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Abstract

We consider the problem of statistical sampling
for auditing elections, and we develop a remark-
ably simple and easily-calculated upper bound
for the sample size necessary for determining
with probability at least c whether a given set
of n objects contains b or more “bad” objects.
While the size of the optimal sample drawn with-
out replacement can be determined with a com-
puter program, our goal is to derive a highly ac-
curate and simple formula that can be used by
election officials equipped with only a simple cal-
culator. We actually develop several formulae,
but the one we recommend for use in practice is:

U3(n, b, c)

=
⌈(

n− (b− 1)
2

)
·
(
1− (1− c)1/b

)⌉
=

⌈(
n− (b− 1)

2

)
·
(
1− exp(ln(1− c)/b)

)⌉
As a practical matter, this formula is essentially
exact: we prove that it is never too small, and
empirical testing for many representative values
of n ≤ 10, 000, and b ≤ n/2, and c ≤ 0.99 never
finds it more than one too large. Theoretically,
we show that for all n and b this formula never
exceeds the optimal sample size by more than 3
for c ≤ 0.9975, and by more than (− ln(1− c))/2
for general c.

1 Introduction

Given the increased popularity of voting sys-
tems with voter-verified paper ballots, there is

increased need for effective audits to confirm that
those paper ballots agree with their electronic
counterparts (which might be the result of scan-
ning those ballots). Since auditing is expensive
(it is typically done by hand), it is important
to minimize the expense by choosing a sample
size for the audit that is as small as possible,
while guaranteeing a desired level of statistical
confidence. This paper addresses the question of
determining the appropriate sample size, and de-
velops nearly exact approximations that can be
evaluated easily on a hand-held calculator. We
believe that these formulae will turn out to be
useful in practice.

Given a universe of n objects, how large a sam-
ple should be tested to determine with high con-
fidence whether a given number b of them (or
more) are bad? (In the voting context, these ob-
jects are typically voting precincts.)

As noted, our goal is to develop approxima-
tions that are both accurate and simple enough
to be usable, if not by hand, then at least with
the use of only a calculator, with no computer
needed. (Your calculator must be a “scientific”
one, though, so that you can compute arbitrary
powers.1)

We first present a simple approximate “rule
of thumb” (the “Rule of Three”) for estimating
how big such a statistical sample should be, when
using sampling with replacement.

This “Rule of Three” is simple and known, al-

1(E.g. compute xy given real numbers x and y or
equivalently be able to do so with the logarithm and ex-
ponential functions via xy = exp(ln(x) · y).)
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though perhaps not particularly well-known. Jo-
vanovic and Levy [7] discuss the Rule of Three,
its derivation, and its application to clinical stud-
ies. See also van Belle [15].

We then address the question of sampling
without replacement, which is the desired proce-
dure for an election audit, of course, and provide
improved formulae for sample size when sam-
pling without replacement.

This paper justifies and improves approxima-
tions originally developed by Rivest [11], who at-
tempted to correct for the bias in the Rule of
Three due to sampling with replacement instead
sampling without replacement, by only sampling
(now without replacement) the expected number
of distinct elements that the Rule of Three sam-
ple (with replacement) would have contained.
While that may be an interesting approach, the
current paper derives its approximation formulae
more directly, and provides rigorous upper and
lower bounds on their approximation error.

Finally, in Section 5, we address two related
“inverse” questions: determining the confidence
level for a given audit size and level of fraud one
wishes to detect, and determining the minimize
amount of fraud one can detect for a given audit
size with a given confidence level.

1.1 Related Work

Saltman [13, Appendix B] was the first to study
sample size (for sampling without replacement)
in the context of voting; the basic formulae he
develops for the optimal sample size are the ones
we are trying to approximate here.

(There is much earlier relevant work on sam-
pling theory, particularly the notion of “lot ac-
ceptance sampling” in statistical quality control.
For example, the Dodge-Romig Sampling Inspec-
tion Tables [3], developed in the 1930’s and first
published in 1940, provide generalizations of the
simple sampling methods used here.)

Previous work by Neff [9] is noteworthy, par-
ticularly with regard to the economies resulting
from having a larger universe of many smaller,
easily-testable, objects. Brennan Center re-
port [1, Appendix J] gives some simple estima-
tion formula, based on sampling with replace-

ment. An excellent report [5] on choosing ap-
propriate audit sizes by Dopp and Stenger from
the National Election Data Archive Project is
now also available; there is also a nice associated
audit size calculation utility on a web site [8].
Stanislevic [14] also examines the issue of choos-
ing a sufficient audit size; he gives a particularly
nice treatment of handling varying precinct sizes.

