches found
in the literature for using ordinal treatment variables are either to use fully
unconstrained, though additive, ordinal group indicators or to use a numeric
predictor constrained to be continuous. Generalized additive models are a
useful exception to these assumptions (Beck and Jackman 1998). In con-
trast to the generalized additive modeling approach, we propose the use of a
Bayesian shrinkage estimator to model ordinal treatment variables. The es-
timator we discuss in this paper allows the model to contain both individual
group level indicators and a continuous predictor. In contrast to traditionally
used shrinkage models that pull the data toward a common mean, we use
a linear model as the basis. Thus, each individual effect can be arbitrary,
but the model “shrinks” the estimates toward a linear ordinal framework ac-
cording to the data. We demonstrate the estimator on two political science
examples: the impact of voter identification requirements on turnout (Al-
varez, Bailey, and Katz 2007), and the impact of the frequency of religious
service attendance on the liberality of abortion attitudes (e.g., Singh and
Leahy 1978, Tedrow and Mahoney 1979, Combs and Welch 1982).



1. INTRODUCTION

Ordinal variables — categorical variables with a defined order to the categories, but
without equal spacing between them — are commonly used in social science empirical
applications. There has been published research that discusses how to appropriately
model ordinal response variables, for example, by the use of ordered discrete choice
models (e.g., Aitchison and Silvey 1957; McKelvey and Zavonia 1975; Aldrich and Cnudde
1975; Maddala 1983; Agresti 1990; Jones and Westerland 2006). However, researchers
frequently use ordinal treatment variables: for example, studies have investigated the
impact of partisan identification on vote choice (Miller 1991), or the role of education
and the closing date of voter registration on voter turnout (Nagler 1991), or more recently
how the degree of local flooding caused by Hurricane Katrina affected voter turnout in
the 2006 mayoral elections in New Orleans (Alvarez et al. 2008). Despite the amount
of statistical research on methods for modeling ordinal response variables, there is not a
clear directive as to how to model ordinal treatment variables.

When faced with the use of an ordinal treatment variable in some statistical model,
applied researchers have resorted to many different approaches. Sometimes researchers
will simply use the ordinal variable itself as a response variable, thus implicitly using an
unconstrained and additive treatment variable. In other situations, the researcher may
avoid the linearity assumption by using subcategories of the original ordinal indicator as
a vector of treatment variables, though typically in such applications the researcher will
still assume additivity. These are but some of the more common ways applied researchers
will deal with ordinal treatment variables in statistical models.

A good deal of the confusion regarding how to use an ordinal treatment variable in any
particular statistical model arises from measurement problems. Many ordinal variables
in social science have a latent structure that may be interval or even continuous that the
measurement instrument fails to capture. This may be due to poor measurement design,
such as in the case of survey questions, or perhaps due to sparse data. In other cases, a
lack of strong theory may make it difficult for the researcher to specify how an ordinal
treatment should be used in any particular application.

An important example of how applied researchers often proceed is found in the seminal
paper on voter turnout in the United States, Rosenstone and Wolfinger’s study (1978).
In their paper, they study the effect of demographic and institutional covariates on
probability that individuals in the 1972 Current Population Survey reported turning out
to vote in that year’s presidential election. One of the important demographic covariates
in their analysis is education; their research pointed out the importance of education
levels in predicting individual-level participation. Rosenstone and Wolfinger treat each
respondent’s reported level of education as an ordinal variable, coding their education
covariate as 1 for those who report 0 to 4 years of education, 2 for those who report 5 to
7 years of education, and so on. Subsequent work that has examined directly the effect
of education on voter turnout has continued using this ordinal classification scheme (e.g.,

2



Nagler 1991).

In this context, however, it is also important to note that because of the lack of
theory or a solid measurement approach, some of the common ways applied researchers
use ordinal treatment variables may be incorrect — and they thus may make incorrect
inferences from the results of their models. For example, some survey questions will ask
respondents which option, from a list, the respondent might prefer; while the designer
of the survey and the eventual user of the survey data might assume that respondents
necessarily perceive that the response options have some sort of natural ordering (thus
allowing their use as an ordinal treatment variable), the respondents to the question
might not see the response options in that assumed order in practice. If that is the case,
then using the ordinal indicator itself as a linear and additive treatment variable might
lead to incorrect inferences.

