
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2015-011 April 9, 2015

A Cache Model for Modern Processors
Nathan Beckmann and Daniel Sanchez

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78061844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Cache Model for Modern Processors

Modeling high-performance cache replacement on modern last-level caches

Nathan Beckmann
Massachusetts Institute of Technology

beckmann@csail.mit.edu

Daniel Sanchez
Massachusetts Institute of Technology

sanchez@csail.mit.edu

ABSTRACT
Modern processors use high-performance cache replacement
policies that outperform traditional alternatives like least-
recently used (LRU). Unfortunately, current cache models
use stack distances to predict LRU or its variants, and do
not capture these high-performance policies. Accurate pre-
dictions of cache performance enable many optimizations
in multicore systems. For example, cache partitioning uses
these predictions to divide capacity among applications in
order to maximize performance, guarantee quality of ser-
vice, or achieve other system objectives. Without an accu-
rate model for high-performance replacement policies, these
optimizations are unavailable to modern processors.

We present a new probabilistic cache model designed for
high-performance replacement policies. This model uses ab-
solute reuse distances instead of stack distances, which makes
it applicable to arbitrary age-based replacement policies. We
thoroughly validate our model on several high-performance
policies on synthetic and real benchmarks, where its median
error is less than 1%. Finally, we present two case stud-
ies showing how to use the model to improve shared and
single-stream cache performance.

1. INTRODUCTION
On-chip caches are fundamental to cope with the long la-
tency, high energy, and limited bandwidth of main memory
accesses. Most cache space is consolidated in a large last-
level cache (LLC) shared among cores, which consumes sig-
nificant resources (e.g., over 50% of chip area [22]). Rising
core counts place mounting pressure on the memory system,
and have led to a resurgence of cache architecture research.
As a result, modern LLCs have become quite sophisticated
in their array organization and replacement policy.

Understanding the LLC’s behavior is critical to achieve sys-
tem objectives. Accurate predictions of cache behavior en-
able a large number of optimizations, including of single-
threaded performance [4, 8], shared cache performance [3,
26, 29, 37], fairness [26, 28], quality of service [3, 17], secu-
rity [27], etc.. These optimizations can be performed in
many ways, e.g. by explicitly partitioning the shared cache
in hardware [2,23,33] or software [7], or through job schedul-
ing to avoid interference in cache accesses [24,44,45].

Unfortunately, cache behavior is difficult to predict because
it depends on many factors, both of the application (e.g., its
access pattern) and the cache (e.g., its size, associativity, and
replacement policy). Existing cache models [1, 8, 25, 35, 43]
tend to focus on traditional, set-associative caches using

simple replacement policies like least-recently used (LRU),
pseudo-LRU, or random replacement. But modern proces-
sors do not use LRU (or pseudo-LRU) for the LLC.

Modern LLCs instead employ high-performance replacement
policies that greatly improve cache performance over tradi-
tional policies like LRU (Sec. 2.2). These designs are already
available in commercial processors [13,41], and a new model
is needed to understand their behavior.

We present a cache model that accurately predicts the be-
havior of high-performance replacement policies on modern
LLCs. Our model leverages two key observations: First,
each core’s private cache hierarchy filters accesses before
they reach the LLC, capturing most temporal locality [19].
Thus, LLC accesses are free of short-term temporal correla-
tions. (This is also why LRU is a poor policy for the LLC;
LRU relies on temporal locality, and at the LLC, there is lit-
tle.) Second, modern LLCs use hashing to map lines to sets,
reducing hotspots [21, 41]. Existing models often focus on
the behavior of individual sets and the effects of low asso-
ciativity, i.e. on conflict misses, which are hard to capture.
But with hashing, modern LLCs have near-uniform behav-
ior across sets and high effective associativity [32], making
conflict misses a second-order concern (Sec. 2.1).

These two observations mean that modern LLCs can be mod-
eled as a pseudo-random process: by capturing highly corre-
lated accesses, private caches essentially randomize the ac-
cesses seen by the LLC; and hashing and high effective asso-
ciativity mean that the replacement candidates constitute a
representative sample of cached lines. We therefore model
caching as a probabilistic process operating on individual
lines. Specifically, our model computes the probability of
various events (hits and evictions) occurring to individual
lines as they age. This approach lets us model arbitrary
age-based policies, including familiar policies like LRU and
several high-performance policies, and abstracts away the
details of array organization.