Some states, such as California, mandate a
certain level (e.g. 1%) of auditing [10]. As we
shall see, using a fixed level of auditing is not a
well justified approach; sometimes one may need
more auditing, and sometimes less, to obtain a
given level of confidence that no fraud has oc-
curred.

2 Auditing Model

Suppose we have n “objects”. In a voting con-
text, such an “object” might typically be a
precinct; it could also be a voting machine or
an individual ballot, depending on the situation;
the math is the same.

We assume an adversarial situation, where an
adversary may have corrupted some of the ob-
jects. For example, the adversary might have
tampered with the results of some precincts in a
state.

Thus, after the adversary has acted, each ob-
ject is either “good” (that is, clean, untampered
with, uncorrupted), or “bad” (that is, tampered
with, corrupted).

We now wish to test a sample of the objects
to determine with high confidence whether the
adversary has committed a “large” amount of
fraud.

(With another standard formulation, we have
an urn containing n balls, b of which are black
and n− b of which are white; we wish to sample
enough balls to have a sufficiently high probabil-
ity of sampling at least one black ball.)

We assume that each object is independently
auditable. That is, there is a test or audit proce-
dure that can determine whether a given object
is good or bad. We assume this procedure is al-
ways correct.

For example, testing the results in a precinct
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may involve comparing the electronic results
from the precinct with a hand recount of the
corresponding voter-verified paper ballots. The
precinct is judged to be good if the results are
equal. Of course, there may easily be explana-
tions for a discrepancy other than malicious be-
havior; such explanations might be determined
with further investigation. Nonetheless, for our
purposes, we’ll simply assume that each object
tested is found to be “good” or “bad.”

To determine whether any fraud at all oc-
curred, we would need to test all objects. Here
we give up the ability to detect any fraud, and
test only a sample of the objects in order to de-
termine, with high confidence, whether a large
amount of fraud has occurred. We lose a bit of
confidence in return for a large increase in effi-
ciency, as is usually the case for a statistical test.

Let b denote the number of “bad” objects we
wish to detect, where b is a given constant, 1 ≤
b ≤ n. That is, we wish to determine, with high
confidence, if the number of corrupted objects is
b or greater.

Since the adversary wishes to escape detection,
he will corrupt as few objects as possible, con-
sistent with achieving his evil goals. We assume
that corrupting b objects suffices, and so the ad-
versary corrupts exactly b objects. (For voting,
this implies that all precincts are assumed to
have roughly the same size; see Section 2.1.)

We let c denote our desired “confidence
level”—that is, we want the probability of de-
tecting corruption of b or more objects to be at
least c, where c is a given parameter, 0 ≤ c ≤ 1
(e.g. c = 0.95).

We let
f = b/n (1)

denote the fraction of bad objects we wish to
detect; we call f the “fraud rate.” Given one of
b or f , the other is determined, via equation (1).

We will be considering samples drawn both
with replacement and without replacement. For
mnemonic convenience, we use t to denote sam-
ple sizes when the sample is drawn with replace-
ment, and u to denote sample sizes when the
sample is drawn without replacement. (Think of
“u” for “unique” or “distinct”.)

2.1 Deriving b from the margin of vic-
tory

We now explain how a suitable value for b might
be determined for an election audit from the ap-
parent margin of victory, using a method sug-
gested by Dopp and Stenger [5]. Here, b is the
number of precincts that an adversary would
have had to corrupt to swing the election. If
we assume (as is reasonable) that the adversary
wouldn’t dare to change more than a fraction
s = 0.20 (i.e. 20%) of the votes in a precinct,
and that the “winner” won by a margin of m of
the votes (where 0 ≤ m ≤ 1), then the adversary
would have had to have corrupted a fraction

f = m/(2s) = 2.5m (2)

of the precincts—or, equivalently,

b = mn/(2s) = 2.5mn (3)

precincts.
(We assume all precincts have the same size.

If all of the votes changed had been moved from
the actual winner to the alleged winner, then a
margin of victory of a fraction m of the votes
cast for the alleged winner must have involved
at least a fraction m/(2 ∗ 0.20) = 2.5m of the
precincts, since each precinct corrupted changed
the difference in vote count between the top two
candidates by 2s = 40% of the vote count of
that precinct.) If the apparent winner has won
by m = 1% in a county with 400 precincts, you
would want to test for b = 2.5mn = 10 or more
bad precinct counts.

See Saltman [13], Stanislevic [14], or Dopp et
al. [5] for further examples and excellent treat-
ment of the issue of computing appropriate tar-
get values b (or f) given a set of election results
and possibly varying precinct sizes. Rivest [12]
also treats the case of varying precinct sizes.