Generalized additive models (GAM) are the exception to these practices, however,
and adding nonlinearities to the classical constrained model can be useful.1 Our ap-
proach differs from both conventional ad hoc assumptions, and the GAM appoach, as
we use a Bayesian shrinkage estimator as a modeling option for sparse, ordinal indepen-
dent variables. A major advantage of our empirical Bayes estimator is that it allows
the model to contain both individual group level indicators and a continuous predictor.
Thus, each individual effect can be arbitrary, but the model “shrinks” the estimates to-
ward a constrained ordinal framework according to the data.2 We present the estimator
in detail in the following section, and then below we present two examples from con-
temporary research to show the practical application of our approach for dealing with
ordinal treatment variables.

2. THE MODEL

Consider a typical regression setting (using the standard generalized linear model
framework), where we wish to uncover the effect of an ordinal treatment variable on a
dependent variable controlling for other observable covariates. Then, for a dependent
variable Y , a link function g(·), and observables X, we have:

E[Yi|X] = g−1(αj[i] + Xiβ)

where i = 1, . . . , N indexes observations and αj[i] represents the effect on Yi of an ordinal
variable of interest, Ti with j = 1, . . . , J categories.3 One approach to estimating αj[i] is

1See Beck and Jackman (1998) for an exposition of this approach for political science examples.
2In contrast to traditionally used shrinkage models that pull the data toward a common mean, in

each of our examples, we use a linear model as the basis.The methodology is flexible, however, and the
group-level indicators can be pooled toward any monotonic function of the data. For an interesting
non-political science example of multilevel regression with an ordinal explanatory variable, see Gelman
and Hill 2006, (Section 21.3).

3For a standard linear regression, the link function is the identity function and we can simplify the
expression to be

E[Yi|X] = αj[i] + Xiβ
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to completely pool the levels and to assume a constant additive effect for each level of
the treatment variable:

αP
j[i] = Tiα.

A second approach is completely unpooled: the regression includes separate indicator
variables for each level of the ordinal variable:

αU
j[i] = I{Ti = j}.

In the classical regression framework, it is generally not possible to combine these two
approaches. In a Bayesian setting, however, the effect of Ti on Yi can be constrained to
have a common mean that is a monotonic function of the levels j, but with individual
deviations — or random effects — at each level. The size of the deviations is determined
by the data. Intuitively, what the estimator is doing is performing a weighted average of
the pooled and unpooled models above, with the weights being proportional to the data.
The weighted average, then, is:

αj[i] = ωαP
j[i] + (1 − ω)αU

j[i],

ω =

(
σ2

αP

σ2
αP + σ2

αU

)−1

where the weights, ω and (1 − ω) are the relative precisions of the pooled and unpooled
αj[i].

In practice, however, we would estimate the model using Markov Chain Monte Carlo
(MCMC) methods. We would model the treatment effect, αj[i], as a random parameter
drawn from a probability distribution, F , with a constant mean:

αj[i]
iid∼ F (µj, σ

2
α),

µj = h(Ti).

Examples of possible forms of µj are linear:

µj = γ0 + γ1Ti,

quadratic:
µj = γ0 + γ1Ti + γ2T

2
i ,

or logarithmic:
µj = ln(Ti).

A final consideration is the interpretation of the parameters associated with µj. If
a trend is present in the random effects that is also present in the monotonic function,
µj, there will be an identification problem. The random effects are generally pooled
toward zero, solving part of the identification problem. But, any trend in the random
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effects must be constrained to be zero as well. “Post-processing” the estimates provides a
computationally convenient way to constrain the effects. For a concrete example, consider
a model such that:

αj[i] = γ0 + γ1Ti + νj;

νj
iid∼ N(0, σα).

That is, the estimated treatment effects are pulled towards a linear effect with deviation
being drawn from a Normal distribution. The parameters γ0 and γ1 are only partially
identified between any linear trend that exists in the random effects, νj. The identification
is partial, as the random effects are pooled toward zero, but with a small number of levels,
convergence of the MCMC chains while constraining the random effects to have both zero
mean and slope is time consuming. To solve this problem, after estimation, the data is
“post-processed” to obtain finite population parameters based on the regression of αj on
T . This is equivalent to constraining the random effects to have mean zero and slope
zero (Gelman and Hill, 2006).