These features set our model apart from existing models.
Existing models target set-associative LRU caches, and many
model the performance of individual sets using stack dis-
tances, which measure the number of unique addresses be-
tween references to the same line. Stack distances are mean-
ingful for set-associative LRU caches, but have little meaning
for modern LLCs. In particular, it is unclear how to model
high-performance policies through stack distances (Sec. 2.3).

Our model is built from logically distinct components, each
of which captures a separate aspect of cache behavior (Sec. 4).

1

For instance, to model a new replacement policy, our model
only requires simple changes to a single parameter, the rank-
ing function (Sec. 5). We present an efficient, practical im-
plementation of our model (Secs. 6 and 7) and thoroughly
validate it against synthetic and real benchmarks (Sec. 8).
Finally, we present two case studies: (i) cache partitioning
with high-performance replacement (Sec. 9); and (ii) im-
proving the replacement policy itself (Sec. 10). In summary,
we offer an efficient way to predict the performance of high-
performance policies, allowing them to enjoy the many ben-
efits that prior modeling work has demonstrated for LRU.

2. BACKGROUND
We first review the relevant background in modern LLC ar-
chitecture, replacement policies, and cache modeling.

2.1 Modern cache architecture
Modern multicores feature multilevel cache hierarchies. Each
core has one or two levels of small, fast, private caches (L1

and L2). Private caches are backed by a much larger last-
level cache (LLC) that contains the bulk of cache capacity.

Cache architecture varies greatly across levels. The purpose
of the private levels is to cache the program’s most frequently
accessed data at low latency and high bandwidth, so they are
kept small and simple—and therefore fast. Specifically, both
the L1 and L2 adopt a familiar, set-associative architecture
and use simple replacement policies like pseudo-LRU.

The cache architecture is more sophisticated at the LLC.
Since off-chip misses are very expensive, various caching
techniques are attractive for the LLC that are a poor design
for the private levels. The most significant change is the re-
placement policy, discussed in detail below. In addition, the
LLC adopts an array organization that ensures high effec-
tive associativity. For instance, by hashing addresses before
indexing the array, the cache pseudo-randomly spreads ac-
cesses across sets and reduces conflicts [21,22,38,41]. Other
designs further increase effective associativity without adding
ways. For instance, skew-associative caches [36] use a differ-
ent hash function for each way, mixing replacement candi-
dates across sets; and zcaches [32] use cuckoo hashing to se-
lect many more replacement candidates than physical ways.

For the purposes of cache modeling, there are two important
implications. First, private caches capture most “hot” data,
so the LLC’s access stream is stripped of short-term temporal
correlations: a second access to the same line requires that
the line be first evicted from the L1 and L2. Second, since
modern LLCs use hashing and achieve high effective associa-
tivity, replacement candidates form a representative sample
of cached lines [4,29,32]. Details of array organization, which
have been the focus of prior studies [1, 8, 25, 35, 43], are rel-
atively unimportant in modern LLCs. Our model leverages
this insight by modeling replacement as a probabilistic pro-
cess affecting individual lines, not sets.

2.2 High-performance replacement policies
The largest single difference between the traditional caches
targeted by existing models and modern LLCs is the replace-
ment policy. Traditional replacement policies (e.g., LRU,
pseudo-LRU, least-frequently used, or random) all perform

poorly at the LLC because private caches filter out most lo-
cality [19]. LRU is the most common, but has common per-
formance pathologies. For instance, when an application’s
working set does not fit in the cache, LRU causes thrash-
ing and performance cliffs; e.g., iterating sequentially over a
1 MB array gets zero hits with less than 1 MB of cache, but
every access suddenly hits at 1 MB.

Such pathologies are avoided in the optimal replacement pol-
icy, Belady’s MIN [6, 25], which relies on a perfect oracle to
replace the line that will be reused furthest in the future.
Prior work has proposed many mechanisms and heuristics
that improve on LRU and attempt to emulate optimal re-
placement. We observe that, details aside, they use three
broad techniques:

• Recency: Recency prioritizes recently used lines over old
ones. LRU uses recency alone, leading to its pathologies
(e.g., thrashing). Most high-performance policies combine
recency with other techniques.

• Protection: When the working set does not fit in the
cache, some policies protect a portion of the working set
against eviction to avoid thrashing. This is equivalent to
thrash-resistance [14, 30].

