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Abstract

We present a new horizontal code transfer technique, program frac-
ture and recombination, for automatically replacing, deleting, and/or
combining code from multiple applications. Benefits include automatic
generation of new applications incorporating the best or most desirable
functionality developed anywhere, the automatic elimination of security
vulnerabilities, effective software rejuvenation, the automatic elimination
of obsolete or undesirable functionality, and improved performance, sim-
plicity, analyzability, and clarity.

1 Introduction

Horizontal gene transfer enables organisms to acquire useful functionality evolved
and refined in other organisms. Examples include plasmid transfer (which plays
a major role in acquired antibiotic resistance [2]), virally-mediated gene ther-
apy [6], and the transfer of genes that code for insect toxins from bacteria to
fungi to provide insect resistance in symbionts [1]. Horizontal gene transfer is
recognized as significant factor in the development of many forms of life [7].

Like biological organisms, software developers also leverage previous devel-
opment and refinement efforts, in this case via code reuse. While code reuse can
significantly reduce development effort, in its current form it requires significant
manual effort as developers work to locate, extract, and integrate previously
developed code from other programs into the program they are developing.
CodePhage, which automatically locates and transfers code that implements
security checks from donors to recipients (endowing the recipient with immu-
nity against previously effective attacks) highlights the tremendous potential of
automatic horizontal code transfer techniques [13, 12].

We present a new horizontal code transfer technique, program fracture and
recombination, for automatically locating and transferring computations be-
tween multiple applications. This technique promises to significantly advance
our ability to more productively leverage the enormous amount of software
that already exists but has not been packaged into easily reusable components.



Even more, program fracture and recombination holds out the promise of auto-
matic program improvement and evolution without the need for any developer
or potentially even any human involvement. Starting with multiple programs,
horizontal program fracture and recombination operates as follows:

• Fracture: Fracture the programs into shards — each shard is a piece or
pieces of the program that implements a computation or functionality. The
granularity of the fracture determines the size of the shards. Potentially
useful granularities include functions, procedures, classes, abstract data
types, modules, loops, and program slices. Program fracture typically
includes the encapsulation of each shard into its own separately invocable
program for testing, analysis, and exploration.

• Characterization: Characterize the behavior and characteristics of each
shard. Examples of such characterization include running the encap-
sulated shard on automatically generated inputs to obtain example in-
put/output pairs for the shard, recording input/output pairs for the shard
as invoked in context by sample executions of the program in which it was
originally embedded, static analyses which partially or completely char-
acterize the semantics of the shard, abstractions of the shard semantics
obtained by generalizing the recorded input/output pairs, and specifica-
tions, either inferred or provided by the developer.

• Shard Matching and Replacement: One potential application of pro-
gram fracture and recombination is to replace an original shard from one
program with a better replacement shard from another program. There
are many axes along which the replacement shard may be better — it
may be more efficient, simpler to understand, endowed with additional
capabilities such as the ability to execute successfully in parallel or dis-
tributed environments, it may have more error checking code, it may be
more secure or better preserve privacy, or it may be missing undesirable
or irrelevant functionality.

Shard matching and replacement matches a shard from one program with
a replacement shard from another program (or even potentially the same
program). It then inserts the replacement shard into the place of the
original shard.

• Shard Insertion: Another potential application of program fracture and
recombination is to transfer functionality from one program to another.
In this application a shard is taken from a donor program and inserted
into a recipient. CodePhage, which automatically locates and transfers
security checks across multiple applications, implements a form of shard
insertion [13, 12].

• Shard Removal: As software evolves, previously desirable functionality
can often become irrelevant. Potential drawbacks include difficulty ana-
lyzing the program and residual errors and vulnerabilities left over in the
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now irrelevant code [11, 10]. Shard removal can automatically eliminate
the now undesirable code and functionality. It can also eliminate func-
tionality that should never have been introduced into the application at
all.

Given the ease of obtaining sample inputs and outputs, either by automati-
cally generating the input or by recording inputs presented to shards in context
during executions of the enclosing programs, we expect input/output driven
shard identification and transfer to play a prominent role. Input/output driven
approaches can also promote the replacement of shards with other shards with
different semantics — for example, the replacement of shards with errors or
incomplete implementations with shards that have fewer errors or implement
more cases. One straightforward approach to implementing this kind of shard
replacement with analysis/semantics-based approaches would involve a concept
of specification ordering and desirability.