3. EMPIRICAL EXAMPLES AND PRACTICAL APPLICATIONS

We present two examples below applying this estimator: first, the effect of religious
service attendance on the liberality of attitudes toward abortion, and second, the impact
of voter identification requirements on voter turnout at the polls.

3.1. Frequency of Religious Service Attendance and Abortion Attitudes

Researchers have investigated the determinants of attitudes toward abortion, includ-
ing gender, socioeconomic status, religious affiliation, and religious service attendance
(e.g., Singh and Leahy 1978, Tedrow and Mahoney 1979, Combs and Welch 1982). For
this example we take up the question of the impact of the frequency of religious service at-
tendance on liberality of abortion attitudes. The data come from the 2004 General Social
Survey (GSS, NORC 2004). Among the many questions that comprise the GSS, respon-
dents were asked their opinions on abortion issues, the frequency of their attendance at
religious services, and a battery of socioeconomic and demographic profile questions. The
dependent variable on which we focus is the question, “Please tell me whether or not you
think it should be possible for a pregnant woman to obtain a legal abortion if the woman
wants it for any reason?” which takes the values “Yes” and “No.” The ordinality of the
religious attendance variable is given by the response options provided during the survey.
To the prompt, “How often do you attend religious services?” respondents are given
the choices: “Never,” “Less than once a year,” “Once a year,” “Several times a year,”
“Once a month,” “Two to three times a month,” “Nearly every week,” “Every week,”
and “More than once a week.” The relative frequency of responses in each category in
the sample are given in Table 1.
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Response Raw Counts Percentage
Yes 346 40.6
No 507 59.4
Total 853 100.0

Table 1: Responses to the question “Please tell me whether or not you think it should
be possible for a pregnant woman to obtain a legal abortion if the woman wants it for
any reason?” Source: GSS 2004.

We estimate the effect of frequency of religious service attendance on the probability
of supporting access to legal abortion for any reason with a logistic regression controlling
for reported years of schooling and age.4

Pr(Yi = 1) = logit−1(αj[i] + β1Xi),

for j = 1, . . . , 9; i = 1, . . . , N

where j indexes frequency of religious service attendance and i indexes the respondents.
The variable Yi is binary and equal to one if the respondent responded “Yes” to the
abortion opinion question. The vector of covariates, Xi, includes the following:

Education: the highest year of school completed;
Age: the respondent’s age in years.

As noted above, we could model the impact of the variable of interest, Church,
as an unpooled additive effect (e.g., indicator variables for each level of frequency), or
alternatively, constrain the effect to be linear. Rather than commit to either extreme, we
effectively combine the first two approaches into a sort of weighted average, where the
weighting variable is determined by the data:

αj[i] = α0 + α1Churchi + νj,

νj
iid∼ N(0, σα).

That is, for each religious attendance level, j, the estimated impact on the probability of
responding “Yes” to the abortion attitude question is a random intercept term, νj, and
is pooled toward a group linear impact, α0 + α1Churchi.

The MCMC estimation is implemented with a Gibbs sampling algorithm via the
statistical software JAGS (Plummer 2007). Independent conjugate priors are assumed
for each element of β and γ and for the variances. Specifically, each β and γ is assumed to
be distributed normally, with mean zero and precision parameter 0.0001. The parameters
σy and σα are assumed to be uniformly distributed between 0 and 100. We let the

4We estimated an extended model also controlling for gender, marital status, and having children.
Those characteristics were not significant determinants of abortion opinions. We dropped them from
the model in the sake of parsimony. It does not affect the estimates of church attendance.
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algorithm run for 25,000 iterations as a burn-in, then 50,000 iterations with a thinning
interval of 10. We use the resulting 5,000 draws from the posterior distribution as the
basis of our estimates.5

A final consideration is in interpretation of the γ0 and γ1 parameters. As mentioned
above, these parameters are partially not identified because of the linear trend in the
νj parameters. The identification is partial,however, as the νj parameters are pooled
toward zero, but with only J = 9 convergence would be slow to impose the constraint.
To correct for this problem, after estimation, the data is “post-processed” to obtain finite
population parameters based on the regression of αj on Church. This is equivalent to
constraining the νj parameters to have mean zero and slope zero (Gelman and Hill, 2006).