• Classification: Some policies divide accesses into sepa-
rate classes, and treat lines of each class differently. For
example, several policies classify lines as either reused or
non-reused [14,20]. Classification works well when classes
have markedly different access patterns.

For instance, DIP [30] enhances LRU by dynamically de-
tecting thrashing using set dueling, and protects lines in
the cache by inserting most lines at low priority in the LRU

chain. DIP inserts a fixed fraction of lines (ǫ = 1/32) at high
priority to avoid stale lines. DRRIP [14] classifies between
reused and non-reused lines by inserting lines at medium
priority, includes recency by promoting lines on reuse, and
protects against thrashing with the same mechanism as DIP.
SHiP [42] extends DRRIP with more elaborate classification,
based on the memory address, program counter (PC), or
instruction sequence. Instruction-based reuse distance pre-
diction [18] uses PC-based classification, but does not do
protection. PDP [9] decides how long to protect lines based
on the reuse distance distribution, improving on DIP, but
does not do classification. Finally, IRGD [39] adapts its pol-
icy to the access stream, ranking lines according to their
harmonic expected reuse distance. The policies we consider
are described in greater detail in Sec. 5.1.

Most of these policies are age-based: lines enter the cache at
a given priority, which changes over time according to how
long the line has been in the cache. However, the policies
vary in details. PDP and IRGD directly count the number
of accesses since a line was last referenced, while DRRIP

and SHiP use a clever aging mechanism that allows them to
rank lines using fewer bits in hardware. Our model targets
arbitrary age-based policies, and we age lines by the number
of accesses since their last reference (like PDP and IRGD).

No prior work gives a general way to predict these policies.
DIP gives a simple performance analysis on a single access
pattern (the scanning pattern discussed above), but does
not consider performance on realistic access patterns or any

2

Age Distribution

Cache size

Hit Distribution

Application behavior

Eviction Distribution

Associativity

Replacement policyINPUTS

COMPONENT

Figure 1: Our model consists of three inter-
dependent probability distributions. Each distribu-
tion captures distinct model inputs. Arrows denote
dependence, e.g. A → B means “A depends on B”.

general method to assess this. PDP employs an analytical
model to choose for how long to protect lines in the cache.
PDP’s model is simple, but it is inaccurate on common access
patterns (Sec. 8.1). Moreover, even if it were accurate, it is
limited to modeling protecting distances, and therefore does
not solve the general problem of modeling high-performance
cache replacement.

2.3 Cache modeling
Most prior work has developed analytical cache models using
stack distance distributions [1, 8, 25, 35, 43]. The stack dis-
tance of an access is the number of unique addresses accessed
after the last reference to the same address. For example, in
the sequence ABCBDDA the stack distance of A is four, as
B, C, and D are accessed between both accesses to A. Stack
distances are meaningful for LRU: in a fully-associative LRU

cache of S lines, accesses with stack distance ≤ S will be
hits, and all others will be misses.

Stack distances are inherently tied to LRU, but have lit-
tle meaning for other policies. Our insight is that absolute
reuse distances [35] can be used to model cache behavior for
a much wider range of replacement policies. The absolute
reuse distance of an access is the total number of references
after the last reference to the same address. For example,
in ABCBDDA the absolute reuse distance of access A is six.
Absolute reuse distances correspond to lines’ ages: a line
with absolute reuse distance d will hit at age d if it is not
first evicted.

Absolute reuse distance distributions cannot be trivially trans-
lated into miss rates. Our key innovation is to develop an
analytical model that performs this translation for a broad
class of policies. Prior work has used absolute reuse dis-
tances only in a limited context: Sen et al. [35] use absolute
reuse distances to model random replacement, but use stack
distances for LRU. By contrast, we model all policies through
a single framework based on absolute reuse distances. Since
we are able to model LRU, our model demonstrates that ab-
solute reuse distances dominate stack distances in predictive
power.

For brevity, in the rest of the paper we refer to absolute reuse
distances simply as reuse distances. This terminology is in
line with prior cache replacement papers [9,14,18], but note
that, since prior work in analytical models focuses on stack
distance, some use reuse and stack distance as synonyms [8,
35,43].

Request A A B C B D B C

Lines
A A D

B B B
C C

Time 1 2 3 4 5 6 7 8

Table 1: Steady state behavior for a 3-line LRU

cache on a simple, repeating access pattern. Live
lines are colored green, and dead lines red.