3 Sampling with replacement
and the Rule of Three

We begin by examining sampling with replace-
ment (where the sample may contain an element
more than once). Although this wouldn’t be
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used in practice for auditing an election, it is
a useful starting point for our analyses, and pro-
vides some reasonably accurate estimation for-
mulae that can be easily computed in one’s head.

For sampling with replacement, we use t to
denote the sample size, and t∗(n, b, c) to denote
the optimal sample size (when sampling a set
of size n with replacement, in order to find at
least one bad element, with probability at least c,
when b bad elements are present). We’ll later use
the analogous notation u∗(n, b, c) for the optimal
sample size for sampling without replacement.

Here now is a simple “rule of thumb” for sam-
pling with replacement.

Rule of Three:
Test, using sampling with replacement,
enough objects so that you expect to see at
least three corrupted objects. That is, ensure
that:

ft =
bt

n
≥ 3. (4)

or equivalently:

t ≥ 3n/b . (5)

(Where t is the number of objects to be tested,
b is the number of bad objects one wishes to
detect, and f = b/n, at a 95% confidence
level.)

As a simple example: to detect a 1% fraud
rate (f = 0.01) (with 95% confidence), you then
need to test t = 300 objects.

Note that for a given fraud rate f , the rule’s
sample size is independent of the universe size
n. This may seem counter-intuitive, but is to
be expected. If you have some well-mixed sand
where most sand grains are white, but a fraction
f are black, you need only sample a handful to be
confident of obtaining a black grain, no matter
whether the amount of sand to be examined is a
cupful, a bucketfull, or a beach.

The sample size t may even be greater than
n (if b < 3); this is OK since we are sampling
with replacement, and it may take more than
n samples (when sampling with replacement) to
get adequate coverage when b is so small.

3.1 A Sampling with Replacement
Bound

We now justify the Rule of Three, and then gen-
eralize it to handle an arbitrary confidence level
(not just c = 0.95). Let f = b/n be the fraud
rate, and let t be the sample size.

We first justify the Rule of Three for a con-
fidence level of 95%; this analysis follows that
given by Jovanovic and Levy [7].

The probability that a fraud rate of f or
greater goes undetected (when drawing a sam-
ple of size t with replacement) is:

(1− b/n)t = (1− f)t . (6)

so t must be large enough so that

(1− f)t ≤ 0.05

or equivalently:

t ≥ ln(0.05)
ln(1− f)

(7)

Since

ln(0.05) = − ln(20) = −2.9957 ≈ −3

—isn’t it so very nice that ln(20) is almost ex-
actly 3?—equation (7) is implied by

t ≥ −3
ln(1− f)

. (8)

Using the well-known approximation

ln(1− f) ≈ −f , (9)

which is quite accurate for small values of f (and
−f is an lower bound on ln(1−f)), equation (8)
is implied by:

t ≥ 3
f

which can be rewritten as

t ≥ 3n

b
(10)

or equivalently as

ft ≥ 3 . (11)
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Equation (11) has a very nice and intuitive
interpretation. Since t is the number of objects
tested, and f is the fraud rate, then ft is the
number of objects among the test objects that we
would expect to find corrupted.

The sample should be large enough so that
you expect it to contain at least three corrupted
objects. If you sample enough so that you expect
to see at least three corrupted objects on the
average, then you’ll see at least one corrupted
object almost always (i.e., at least 95% of the
time).

(Similarly, a random variable X distributed
according to the Poisson distribution with mean
λ > 3 satisfies Pr[X = 0] = e−λ < e−3 =
0.04978 . . ..)

As a running example, suppose that n = 400,
b = 10, and f = b/n = 0.025; the Rule of Three
says to pick a sample of size 3n/b = 3∗400/10 =
120.

(We shall see that the optimal sample size for
sampling without replacement for these param-
eters is a little smaller—103—, so considering
sample size with replacement may be a good
first-cut approximation to the sample size needed
for sampling without replacement.This “Rule of
Three” ( t ≥ 3n/b ) is simple enough for some
practical guidance.)

The Rule of Three is also easily generalized
to handle other confidence levels. For a general
confidence level c, 0 ≤ c ≤ 1, we need that

(1− f)t ≤ (1− c) (12)

so we obtain the following formulae for the op-
timal sample size t∗(n, b, c), when sampling with
replacement:

t∗(n, b, c) =
ln(1− c)
ln(1− f)

(13)

=
ln(1− c)

ln(1− b/n)
. (14)

We note that equation (14) may give “opti-
mal” values for t∗ that are non-integral, while in
practice the sample size must be an integer. Of
course, the optimal integral sample size is then
just t∗ rounded up to the next integer, yielding
T∗:

T∗(n, b, c) = dt∗(n, b, c)e .