Table 2 in the Appendix presents the the coefficient estimates and standard errors
from a completely unpooled logit, a logistic regression constraining the effect of religious
service attendance to be linear, and the estimates from applying the shrinkage estimator.
As would be expected, the effects of education and age are constant across the three
models. Adding an additional year of school increases the probability of a more liberal
attitude toward abortion, as does increasing the respondent’s age, but it is a much smaller
effect. The constrained estimate of the effect of religious service attendance is −0.32 on
the logit scale, which translates to approximately a 5 percentage point decrease in the
probability of supporting legal access to abortion for any reason, regardless of the change
in attendance level: switching from “Never” to “Less than once a year,” has the same
effect as changing from “Every week” to “More than once a week.” The coefficient
estimates presented for the unpooled logit model are the individual intercepts estimated
for each level. The estimated effect from the shrinkage model is the linear effect and the
deviations from that linear effect for each level.

Figure 1 compares the estimated probability of supporting legal access to abortion for
any reason averaged over the entire sample for each level of religious service attendance.
The black line denotes the linear trend, and the dashed lines are the 95% confidence
interval around it. The blue circles present the estimated probability from the shrinkage
model, and the blue bars are the 95% confidence intervals around those estimates. The
black triangles are the estimated probabilities from the unpooled logit model, and the
black bars are the 95% confidence intervals from that model. The point estimates for the
unpooled logit are jittered slightly to the right for visibility. Both the unpooled logit and
the shrinkage estimator suggest a stronger S-shaped probability curve than the linear
constraint allows, with the suggestion that attending services “2-3 times a week” has
a smaller effect on the conservatism in abortion attitudes, than does attending services
“Once a month.” The uncertainty about the empirical Bayes estimates is larger than
under the constrained linear model, but smaller than under the completely unpooled
model — as we would be expected, as the shrinkage estimator contains more information
than the unpooled model, but with less constraint than just the linear form. In this
case, the estimates from the shrinkage model are closer to the estimates from the model

5After examining trace plots, Geweke diagnostics, and Gelman diagnostics of parallel chains, we
determined that the algorithm had indeed converged.
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Figure 1: Estimated probability of supporting the statement “Please tell me whether or
not you think it should be possible for a pregnant woman to obtain a legal abortion if the
woman wants it for any reason?” relative to the frequency of attending religious services
for averaged over all respondents in the sample from the 2004 General Social Survey.
The solid line is the linear trend that the identification effects are shrunk towards. The
dashed lines are the 95% confidence region for the linear trend. The blue dots are the point
estimates from the shrinkage estimator and the blue bars represent the 95% confidence
intervals for the effect. The black triangles are the point estimates from the unpooled
logistic regression and the black bars represent the 95% confidence intervals for the effect.
The unpooled point estimates are jittered to the right for visibility.

including indicator variables for each level of treatment in the model. In our next example,
the estimates shrink much more closely back to the linear trend, and the uncertainty
estimates shrink accordingly as well.

3.2. Voter Identification Laws in the States

Our second example comes from our own research. In order to document the effect of
voter identification requirements on registered voters as they were imposed in states in
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the 2000 and 2004 presidential elections, and in the 2002 and 2006 midterm elections, we
use four election cycles and individual responses to the Current Population Surveys allows
us to isolate the effect of voter identification requirements on voter turnout (Alvarez et
al. 2007). Despite the recent decision by the U.S. Supreme Court in the Crawford v.
Marion County Election Board case, there have only been a few unpublished studies of
how different voter identification regulations might influence voter participation.6 The
state-level panel data allows us to control for changes in the electoral environment both
across states and across time — which we could not do with only one year of data —
and the individual-level data allows us to answer questions about whether certain sub-
populations are disproportionately effected by these regulations — which is not possible
using aggregate data.