3. OVERVIEW
Fig. 1 shows the high-level design of our cache model. The
input to the model is the cache architecture (its size, asso-
ciativity, and replacement policy) and a concise description
of the access stream. Specifically, we describe the access
stream by its reuse distance distribution; i.e., for each dis-
tance d, how many accesses have reuse distance d.

From these inputs, our model produces a concise description
of the cache’s behavior. Specifically, the model produces
the cache’s hit and eviction distributions; i.e., for each age
a, how many accesses are hit or evicted at age a, respec-
tively. The hit and eviction distributions directly yield the
cache’s performance: the cache’s hit rate is the sum over
the hit distribution. Additionally, they give a rich picture
of the cache’s behavior that can be used to improve cache
performance (Sec. 10).

Internally, the model uses three distributions: the hit and
eviction distributions (already discussed) and the age distri-
bution of cached lines (i.e., the probability that a randomly
selected line has age a). We define age as the number of
accesses since a line was last referenced. These distributions
are interdependent and related to one another by simple
equations. Each incorporates a particular model input and
conveys its constraints: (i) the age distribution incorporates
the cache size, and constrains modeled capacity; (ii) the hit
distribution incorporates the access stream and constrains
when lines can hit; and (iii) the eviction distribution incor-
porates the replacement policy and constrains how long lines
stay in the cache. The model is solved by iterating to a fixed
point. When the distributions converge, the hit and eviction
distributions accurately describe the cache’s behavior.

We build the model in stages. First, we introduce the model
on a specific example. Second, we develop the model for-
mulation for LRU. Third, we generalize it to other policies.
Finally, we show to solve the model efficiently.

3.1 Example
Table 1 shows the behavior of a 3-line LRU cache on a sim-
ple, repeating access pattern. Time (measured in accesses)
increases from left to right and wraps around (e.g., time 9
would be identical to 1). Live lines, those that eventually
hit, are colored green; dead lines, those that do not, are red.
For example, the first line is live (green) at time 1 because
A hits at time 2. However, D evicts A at time 6, so A is dead
(red) in 2–5. Similarly, A evicts D at time 1, so D is dead
in 6–9. B and C always hit, so they are always live. This
divides the cache into lifetimes, the intervals from last use
until hit or eviction. For example, A’s lifetime starting at
time 1 ends after a single access when A hits at time 2; this

3

Request A A B C B D B C

Ages
1 1 2 3 4 1 2 3

3 4 1 2 1 2 1 2

2 3 4 1 2 3 4 1

Time 1 2 3 4 5 6 7 8

Table 2: Ages per line in Table 1 (hits
are underlined, evictions in italic).

Age a 1 2 3 4 5 6 7 8 Sum

D
is

tr
ib

u
ti

o
n PD(a) 1⁄8

2⁄8 – 3⁄8 – – 1⁄8
1⁄8 1

PA(a) 1⁄3
7⁄24

5⁄24
1⁄6 – – – – 1

PH(a) 1⁄8
1⁄4 – 3⁄8 – – – – 3⁄4

PE(a) – – 1⁄8
1⁄8 – – – – 1⁄4

Table 3: Steady-state distributions for the cache in Table 1.

Symbol Meaning
P[y] The probability of event y.

E[X]
The expected value of random variable (rv)
X.

PX(x)
The probability that rv X equals x,
P[X =x].

PX,Y (x, y)
The joint probability rv X equals x and rv
Y equals y.

PX

(

x|y) The conditional probability that rv X equals
x given y.

RV Meaning
D Reuse distance of an access. Input
H Age at which a line hits.

}

OutputE Age at which a line is evicted.
A Age of a line.

}

InternalL Lifetime of a line (see text).

Table 4: Notation used in this paper. D is a property
of the access stream; A, H, and E are properties of
cached lines.

starts a new lifetime that ends after four accesses when D
evicts A at time 6.

We can redraw Table 1 showing the ages of each line at each
access (Table 2). In steady state, 6 out of 8 accesses are
hits. These hits (underlined) come at ages 1 (A once), 2 (B
twice), and 4 (C twice and B once). The other 2 accesses
are evictions (italic), at ages 3 (D) and 4 (A).

This information lets us compute the hit and eviction distri-
butions, denoted by random variables H and E, respectively.
These distributions yield the probability that a (randomly
selected) access will hit or be evicted at a given age. For
example, one quarter of accesses hit at age 2 (B at times
4 and 6), so the hit distribution at age 2 is PH(2) = 1/4.
Table 4 summarizes our notation and the most important
distributions in the model.