1.1 Efficient Implementations

Many computations have straightforward basic implementations but very com-
plex maximally efficient implementations. Particularly prominent examples in-
clude sorting, linear algebra, and linear programming. The availability of power-
ful but difficult to program hardware such as graphics accelerators can increase
the distance between basic and maximally efficient implementations.

Program fracture can enable developers to write a basic implementation, in
some cases by simply copying several lines from a textbook. Fracturing their
program can expose the basic implementation as one of the shards. Fractur-
ing other programs can expose replacement shards that implement the same
functionality (or even approximate versions of the functionality). Replacing the
original basic shard with the more efficient shard can automatically improve the
performance without the need for the developer to manually investigate the per-
formance, find substitutes, or refine the implementation. One way to estimate
the efficiency is to simply run and time the shards on sample inputs.

1.2 Software Transparency and Simplicity

One drawback of optimized code is its complexity and opacity — an efficient au-
totuned implementation of a basic operation such as FFT can include dynamic
code generation and compilation, exploration of multiple alternatives, and mul-
tilingual implementations [4]. The opacity can make it difficult to understand
the semantics of the code, how it operates, and the role that it plays in the
computation. The complexity can induce extraneous dependences that impair
portability and the ability to operate on specialized platforms. Systems that
dynamically generate and compile different versions of the code (autotuners are
a prominent example) may require the presence of a compiler, a significant re-
quirement that not all computing platforms can satisfy. Appropriate fractures
could automatically find a simpler, more transparent replacement with fewer
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dependences. Enhanced code transparency and portability are but two of the
potential benefits.

1.3 Software Aging and Shard Rejuvenation

Of course, optimization can also become counterproductive over time — as the
characteristics of the computational platform change, optimizations targeted at
previous platforms often persist in the code even though they have no remain-
ing purpose. Too often the result is a complex block of code optimized for an
obsolete hardware platform. Another source of counterproductive software ag-
ing is obsolete functionality that remains (potentially disabled) in the current
version of the software. Like obsolete optimizations, obsolete functionality can
add complexity and obscure the purpose and operation of the software. Both
obsolete optimization and obsolete functionality are simply examples of how
undesirable software changes accrete over time, increasing software complexity
and making it difficult to understand or modify the software.

This accretion has known negative consequences — as software systems age,
they are known to become increasingly difficult for human developers to main-
tain [3]. At some point, the code becomes so difficult to change that the proba-
bility that a given change will introduce new unacceptable behavior exceeds the
probability that the change will accomplish its desired goal.

Program fracture and replacement can help promote software rejuvenation.
Identifying more modern, transparent, and relevant replacement implementa-
tions for specific shards, then replacing the aging original shard with the younger
replacement shard can help extend the useful lifetime of the program.

1.4 Error Handling and Corner Case Code

Error handling and corner case code can be notoriously difficult to develop and
get right, in part because the situations in which the code is relevant can be
difficult to envision. Program fracture and recombination supports a model of
development in which programmers write code that is only designed to handle
the common case and elides the error handling and corner case code that can
obscure the structure, purpose, and operation of the software. The system
can then automatically discover and replace the original shard with a more
elaborately developed shard that includes error handling and corner case code.
It is also possible to leave the core computation itself in place, then enhance
the computation with automatically located and transferred checks from other
programs [13, 12].

Note that this approach can support quickly engineered prototype compo-
nents that are designed to work only in limited contexts or for limited use cases.
A linear program solver taken directly from a textbook, for example, may work
only for very small linear programs, with phenomena such as numerical insta-
bility crippling the solver for larger problems. But a textbook linear program
solver can define the desired behavior for small problems, making it possible
to identify and use a more intensively engineered replacement linear program
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solver. Given that developing a robust solver can take years or even decades [9],
the potential productivity enhancements are substantial.

It is even possible to work with shards that implement only a few hard-coded
cases or rely on humans to provide the desired functionality.