As a starting point for our analysis, we developed a classification scheme for the
different voter identification regimes that exist in the United States. Since the enactment
of HAVA, there are eight basic types of requirements to vote at the polls. They are in
listed in order of increasing stringency:

1. Voter must state his/her name.
2. Voter must sign his/her name in a poll-book.
3. Voter must sign his/her name in a poll-book and it must match a signature on file.
4. Voter is requested to present proof of identification or voter registration card.7

5. Voter must present proof of identification or voter registration card.8

6. Voter must present proof of identification and his/her signature must match the
signature on the identification provided.

7. Voter is requested to present photo identification.9

8. Voter is required to present photo identification.

Combinations of the above requirements are often in place, such as requiring a voter
to both state and sign his/her name. In our analysis, cases are coded at the level of
requirement that is more stringent. In this example, the case would be coded as a
signature requirement. Most states in 2004 required that first-time voters who registered
by mail to present identification (per HAVA requirements), but here we are interested in
the effect of requirements on all registered voters.

Thus, we want to measure the extent to which voter identification requirements af-
fected voter participation at the polls, but there are many methodological problems

6For some of the unpublished literature, see Atkeson et al. (2007); Barreto, Nuno and Sanchez (2007);
Lott (2006); Mycoff, Wagner and Wilson (2007); and Vercellotti and Anderson (2006).

7An affidavit may be signed in lieu of presenting identification and a regular (non-provisional) ballot
may still be cast.

8The range of acceptable proof of identification ranges across the states, but in addition to a form
of government-issued photo identification, other acceptable pieces of identification include utility bills,
social security cards, student identification cards, paychecks, and bank statements, as well as hunting
and fishing licenses and gun permits.

9An affidavit may be signed in lieu of presenting photo identification and a regular (non-provisional)
ballot may still be cast.
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unique to this data, one of which is the ordinality of voter identification requirements.
As is apparent from the listing of the types of regimes, it is not the case that a state
either requires identification to vote, or does not. States require many different levels of
identification from simply stating one’s name to showing a picture identification. This
further complicates the question, as we must determine not just one effect but several
potentially incremental effects. Second, states may differ in their implementation of sim-
ilar requirements. While one state may consider a student identification card or discount
club membership card to be valid photo identification, another state may only recog-
nize government-issued photo identification cards. Third, the data we have to answer
this question is relatively sparse. That is, since the changes in voter identification re-
quirements have really only started since the passage of HAVA in 2002 and the law we
are most interested in — photo identification requirements — was only implemented in
2006, we have only a small amount of information in the available data about how each
type of voter identification requirement might affect participation. Finally, identification
requirements are not randomly assigned across states. This is a problem if states with
historically lower turnout also tend to adopt stricter identification requirements, then we
will have trouble isolating whether the low level of turnout is due to the identification
requirement or to other factors that lead a given state to have lower turnout rates.

The estimation strategy used exploits the temporal and geographic variability in
voter identification requirements to sidestep the problem on non-random assignment.
This is referred to as a difference-in-differences estimator and our analysis is built on
a generalization of this procedure. In particular, we use a multilevel model — also
referred to as a random effects model — to assess how voter identification requirements
affect participation by registered voters, using data from four years of recent CPS Voter
Supplement data. While multilevel models have seen many applications in fields outside
of political science, only in relatively recent years have we seen the use of multilevel
models in political science applications and journals (e.g., Steenbergen and Jones 2002;
Raudenbush and Bryk 2002; Western 1998).10 The multilevel model allows us to control
for the constant factors that cause turnout rates to vary within states and for the cyclical
changes in turnout over time.

In addition to using a much richer dataset than previous studies with a generalization
of a difference-in-differences estimator to minimize the problem of non-random assign-
ment, we also attempt handle the sparse and ordinal nature of the data. The data is
sparse because with eight different types of identification requirements and only fifty
states, we do not observe that many elections under a given type of procedure. The stan-
dard approach around this problem is to assume some sort of linear (or other parametric)
effect. That is, if we consider our list presented at the beginning of the section, we would
assume that the effect of a signature match was three times that of merely stating one’s
name on an individual’s probability of voting, since it is third on the list. While the
ordering of the list seems plausible, the linear growth (or dose-response curve) is a very

10More recently, a special issue of Political Analysis was devoted to the topic of multilevel modeling
in political methodology, with applications to a wide variety of important substantive problems (Kedar
and Shively 2005).
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strong assumption that seems implausible. We, instead, leverage the ordinal nature of
the data to allow for deviations for this linear effect insofar as the data suggest using
our Bayesian shrinkage estimator. A benefit of our Bayesian estimator is its flexibility.
Nesting the estimation of the ordinal effect within the hierarchical model of state and
year effects on turnout is straightforward.