Table 3 gives the three model distributions for the example
in Table 1. For the hit and eviction distributions, we turn
counts into probabilities by dividing by 8 accesses. Since
every lifetime ends in a hit or eviction, the hit and eviction
distributions together sum to 1, but separately sum to less
than 1. We express the distribution inclusive of both hits
and evictions as the lifetime distribution, PL(a) = PH(a) +
PE(a) (not shown in Table 3). L is the age at which a line
is either hit or evicted, i.e. the age when its lifetime ends.
Finally, we can compute the age distribution by counting
the ages of lines and dividing by 3 lines× 8 accesses = 24.

These distributions tell us how the cache performs on this

access pattern: its hit rate is the sum over the hit distri-
bution, 3/4. Moreover, the distributions also say how lines
behave: e.g., no lines make it past age 4, despite some hav-
ing reuse distance of 8. Such information will prove valuable
in applying the model (Sec. 10).

In this example, we have computed the distributions by
brute force, but this method is too expensive for our pur-
poses. We instead model the relationships among distribu-
tions analytically and solve them by iteration. This example
gives the intuition behind the model, but note that some
model assumptions only hold for large caches.

4. BASIC MODEL (FOR LRU)
This section presents the model for caches with LRU replace-
ment. We present the complete equations for the age and
hit distributions, and the eviction distribution equations for
LRU replacement. Sec. 5 extends the eviction distribution
to model arbitrary age-based replacement policies.

4.1 Model assumptions
First, we make a few simplifying assumptions that make
cache modeling tractable, chiefly about the independence
of certain events. These assumptions are motivated by the
properties of modern LLCs (Sec. 2.1).

We assume each access has reuse distance d distributed iden-
tically and independently according to the distribution PD(d).
This assumption is not exactly correct in practice, but since
private caches filter accesses before they reach the LLC, it
is a good approximation for large caches ([4], Sec. 8). In
return, it greatly simplifies the probability calculations, al-
lowing a simple model to capture diverse access patterns.

Similarly, we model an idealized, random-candidates cache,
where replacement candidates are drawn at random from
cached lines. This is a good model for modern LLCs, where
the replacement candidates form a representative sample of
cached lines. The random-candidates model is a direct ana-
log of skew-associative caches or zcaches, but is also a good
approximation for hashed, set-associative caches with many
ways [32]. Although the accuracy of this assumption de-
pends slightly on the cache array architecture, it is a rea-
sonable simplifying assumption for modern LLCs.

4.2 Age distribution
The age distribution is used internally by the model to con-
strain cache capacity. It is presented first because it is the
simplest to compute from the other distributions.

Since ages measure the time since a line was last referenced,
a line reaches age a if and only if it is not hit or evicted for at

4

least a accesses. Hence the probability of a line having age a,
PA(a), is proportional to the fraction of lines that survive at
least a accesses in the cache without being referenced. The
probability of surviving exactly x accesses is given by the
lifetime distribution at age x, PL(x) = PH(x) + PE(x), and
the probability of surviving at least a accesses is the prob-
ability over all x ≥ a. The age distribution PA(a) is thus
proportional to P[L ≥ a], which determines the age distri-
bution up to a constant factor.

To find the constant factor, note that every access necessar-
ily produces a line of age 1 (whether a hit or miss), since we
define ages as the number of accesses since a line was last
referenced. Since ages increase upon each access, there is al-
ways exactly one line of age 1 in the cache. Hence if the cache
has S lines, the age distribution at age 1 is PA(1) = 1/S.

Combining the two results, we find the age distribution for
a cache of S lines is:

PA(a) =
P[L ≥ a]

S
=

∞
∑

x=a

PH(x) + PE(x)

S
(1)

For example, in Sec. 3.1, by counting cells we find that
PA(3) = 5/24. That is, of the twenty-four cells depicted
in Table 2, age 3 appears five times. Eq. 1 gives another
way to arrive at the same conclusion without counting cells:
The probability of a hit or eviction at age 3 or greater is
3/8 + 1/8 + 1/8 = 5/8 (Table 3). Dividing by S = 3 gets
PA(3) = 5/24, as desired. This cell-counting argument can
be generalized to yield an alternative derivation of Eq. 1 and
show

∑∞
a=1 PA(a) = 1.

4.3 Hit distribution
We now show how to compute when hits occur for a given
access pattern, again assuming the other distributions are
known. The hit distribution is perhaps the most important
product of the model, since it yields the cache’s hit rate.