1.5 Multiple Code Views

One drawback of including error handling and corner case code is that it obscures
the structure and purpose of the software, making the software more difficult
to understand. One way to attack this problem is to replace the original com-
plex code with a simpler replacement shard that focuses on the common case.
The concept is to automatically generate simpler, easier to understand code
views with multiple perspectives designed to support multiple different pur-
poses. Instead of a single monolithic code base that includes all of the code and
functionality, whether relevant or not, this perspective promotes a fluid set of
views designed to satisfy different needs and goals. One particularly noteworthy
aspect is the fluid view of program semantics and the recognition that techni-
cally incorrect or incomplete programs are, for many purposes, more useful than
more correct or complete programs. We have focused here on the elimination of
potentially confusing error handling or corner case code as a way to enhance the
ability of a developer to identify and work with the important core functionality
of the program. But excess error handling and corner case code can also impair
performance or introduce undesirable dependences on other software or system
components.

1.6 Shard Analyzability

Complex code (whether resulting from optimization, aging, the inclusion of er-
ror handling and/or corner case functionality) can significantly impair the static
analyzability of the program. Replacing this complex code with simpler shards
can improve the analyzability of the program and promote the automatic ex-
traction of useful information that can provide insight into the software and
its properties. The success of accurate analysis stubs in enabling the success-
ful information flow analysis of Android applications provides some indication
of the potential for improved static analyzability that shard replacement can
deliver [5].

One particularly intriguing aspect of program fracture and recombination is
the potential it offers to simplify not just the code, but also the analysis results.
Simpler code can be easier to analyze, enhancing the precision and scalability of
the overall analysis. Sound static analyses reflect the complete semantics of the
program. Substituting shards with simpler semantics can simplify the analysis
results and enhance compositionality and scalability. Devising static analyses
that analyze the program along several different axes (for example, effects on
different parts of the program state and different aspects of the semantics) and
using the axes to place the resulting analysis result within a projectable space
of analysis results can promote the effective elimination of irrelevant analysis
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components. In this way the system can deploy even sound program analyses
and use the analysis results to drive shard replacement algorithms that work
with compatible but not semantically equivalent shards.

1.7 Enhanced Capabilities

Like optimization, capabilities such as distribution or the ability to operate
safely in parallel contexts can require significant development effort. Program
fracture and recombination can enable developers to write simple, less capa-
ble versions of core functionality, then automatically replace this functionality
with more extensively engineered versions that can operate successfully in new
contexts or exploit resources available in specialized contexts.

1.8 Functionality Elimination via Shard Removal

Programs may often contain components that have undesirable functionality.
Security vulnerabilities [11], the ability to process a larger than desired set of
inputs, logging or error reporting code that interacts with an obsolete subsys-
tem, or even certain features such as support for SNMP that may no longer
be desirable [10] can all be seen as undesirable functionality. Replacing the
shard that implements the undesirable functionality with the null shard that
does nothing can improve the program by eliminating the undesirable function-
ality. It may also be possible, of course, to find other replacement shards that
implement the desired functionality but not the undesired functionality.

1.9 Functionality Enhancement via Shard Insertion

It is also possible to transfer shards directly into programs to obtain software
hybrids with the combined functionality of both programs. This insertion would
take a shard or shards from a donor and insert them into a recipient at an
appropriate insertion point. There would be no replacement shard — the new
shard or shards would enhance the recipient with new functionality not present
before the insertion of the shard. CodePhage is one system that implements
this shard transfer capability [13, 12].

1.10 Shards as Specifications and Code Search

Program fracture and recombination promotes the view of shards as specifica-
tions. It is often straightforward to code up enough of a computation to enable
the program fracture and replacement system to find an appropriate replace-
ment shard. In this way shards can serve as specifications that enable effective
code search.

1.11 Dependence Elimination

One of the primary goals of program fracture is to obtain shards that are freed
from dependences they may have had on parts of the original program that
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should not be transferred with the shard. One way to realize this goal is to break
the program into shards in such a way that each shard omits these dependences.
In some cases this may require an intelligent fracture process that explicitly finds
dependences on undesirable parts of the program, then eliminates the code that
creates the dependence. The fracture may simply create a stub that breaks the
dependence while still enabling the rest of the code with transitive dependences
to execute, it may trace out and remove code that transitively depends on the
excised dependence, or it may employ some combination of the two techniques.