The ordinal variable analysis is nested within a multilevel logistic regression of turnout.11

Because we are interested in the effect of identification requirements at the polls and not
the various unobserved barriers to voting associated with the registration process, the
estimation is conditioned on the subset of respondents who are registered to vote. Our
logistic model takes the form:

Pr(Yit = 1) = logit−1(αj[i] + β0 + β1Xit),

for j = 1, . . . , 8; i = 1, . . . , N ; and t = 1, . . . , 4;

where j indexes identification regime, i indexes the respondents, and t indexes years. The
variable Yit is binary and equal to one if the respondent reported voting in that year’s
election. The variable β0 is an intercept term. The vector of covariates, Xit, includes the
following:

South: an indicator equal to unity if the respondent resides in a southern state;
Female: an indicator equal to unity if the respondent is female;
Education: a ordinal variable indicating the reported level of education — ‘some high

school,’ ‘high school graduate,’ ‘some college,’ or ‘college graduate’;
Education2: the squared value of Education;
Age: the respondent’s age in years;
Age2: the squared value of Age;
Income: an ordinal variable indicating the reported level of household family income

that takes on 13 values — ranging from ‘Less than $5,000’ to ‘More than $75,000’;
Non-White: an indicator equal to unity if the respondent reported a race other than

White.

This covariate vector replicates what we consider to the be canonical model of voter
turnout in the literature that uses CPS Voter Supplement data (e.g., Nagler 1991).

As the level of turnout in a state may vary due to yearly shocks or regional trends,

11Estimating the empirical Bayes model nested inside a hierarchical framework on a dataset of over
260,000 observations was computationally difficult. Practical issues with memory aside, convergence on
a subset of the data was obtained only after the inclusion of an additive redundant parameterization.
The entire model was estimated, then, in a maximum likelihood framework, relying on the software
package lme4 for the statistical software R (Bates 2007; R Core Development Team 2007).

11



random effects are included for state and year.

β0 = γ0
s[i] + γ1

t[i];

γ0
s[i]

iid∼ N(0, σγs);

γ0
t[i]

iid∼ N(0, σγt);

for s = 1, . . . , S and t = 1, . . . , T.

That is, each individual i in state s and year t share a common intercept term, with each
level of intercepts pooled toward zero and with common variance.

As noted above, we could model the impact of the variable of interest, ID, as an un-
pooled additive effect (e.g., indicator variables for each regime), or alternatively, constrain
the effect to be linear. Rather than commit to either extreme, we effectively combine
the first two approaches into a sort of weighted average, where the weighting variable is
determined by the data:

αj[i] = α0 + α1IDit + νj,

νj
iid∼ N(0, σα).

That is, for each identification requirement level, j, the estimated impact on turnout is
a random intercept term, νj, and is pooled toward a group linear impact, α0 + α1IDit.

Figure 2 plots the average marginal effect of voter identification regimes on the prob-
ability that a respondent turns out to vote. The horizontal axis represents the voter
identification requirements. The vertical axis plots the probability of turning out to
vote. We note that the estimated probabilities are high, but recall we are looking at reg-
istered voter only and not eligible citizens, as is often done. Turnout rates about among
eligible citizens is well below a half in recent elections, but in our sample of registered
voters nearly 80% report turning out to vote. The line represents the probability of
voting for a mean respondent in our sample, for each identification requirement being in
place. The points on the graph denote the deviation from the linear trend estimated for
each requirement and the vertical bars denote the 95% intervals of uncertainty around
each. Interestingly, we see that the requirements for signature matching, requiring an
identification card and requiring a photo identification card have a more negative effect
on participation than suggested by the simple linear model. Requesting identification
cards and requesting photo identification cards is less strict than suggested by the linear
trend. These estimates first indicate that indeed, voter identification requirements do
not have a simple linear effect on the likelihood that a voter participates. In addition,
we see that the stricter requirements — requirements more than merely presenting a
non-photo identification card — are significant negative burdens on voters, relative to a
weaker requirement, such as merely signing a poll-book.