A line will eventually hit if it is not evicted. Intuitively, a
line’s hit probability depends on its reuse distance (longer
distances have greater opportunity to be evicted) and the
cache’s eviction distribution (i.e., at what age does the re-
placement policy evict lines?). Moreover, by definition, a
line with reuse distance d must hit at age d, if it hits at all.
Thus the hit probability is just the reuse distance probability
minus the probability of being evicted, or:

PH(d) = PD(d)− P[evicted, D=d]

= PD(d)−
d−1
∑

a=1

PD,E(d, a) (2)

To proceed, we require the critical insight that candidates of
age a look alike to the replacement policy. In other words,
the replacement policy does not know candidates’ reuse dis-
tances, only that lines of age a have reuse distance d > a.1

1It may be tempting to simply subtract the eviction prob-
ability below d in the above equation. That is, PH(d) =
PD(d)× (1−P[E < d]). This is incorrect. Eviction age and
reuse distance are not independent.

Evicting at age a thus only implies that the line’s reuse dis-
tance was at least a, i.e. E = a ⇒ D > a. From this insight:

PD,E(d, a) = PD

(

d|E =a
)

PE(a)

(Insight) = PD

(

d|D > a
)

PE(a)

(Simplify) =
PD(d) · PE(a)

P[D > a]
(3)

Recall that our assumptions model a large, last-level cache,
so Eq. 3 is inexact on the toy example shown in Table 1.

Finally, we substitute this result into the above equation:
Summing over all a below d counts all the lines of reuse
distance d that are evicted before hitting. Since the rest hit,
subtracting these from PD(d) yields the hit probability:

PH(d) = PD(d)×

1−
d−1
∑

a=1

PE(a)

P[D > a]

 (4)

4.4 Eviction distribution in LRU
The eviction distribution accounts for the replacement pro-
cess and is the most complex part of the model. It models
both the selection of replacement candidates (i.e., associa-
tivity) and the selection of a victim among candidates (i.e.,
the replacement policy). For clarity, we begin by presenting
the model for LRU only.

To compute the eviction distribution, we assume that can-
didates are drawn randomly from the cache, as discussed
above. Among these, LRU simply evicts the oldest, so the
eviction probability at age a is the probability that both
an access misses and a is the oldest age among candidates.
We also assume that cache misses and the oldest age are
independent. This is reasonable because a large cache is
negligibly affected by the behavior of a few candidates.

Hence to find the eviction probability at age a, we need to
know the probabilities that the access misses and the oldest
candidate has age a: PE(a) = P[miss] · Poldest(a). The first
factor is trivial, since

P[miss] = 1− P[hit] = 1−
∞
∑

a=1

PH(a) (5)

The challenge lies in finding the distribution of oldest ages,
Poldest(a). Replacement candidates are drawn randomly
from the cache, so each has age identically and indepen-
dently distributed according to PA(a). The oldest age is
just the maximum of W iid random variables, where W is
the associativity. The maximum of iid random variables is
a well-known result [11]: the oldest age among replacement
candidates is less than a iff all candidates are of age less than
a. Thus given W candidates, P[oldest < a] = P[A < a]W .
To get the distribution from the cumulative distribution,
differentiate: Poldest(a) = P[oldest < a + 1]− P[oldest < a].
Altogether, the eviction distribution at age a for LRU is:

PE(a) = (1− P[hit]) Poldest(a)

= (1− P[hit])
(

P[oldest < a + 1]− P[oldest < a]
)

⇒ PE(a) = (1− P[hit])
(

P[A < a + 1]W − P[A < a]W
)

(6)

5

4.5 Summary
Equations 1, 4, and 6 form the complete model for LRU re-
placement. The age distribution incorporates the cache size
and depends on the hit and eviction distributions. The hit
distribution incorporates the access stream and depends on
the eviction distribution. The eviction distribution incorpo-
rates the cache’s associativity and replacement policy (LRU)
and depends on the hit and age distributions.

5. OTHER REPLACEMENT POLICIES
We now extend the eviction distribution to support arbitrary
age-based policies, like those discussed in Sec. 2.2.

5.1 Ranking functions
To support other policies, we must abstract the replacement
policy in a way that can be incorporated into the model. We
do so through a ranking function, R : age → R, which gives
an eviction priority to every age. By convention, higher rank
means higher eviction priority.