Using equation (9), we obtain the generalized
form of the Rule of Three as an approximation:

t1(n, b, c) =
−n ln(1− c)

b
. (15)

This completes our discussion of sample sizes
for sampling with replacement.

4 Sampling without replace-
ment

Suppose we pick u objects to test, where 0 < u ≤
n. These u objects are chosen independently at
random, without replacement—the objects are
distinct.2

In an election, if any of the u tested objects
(e.g. precincts or voting machines) turns out to
be “bad,” then we may declare that “evidence
of possible fraud is detected” (i.e., at least one
bad object was discovered). Otherwise, we re-
port that “no evidence of fraud was detected.”
When a bad object is detected, additional inves-
tigation and further testing may be required to
determine the actual cause of the problem.

We wish it to be the case that if a large amount
of fraud has occurred (i.e., if the number of cor-
rupted objects is b or greater), then we have a
high chance of detecting at least one bad object.

Given that we are drawing, without replace-
ment, a sample of size u from a universe of size
n containing b bad objects, the chance that no
bad objects are detected (i.e. all bad objects es-
cape detection) is:

e(n, b, u) =
(

n− b

u

)
/

(
n

u

)
(16)

=
(n− b)!

(n− b− u)!
· (n− u)!

n!
(17)

=
u−1∏
k=0

n− b− k

n− k
; (18)

the chance that at least one bad object is de-
tected is:

d(n, b, u) = 1 − e(n, b, u) (19)
2The question of how to pick objects “randomly” in

a publicly verifiable and trustworthy manner is itself a
very interesting one; see Cordero et al. [2] for an excellent
discussion of this problem.
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= 1 −
u−1∏
k=0

n− b− k

n− k
. (20)

We note here the convenient duality between
b and u, which we shall use later:

e(n, b, u) =
(n− b)!

(n− b− u)!
· (n− u)!

n!
(21)

=
(n− u)!

(n− u− b)!
· (n− b)!

n!
(22)

= e(n, u, b) . (23)

(If we think of the b bad objects as the “sam-
ple” and the u audit objects as the targets to be
detected, then we are just switching the role of
the bad objects and the audited objects.) This
duality gives us another expression for e(n, b, u),
dual to equation (18):

e(n, b, u) =
b−1∏
k=0

n− u− k

n− k
. (24)

For a given confidence level c (e.g. c = 0.95),
the optimal sample size u∗ = u∗(n, b, c) is the
least value of u making d(n, b, u) at least c:

u∗(n, b, c) = min{u | d(n, b, u) ≥ c } (25)
= min{u | e(n, b, u) ≤ 1− c } .(26)

We now address again the issue of non-integral
sample sizes. Although of course sample sizes
are integral in practice, our formulae work per-
fectly well for non-integral sample sizes, and it is
convenient for us to work with them: note that
e(n, b, u) equation (24) is well defined when u is
any real number, and so d(n, b, u) = 1−e(n, b, u)
is also well defined when u is any real number.
In practice, a non-integral optimal sample size
u∗(n, b, c) would be rounded up to the next inte-
ger du∗(n, b, c)e, which we denote as U∗(n, b, c).

Equations (16)–(20) and (25)–(26) are not new
here; they have been given and studied by others
(e.g. [13, 9, 5]).

In our running example, we have n = 400 and
b = 10; we wish to determine if a set of 400
objects contains 10 or more bad ones. Using a
computer program to try successive values of u
yields the result:

U∗(400, 10, 0.95) = 103 ; (27)

we need to test a sample (drawn without replace-
ment) of size at least 103 in order to determine
if our set of 400 objects contains 10 or more bad
objects, with probability at least 95%.

In some sense, this completes the analysis of
the problem; it is easy for a computer program
to determine the optimal sample size U∗(n, b, c),
given n, b, and c. (See http://uscountvotes.
org where such a program may be posted.)

However, it is useful to find simple but ac-
curate approximations for this optimal value
U∗(n, b, c) of u, that can be easily calculated
without the use of a computer. That is the main
purpose of this paper—to derive accurate and
rigorously justified approximations for U∗ that
can be evaluated by election officials using only
a pocket calculator.

The formulae of the previous section for T∗
(for sampling with replacement) are of course
crude estimates for U∗ (sampling without re-
placement); they are an overestimate.