2 Case Study

We have implemented a protoype program fracture and recombination system.
This system fractures applications up into individual shards, with one shard for
each procedure in the application. There is a program for each shard — the
program reads in inputs for the parameters of the shard’s procedure, invokes the
procedure, then prints the result that the procedure returns and the (potentially
updated) values of the parameters.

The current implementation is designed to work with multiple programs. It
finds shards whose parameter types match, one from each program, then auto-
matically generates sample parameter values, invokes each shard on the sample
values, and records the execution times and resulting return and updated pa-
rameter values. It then uses this data to find set of semantically interchangable
shards — i.e., sets of shards that have (if desired, approximately) the same ob-
served input/output relation. It uses the recorded execution times to find the
most efficient shard, then replaces every other interchangable shard with this
shard.

We applied our prototype implementation to two programs. The first reads
in a file of salary information, then prints the (anonymized) top ten salaries.
Figure 1 presents the relevant source code.

void doSalaries() {

int next;

next = 0;

for (next = 0; next < 1048576; next++) {

if (scanf("%4095s", first) == EOF) break;

if (scanf("%4095s", last) == EOF) break;

if (scanf("%d", salaries+next) == EOF) break;

}

quicksort(salaries, next);

for (int i = next - 1; (i >= 0) && (next-i < 10); i--) {

printf("%d\n", salaries[i]);

}

}

Figure 1: Salary Program
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The second program is designed to compact a set of objects stored per-
sistently in a file. Over time the file may become fragmented as objects are
allocated and deallocated. The program reads in an index. The first line of the
index specifies the file containing the objects and the file to write that contains
the compacted objects. The remaining lines of the index contain pairs of num-
bers. Each pair specifies the starting and ending offsets of the object within the
file. The program reads in the offsets, sorts them, then uses the sorted offsets
to read the objects in and write out the compacted file. Figure 2 presents the
relevant source code.

In this case, the quicksort shard from the salary application exhibits su-
perior performance to the sort shard from the object compaction application
(which uses bubble sort). So our implementation automatically replaces the
sort in the object compaction implementation with the quick sort from the
salary application.

3 Compatible Shards and Adapters

Our current implementation works with compatible shards that have the same
type signatures. There are several ways to generalize this technique to include
more replacement shards. In general, we expect the automatic generation of
adapters and shims that enable replacement shards that are not immediately
precisely compatible. These techniques can also enable the automatic insertion
of shards into contexts that require some adaptation before the shard can be
automatically inserted [8].
Explicit Polymorphism: Some programming language constructs immedi-
ately support this kind of replacement. The use of explicitly polymorphic con-
structs such as C++ templates, for example, promotes the construction of spe-
cializable shards that can work in a variety of contexts. The use of parameter
order canonicalization (by, for example, defining a total order on program types
and working with adapters that expose the shard interface in that total order)
can enable parameter redordering adapters that again enable the discovery and
replacement of shards with otherwise incompatible parameter orders.
Data Structure Translators: The next step is data structure translation
adapters. One example is adapters that perform array index translations to
enable replacement shards to work with different array indexing schemes. One
class of adapters changes the way the arrays are stored in memory, leaving
the indexing code of the replacement shard in place. Another class leaves the
storage scheme in place but statically analyzes and transforms the code of the
replacement shard to work with the storage scheme of the program into which
it is inserted.

It is also possible to leverage abstract data types — many abstract data
types offer implementations of equivalent semantics with different performance
or other tradeoffs. In some cases the developer may have used only a subset
of the functionality of one abstract data type that could be implemented more
efficiently by a less general but more efficient other abstract data type. In all of
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void doCompact() {

int ifd, ofd;

int next;

scanf("%4095s %4095s\n", ifn, ofn);

for (next = 0; next < 1048576; next++) {

if (scanf("%d", begin+next) == EOF) break;

if (scanf("%d", end+next) == EOF) break;