Figure 3 compares the estimated average marginal effect of the voter identification
variable from the empirical Bayes model with estimates from a hierarchical model of
turnout with no constraints on the voter identification variable.
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Figure 2: Average estimated probability of voting by identification requirement. The graph
plots the average impact from our sample of registered voters from the Current Population
Survey (2000-2006). The estimates come from a logistic regression of the probability of
voting controlling for demographic characteristics. The solid line is the linear trend that
the identification effects are shrunk towards. The dots are the point estimates and the
bars represent the 95% confidence intervals for the effect.

4. CONCLUSIONS

The use of ordinal treatment variables is common in social science research. Because
of measurement problems, or the lack of strong theory, researchers often have ordinal
treatment indicators they wish to use in a statistical model, but they do not have any good
advice about how to incorporate these ordinal treatment indicators into their analysis.
In this paper we have presented an empirical Bayes estimator that gives researchers
a flexible tool with which they can estimate the appropriate functional form for their
ordinal treatment variables.

In sum, the empirical Bayes estimator that we presented above allows the model to
contain both individual group level indicators and a continuous predictor. In contrast to
traditionally used shrinkage models that pull the data toward a common mean, we use
a linear model as the basis. Thus, each individual effect can be arbitrary, but the model
“shrink” the estimates toward a linear ordinal framework according to the data. We
see this as a simple and flexible way for researchers to specify how an ordinal treatment

13
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Figure 3: Average estimated probability of voting by identification requirement. The graph
plots the average impact from our sample of registered voters from the Current Population
Survey (2000-2006). The estimates come from a logistic regression of the probability of
voting controlling for demographic characteristics. The solid line is the linear trend that
the identification effects are shrunk towards. The blue dots are the point estimates from
the shrinkage estimator and the blue bars represent the 95% confidence intervals for the
effect. The black triangles are the point estimates from the unpooled logistic regression
and the black bars represent the 95% confidence intervals for the effect. The unpooled
point estimates are jittered to the right for visibility.

variable should be used in their particular response model.

In addition to developing this model in this paper, we presented two empirical ap-
plications of our empirical Bayes estimator, using examples drawn from contemporary
research problems. One of these problems involved an ordinal treatment variable drawn
from a widely used survey (abortion preferences from the GSS), while the other focused
on a variable that measured a dimension of state election administration policies (voter
identification policies). We showed with each application the utility of our approach.

We believe that our methodology should have widespread utility in many other areas
of social science research. Ordinal treatment variables are widely used in comparative
political studies, and of course in other social science disciplines. Using a flexible strategy
for dealing with ordinal treatment variables, like we develop in this paper, should be
adopted instead of some of the more rigid and assumption-driven practices seen in the

14



applied literature today.
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6. APPENDIX

Unpooled Logit Pooled Logit Shrinkage Logit
b se b se b sd

Education 0.19 0.03 0.19 0.03 0.19 0.03
Age 0.02 0.00 0.02 0.00 0.02 0.00

Church, Slope −0.33 0.03 −0.32 0.03
Church - Never −2.81 0.49 −2.50 0.48

Church - Less than once a year −2.85 0.54 −2.25 0.53
Church - Once a year −3.06 0.49 −2.12 0.48

Church - Several times a year −3.53 0.51 −2.24 0.50
Church - Once a month −4.58 0.57 −2.93 0.55

Church - 2-3 times a month −3.81 0.53 −1.91 0.52
Church - Nearly every week −4.48 0.58 −2.23 0.56

Church - Every Week −5.02 0.55 −2.43 0.54
Church - More than once a week −5.38 0.62 −2.39 0.59

Intercept −2.23 0.46

Table 2: Estimated logit coefficients and standard errors from the completely unpooled,
completely pooled, and Bayesian shrinkage models. The slope parameter estimate for the
shrinkage model is the finite population slope; the deviations from the linear model are
based on the mean and standard deviation of 5000 draws from the posterior distribution.
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