To see this, note that equation (18) implies
that

e(n, b, u) ≤
(

1− b

n

)u

(28)

Now (1 − b/n)u is the probability of drawing a
multiset of size u with replacement having no bad
objects. Thus, for a fixed sample size, the prob-
ability of failure when drawing samples with-
out replacement is, as one would expect, upper
bounded by the probability of failure when draw-
ing samples with replacement. The quality of
this upper bound is a function of the difference
between the right-hand sides of equation (18)
and inequality (28). Note that this difference
grows as u increases, and for high probability re-
sults with large n and small b, u can be quite
large. (Indeed, when b = 1 and c very large,
t∗(n, b, c) is approximately n ln(n) — this is the
“coupon collector’s problem” — while u∗(n, b, c)
is clearly no larger than n.)

Thus, we can in fact use the Rule of Three
or other formulae from the preceding section to
get an upper bound on the sample size needed
for sampling without replacement; in many cases
this may give a satisfactory first-cut answer. But
we can do better, as the next section shows.
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4.1 Upper Bounds on Optimal Sam-
ple Size for Sampling without Re-
placement

We now develop an upper bound on the optimal
sample size when sampling without replacement
to detect at least one of b bad objects in a uni-
verse of size n with probability at least c.

From equation (24), one can derive (analogous
to the derivation of equation (28) from equa-
tion (18)), the following bound:

e(n, b, u) ≤
(

1− u

n

)b

(29)

Our goal is to determine a value u is suffi-
ciently large to guarantee that e(n, b, u) is at
most 1− c; from the bound (29) we can obtain
such a sufficiently large u:(

1− u

n

)b

≤ 1− c

⇔ 1− u/n ≤ (1− c)1/b

⇔ u/n ≥ 1− (1− c)1/b

⇔ u ≥ n(1− (1− c)1/b) (30)

Since (29) holds for any u satisfying (30),
u∗(n, b, c) is no larger than the right hand side
of (30). This upper bound on u∗(n, b, c) is our
first major result for sampling without replace-
ment; it is a formula that is easy to calculate,
yet which is remarkably accurate.

We designate this bound as u1:

First Upper Bound on u∗(n, b, c):

u∗(n, b, c) ≤ u1(n, b, c) (31)

where

u1(n, b, c) = n(1− (1− c)1/b) (32)
= n(1− exp(ln(1− c)/b))

The formula for u1(n, b, c) is the same as the
that proposed by Rivest [11] as an approximation
for u∗(n, b, c); however, that paper only justified
u1 as an approximation heuristically and empiri-
cally; here we have shown that it is a firm upper
bound for u∗(n, b, c).

Of course, if we round up u1(n, b, c) to obtain
U1(n, b, c), we obtain an integer upper bound on
the optimal integral sample size:

U1(n, b, c) = du1(n, b, c)e
≥ du∗(n, b, c)e = U∗(n, b, c) .

A Tighter Upper Bound: We can obtain a
tighter upper bound by analyzing the product in
equation (24) directly. Using the following well-
known inequalities relating the harmonic, geo-
metric, and arithmetic means for non-negative
values xi [6]

k∑k
i=1 1/xi

≤ k

√√√√ k∏
i=1

xi ≤
∑k

i=1 xi

k
(33)

we proceed as follows, where Hk is the k-th har-
monic number, i.e., Hk = 1 + 1/2 + · · ·+ 1/k.

e(n, b, u) =
b−1∏
k=0

(
1− u

n− k

)

=

 b

√√√√b−1∏
k=0

(
1− u

n− k

)b

≤
(

1
b

b−1∑
k=0

(
1− u

n− k

))b

(34)

=

(
1− u

b
·

b−1∑
k=0

1/(n− k)

)b

=
(

1− u · Hn −Hn−b

b

)b

As before, our goal is to determine a u sufficient
to guarantee that the above quantity is at most
1− c. Solving the inequality(

1− u · Hn −Hn−b

b

)b

≤ 1− c

in much the same manner as the derivation of
inequality (30), we obtain

u ≥ b

Hn −Hn−b
· (1− (1− c)1/b) (35)

Note that the bound obtained in inequality (35)
was derived using only one approximation, in-
equality (34) above. The right-hand side of
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inequality (35) is our second upper bound on
the optimal sample size required for sampling
without replacement. We call this upper bound
u2(n, b, c); we also let U2(n, b, c) = du2(n, b, c)e;
this is of course an upper bound on U∗(n, b, c).

Second Upper Bound on u∗

u∗(n, b, c) ≤ u2(n, b, c) (36)

where

u2(n, b, c)

=
b

Hn −Hn−b
· (1− (1− c)1/b) (37)

=
b

Hn −Hn−b
· (1− exp(ln(1− c)/b))

Unfortunately, most calculators don’t have a
“harmonic number” button, so inequality (35)
isn’t so useful in practice!