}

sort(begin, next);

sort(end, next);

ifd = open(ifn, O_RDONLY);

ofd = open(ofn, O_CREAT | O_TRUNC | O_WRONLY, S_IRUSR | S_IWUSR);

int current = 0;

if (ifd >= 0 && ofd >= 0) {

printf("%s\n", ofn);

for (int i = 0; i < next; i++) {

if (lseek(ifd, begin[i], SEEK_SET) == begin[i]) {

if (end[i]-begin[i] < 1048576) {

int len = end[i]-begin[i];

if (read(ifd, buf, len) == len) {

printf("%d %d\n", current, current + len);

if (write(ofd, buf, len) == len) {

current = current + len;

} else {

fprintf(stderr, "compact failed\n");

exit(1);

}

}

}

}

}

}

}

Figure 2: Object Compaction Program
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these cases the recombination can use the data structure semantics to recognize
compatible shards from different data structures, with each shard in this case
consisting of subsets of the abstract data types. This example shows that shards
do not need to consist of single procedures or methods — they can be modules,
related groups of code, or even arbitrary otherwise disconnected pieces of code
extracted from single or multiple applications.
Specification-Based Compatibility: It is also possible to base compatabil-
ity on specifications, either provided by the developer as part of the software
development process or automatically inferred by an analysis (either static or
dynamic). Shards with the same specification are interchangable. Factoring the
specifications along different axes, where each axis captures a different aspect
of the behavior of the shard such as side effects on different parts of the sys-
tem, input or output effects, logging effects, or various aspects of the semantic
properties of the shard.

4 External Dependences

Shards may often have external dependences on functionality present in their
original context but not present in their new context. Examples include invoked
modules and externally visible state such as global variables. These dependences
may require importing into the recipient and/or conflict resolution along with
appropriate initialization to operate properly.

It is possible to use program analysis to automatically identify and extract
accessed global variables. The global variable may be initialized to an appro-
priate value either by program analysis or by recording values that appear in
executions of one of the programs. Note that the program fracture and recombi-
nation system may need to pull in data structures such as hash tables and trees
that store auxiliary data upon which the shard depends. Another approach is
to trace the code in the original program that initializes the global variables or
other state upon which the shard depends, then transfer and insert that code
as well. Note that the process may be recursive — the initialization code may
access files or other external resources. In that case the program fracture and
repair system can transfer the files or external resources, simulate the effect
they have on the system via a spoofing or record/replay system, or even simply
record the data structures that are constructed as a consequence of interacting
with the external resources. In general, there is a chain of dependences from
the resource interaction to the end result on the system, and it is possible for
the program fracture and repair system to intercept the dependences anywhere
along the chain and reconstruct (or alternatively potentially transitively excise)
the effects.

The shard itself may also have a direct dependence on configuration files,
normal files, or other external resources. It is possible to use the same techniques
described above to deal with these dependences.

A more challenging situation occurs with dependences mediated via the op-
erating system or some other opaque system. For example, some packages or
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system calls require initialization to operate successfully, but the dependences
are controlled by data structures stored in the operating system or some other
opaque system. Here the program fracture and recombination system may need
some external knowledge of the dependence relationship so that it can, for ex-
ample, find and replay the appropriate initialization calls, synthesize an appro-
priate initialization sequence, or do a search to find the sequence in the original
program.

The shard may also have dependences on specific hardware components un-
available in other contexts or other unmovable resources. In this case the pro-
gram fracture and recombination system can simply excise the dependence. In
general, such dependence excision can be incorporated into arbitrary parts of
the system and not just for hardware dependences. One of the goals of program
fracture and recombination is to free useful pieces of code from dependences
on the original context in which it appeared. Dependence excision, potentially
following the dependences to completely eliminate the effects when appropriate,
is therefore a key element of program fracture and recombination.

5 Conclusion

We now have decades of investment in software systems, with desired function-
ality often implemented multiple times at varying levels of quality, performance,
and capabilities. In principle, the vast majority of the functionality that most
programs need has already been implemented. Our ability to profitably find and
combine relevant pieces of functionality, as opposed to our ability to develop new
software, may ideally become the limiting factor in software development. Pro-
gram fracture and recombination promises to significantly enhance our potential
in this critical area.
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