To fix this situation, without weakening our
bound too much, we note that

b

Hn −Hn−b
=

b∑b−1
k=0

1
n−k

is the harmonic mean of the set of values
{n, . . . , n− b + 1}; thus, we can obtain a simpler
though slightly weaker bound by employing in-
equality (33) and replacing this harmonic mean
by the corresponding (and somewhat larger)
arithmetic mean (n− (b−1)

2 ), which yields

u ≥
(
n− (b− 1)

2

)
·
(
1− (1− c)1/b

)
(38)

This gives our third and final upper bound:

Third Upper Bound on u∗

u∗(n, b, c) ≤ u3(n, b, c) (39)

where

u3(n, b, c)

=
(
n− (b− 1)

2

)
·
(
1− (1− c)1/b

)
(40)

=
(
n− (b− 1)

2

)
·
(
1− exp(ln(1− c)/b)

)

Note the similarity of inequalities (30)
and (38): the factor n has been replaced with
(n − (b−1)

2 ). Thus, the new inequality (38) (and
inequality (35) which precedes it) is a strict im-
provement over inequality (30) for all b > 1 (and
the same for b = 1).

We let U3(n, b, c) = du3(n, b, c)e; this is of
course also an upper bound on U∗(n, b, c).

Inequality (38) is our third (and final) upper
bound on the optimal sample size required for
sampling without replacement; it is the inequal-
ity that we recommend for actual use in prac-
tice.3 As we see in the next section, it should
never give a sample size that is more than 3 too
large, assuming that c ≤ 0.9975.

4.2 Lower Bounds on Optimal Sam-
ple Size for Sampling without Re-
placement

Here is a simple proof that our bound (38) does
not exceed u∗(n, b, c) by too much. Interestingly,
the amount that it exceeds u∗(n, b, c) is largely
independent of both n and b.

We now give a lower bound on our probability
of failure, derived from equation (24), comple-
mentary to our previous upper bound (29):

e(n, b, u) =
b−1∏
k=0

n− u− k

n− k

=
b−1∏
k=0

(
1− u

n− k

)

≥
(

1− u

n− b + 1

)b

.

Thus, our probability of failure is at least 1 − c
if (

1− u

n− b + 1

)b

≥ 1− c .

Solving for u, this is equivalent to

u ≤ (n− (b− 1)) · (1− (1− c)1/b) .

3We also developed other formulae – such as

n · (1 − (1 − c)−1/(n ln(1− b
n

))) + 1

which we could prove to be an upper bound on optimal
sample size; the current paper only reports on the most
useful such bounds.
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Thus,

u∗(n, b, c) ≥ (n− (b− 1)) · (1− (1− c)1/b) (41)

Note the resemblance of this lower bound on u∗
to the upper bound of inequality (38):

u∗(n, b, c) ≤ (n− (b− 1)/2) · (1− (1− c)1/b).

Now we can show that the bound (38) does not
exceed u∗(n, b, c) by much; the difference is at
most

(b− 1)
2

· (1− (1− c)1/b). (42)

Note that this is independent of n. It is also
effectively independent of b: Using elementary
calculus, one can show that the difference (42)
above is monotonically increasing in b and that

lim
b→∞

[
b−1
2 · (1− (1− c)1/b)

]
=

− ln(1− c)
2

Thus, our bound u3(n, b, c) never exceeds
u∗(n, b, c) by more than (− ln(1 − c))/2, inde-
pendent of n and b, and this quantity is less
than 3 for all c ≤ 0.9975. (It follows that
U3(n, b, c)− U∗(n, b, c) is at most 3.)

Similar reasoning shows that our bound
u1(n, b, c) never exceeds u∗(n, b, c) by more than
twice as much as u3(n, b, c) does: it is off by no
more than (− ln(1− c)), independent of n and b,
and this quantity is less than 6 for all c ≤ 0.9975.

In conclusion, we have a sample size

u3(n, b, c) =
(
n− (b− 1)

2

)
·
(
1− (1− c)1/b

)
that is

• simple,

• provably “conservative” (an upper bound on
u∗(n, b, c)),

• empirically very accurate (as shown in the
appendix), and

• provably accurate (exceeding u∗ by no more
than (− ln(1− c))/2 for all n, b, c).

5 Related Questions

This paper has largely been concerned with de-
termining the size of a statistical audit u for a
given universe of size n, desired fraud detectabil-
ity level b, and desired confidence c. However,
there are related “inverse” questions which are
frequently asked that our bounds and techniques
can usefully address.

For example, the size u of a statistical audit
may be mandated by law (e.g., u = 0.02n for
2% audit), and one may wish to know for this u
and a given b what confidence level c one has in
detecting corruption of b (or more) objects. This
is the “confidence level” question.

Or, one may wish to know for this u and a
given c the smallest number b of corrupted ob-
jects b one can detect with confidence at least
c. This is the “level of fraud detectability” ques-
tion.

These two questions can be effectively an-
swered using the bounds or techniques developed
above. Essentially, the four variables n, u, b, and
c are related by the equation(

n− b

u

)/(n

u

)
=
(

n− u

b

)/(n

b

)
= 1− c

and fixing any three of these variables, one can
approximate the fourth. We show how to answer
the two questions above using our bounds and
techniques.

5.1 Estimating Confidence Levels

Given a universe of size n and a given audit size
u, what confidence can one have in being able to
detect one (or more) of b “bad” objects?

This confidence is given exactly by

c = d(n, b, u) = 1− e(n, b, u). (43)

Much of Section 4 was effectively devoted to
proving the following bounds on e(n, b, u):(

1− u

n− (b− 1)

)b

≤ e(n, b, u)

≤
(

1− u

n− (b− 1)/2

)b

.
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Applying these inequalities to equation (43), we
obtain:

Upper and Lower Bounds on c

c ≥ 1−
(

1− u

n− (b− 1)/2

)b

c ≤ 1−
(

1− u

n− (b− 1)

)b

The above inequalities may be useful, say,
when considering legislation that mandates some
fixed level u of auditing (see [4] as one example
of this sort of consideration).

5.2 Estimating Level of Detectable
Fraud

Given a universe of size n, a fixed audit size u,
and a confidence level c, what is the smallest b
for which can one detect one (or more) of b “bad”
objects with confidence at least c?

While our original problem was solved by ap-
proximating the quantity

e(n, b, u) =
(

n− u

b

)/(n

b

)
,

this dual problem is best solved by approximat-
ing the equivalent quantity

e(n, b, u) =
(

n− b

u

)/(n

u

)
.

Using the techniques developed in Section 4, one
can derive the following analogous bounds on
e(n, b, u):(

1− b

n− (u− 1)

)u

≤ e(n, b, u)

≤
(

1− b

n− (u− 1)/2

)u

.

Setting e(n, b, u) = 1 − c and solving for b, we
obtain:

Upper and Lower Bounds on b

b ≥ (n− (u− 1)) · (1− (1− c)1/u)
b ≤ (n− (u− 1)/2) · (1− (1− c)1/u)

As before, one can show that these bounds are
never different by more than (− ln(1 − c))/2,
which is less than 3 for all c ≤ 0.9975.

One could then apply these results using rela-
tionship (3) to estimate what is the correspond-
ing smallest margin of victory that one could
confirm with an audit of the given size u, to
the given confidence level c, in a straightforward
manner.

6 Discussion

We note (as other authors have as well) that
overly simple rules, such as “sample at a 1%
rate”, are not statistically justified in general.
Using the Rule of Three, we see that a 1% sam-
ple rate is appropriate only when

t ≤ 0.01n

or
3n/b ≤ 0.01n

or
b ≥ 300 .

Since b is the total number of corrupted objects,
we see that a 1% sampling rate may be inad-
equate when n is small, or the fraud rate is
small. . . (Of course, the Rule of Three is only for
sampling with replacement, but the intuition it
gives carries over to the case of sampling without
replacement.)

We hope that the rules presented here will pro-
vide useful guidance for those designing sampling
procedures for audits.

Indeed, since the formula

U3(n, b, c) = d(n−(b−1)/2)(1−(1−c)1/b)e (44)

is so simple, so accurate, and always conserva-
tive, one could imagine just always using this
sample size (instead of the optimal value), or
writing this formula into election law legislation
mandating audit sample sizes. Along with this
formula, one could perhaps mandate use of equa-
tion (3) deriving the number b of bad objects
to test objects from the apparent margin of vic-
tory m of the winner. (But it would probably be
best to merely mandate a sample size sufficient

10



to detect, with a specified level of confidence,
any election fraud sufficient to have changed the
outcome. In addition, one may wish to ensure
that objects (e.g. precincts) with surprising or
suspicious results also get examined.)
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A Appendix

A.1 Description of empirical results

In this appendix, we illustrate the use of our final
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compare it to the optimal number of objects in a
sample as well as to the lower bound we derived
in Section 4. All numbers in this appendix refer
to sampling without replacement.

Each table contains values for a different num-
ber n of objects, where n takes representative
values from 2 to 10, 000. Within a table, each
row considers a different value of b, the number
of “bad” objects. In each table there are two sec-
tions, one for a confidence level of 0.95 and the
other for a confidence level of c = 0.99. Within
each section, there are three columns containing
the lower bound on the optimal number of ob-
jects in a sample

d(n− (b− 1)) · (1− (1− c)1/b)e,

the optimal number U∗(n, b, c) of elements in a
sample, and our final upper bound

d(n− (b− 1)/2) · (1− (1− c)1/b)e,

respectively.
Note the accuracy of our final upper bound,

the formula we suggest be used in practice. Over
the entire range of n, b, and c values shown, this
upper bound exceeds the optimal value in only
four out of 156 cases, and in each of those four
cases, it exceeds the optimal value by only 1.

A.2 Charts of optimal and estimated
sample sizes

c = 0.95 c = 0.99
n b low opt up low opt up
2 1 2 2 2 2 2 2

c = 0.95 c = 0.99
n b low opt up low opt up
5 1 5 5 5 5 5 5
5 2 4 4 4 4 4 5

c = 0.95 c = 0.99
n b low opt up low opt up
10 1 10 10 10 10 10 10
10 2 7 8 8 9 9 9
10 5 3 4 4 4 5 5

c = 0.95 c = 0.99
n b low opt up low opt up
20 1 19 19 19 20 20 20
20 2 15 16 16 18 18 18
20 5 8 9 9 10 11 11
20 10 3 4 5 5 6 6

c = 0.95 c = 0.99
n b low opt up low opt up
50 1 48 48 48 50 50 50
50 2 39 39 39 45 45 45
50 5 21 22 22 28 29 29
50 10 11 12 12 16 17 17
50 20 5 6 6 7 9 9

c = 0.95 c = 0.99
n b low opt up low opt up

100 1 95 95 95 99 99 99
100 2 77 78 78 90 90 90
100 5 44 45 45 58 59 59
100 10 24 25 25 34 36 36
100 20 12 13 13 17 19 19
100 50 3 5 5 5 7 7

c = 0.95 c = 0.99
n b low opt up low opt up

200 1 190 190 190 198 198 198
200 2 155 155 155 180 180 180
200 5 89 90 90 118 120 120
200 10 50 51 51 71 73 73
200 20 26 27 27 38 40 40
200 50 9 11 11 14 16 16
200 100 3 5 5 5 7 7

c = 0.95 c = 0.99
n b low opt up low opt up

500 1 475 475 475 495 495 495
500 2 388 388 388 450 450 450
500 5 224 225 225 299 300 300
500 10 128 129 129 182 183 183
500 20 67 69 69 99 101 101
500 50 27 28 28 40 42 42
500 100 12 14 14 19 21 21
500 200 5 6 6 7 9 10
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c = 0.95 c = 0.99
n b low opt up low opt up

1000 1 950 950 950 990 990 990
1000 2 776 777 777 900 900 900
1000 5 449 450 450 600 601 601
1000 10 257 258 258 366 368 368
1000 20 137 138 138 202 204 204
1000 50 56 57 57 84 86 86
1000 100 27 29 29 41 43 43
1000 200 12 14 14 19 21 21
1000 500 3 5 5 5 7 7

c = 0.95 c = 0.99
n b low opt up low opt up

2000 1 1900 1900 1900 1980 1980 1980
2000 2 1553 1553 1553 1800 1800 1800
2000 5 900 901 901 1202 1203 1203
2000 10 516 517 517 735 737 737
2000 20 276 277 277 408 410 410
2000 50 114 115 115 172 174 174
2000 100 57 58 58 86 88 88
2000 200 27 29 29 41 44 44
2000 500 9 11 11 14 16 17
2000 1000 3 5 5 5 7 7

c = 0.95 c = 0.99
n b low opt up low opt up

5000 1 4750 4750 4750 4950 4950 4950
5000 2 3882 3882 3882 4500 4500 4500
5000 5 2252 2253 2253 3008 3009 3009
5000 10 1292 1294 1294 1842 1844 1844
5000 20 693 695 695 1025 1027 1027
5000 50 288 290 290 436 438 438
5000 100 145 147 147 221 223 223
5000 200 72 73 73 110 112 112
5000 500 27 29 29 42 44 44
5000 1000 12 14 14 19 21 21
5000 2000 5 6 6 7 10 10

c = 0.95 c = 0.99
n b low opt up low opt up

10000 1 9500 9500 9500 9900 9900 9900
10000 2 7764 7764 7764 9000 9000 9000
10000 5 4506 4507 4507 6017 6018 6018
10000 10 2587 2588 2588 3688 3689 3689
10000 20 1389 1390 1390 2053 2055 2055
10000 50 579 581 581 876 878 878
10000 100 293 294 294 446 448 448
10000 200 146 148 148 224 226 226
10000 500 57 59 59 88 90 90
10000 1000 27 29 29 42 44 44
10000 2000 12 14 14 19 21 21
10000 5000 3 5 5 5 7 7
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