Ranking functions capture many existing policies. For ex-
ample, LRU’s ranking function is RLRU(a) = a (or any other
strictly increasing function). This represents LRU because it
ensures that older lines will be preferred for eviction. Simi-
larly, a constant ranking function produces random replace-
ment, e.g. Rrandom(a) = 0. Ranking functions can also
capture many high-performance replacement policies.

PDP [9] protects lines up to an age dp, known as the protect-
ing distance. It prefers to evict lines older than the protect-
ing distance, but if none are available among candidates, it
evicts the youngest line. Thus PDP’s ranking function de-
creases up to the protecting distance (dp), upon which it
jumps to a large value and increases thereafter:

RPDP(a) =

{

dp − a If a < dp

a If a ≥ dp

(7)

IRGD [39] ranks lines using an analytical formulation based
on the reuse distance distribution. IRGD essentially ranks
lines by their expected reuse distance, but since in practice
very large reuse distances can’t be measured, IRGD uses a
weighted harmonic mean instead of the conventional, arith-
metic mean. This lets it ignore immeasurably large reuse
distances, since they have small impact on the harmonic
mean.2 Its ranking function is:

RIRGD(a) = P[D > a]×

∞
∑

x=1

PD(a + x)

a + x

−1

(8)

Rank functions thus model any age-based policy, but not all
high-performance policies are strictly age-based. Our model
can support such policies (e.g., RRIP [14, 42]) with special-
ized extensions. However, this paper presents the general
framework, and we leave extensions to future work.

From the ranking function and age distribution, we can pro-
duce a rank distribution that gives the probability a line will

2Takagi et al. [39] express IRGD somewhat differently, but
the two formulations are equivalent.

have a given rank. It is then possible to generalize Eq. 6.
While LRU evicts the oldest replacement candidates, in gen-
eral the cache evicts the maximum rank among candidates.

5.2 Generalized eviction distribution
Generalizing the eviction distribution is a straightforward
substitution from “oldest age” in LRU to “maximum rank”
in general. If a line of age a is evicted, then the maximum
rank among candidates must be R(a). Additionally, R may
rank several ages identically (i.e., R(a) = R(b)), so we must
ensure that the candidate had age a (not age b).

This consideration is important because, in practice, contin-
uous ranks are quantized in units of ∆r, increasing the pos-
sibility that several ages map to indistinguishable ranks. For
example, if ranks can take values in [0, 256] (e.g., LRU with
8-bit ages), then an efficient model implementation might
quantize ranks into regions as [0, 8), [8, 16) . . . [248, 256]. Each
region has size ∆r = 8, and many ages may have the “same
rank” as far as the model is concerned.

We account for indistinguishable ranks by using the joint
distribution of rank and age to avoid double counting:

PE(a) = (1− P[hit]) · Pmax rank,A

(

R(a), a
)

(9)

The joint distribution is in turn:

Pmax rank,A

(

R(a), a
)

= Pmax rank

(

R(a)
) · PA(a)

Prank

(

R(a)
) (10)

PA(a)/Prank

(

R(a)
)

is the fraction of ranks belonging to age
a in the rank quantum containing R(a) (roughly its ∆r-
neighborhood). Multiplying by this fraction eliminates dou-
ble counting. This equation should simply be thought as the
analog to Poldest(a) in LRU.

As in LRU, the challenge lies in finding Pmax rank(r). To
start, we compute the rank distribution in the cache from the
age distribution. Since ranks depend on age, the probability
that a line’s rank equals r is just the total probability of ages
with rank r:

Prank(r) =
∑

a:R(a)=r

PA(a) (11)

Next, the cumulative distribution of maximum rank is com-
puted just as Poldest(a) in LRU as the maximum of iid rvs:

P[max rank < r] = P[rank < r]W (12)

Finally, the distribution of maximum rank is obtained by
discrete differentiation [31]:

Pmax rank(r) =
P[max rank < r + ∆r]− P[max rank < r]

∆r
(13)

(In LRU, the oldest age distribution uses ∆r = 1.)

These formulae fill in all the terms to compute the general-

6

Algorithm 1. The cache model simultaneously solves the
cache’s age, hit, and eviction distributions by iteration.

Inputs: S - Cache size; W - associativity; R - rank function; rdd -
reuse distance distribution; prd - with classification, total proba-
bility of class (Appendix B), or 1 otherwise.

Returns: Hit and eviction distributions, hit and evict.
1: function Model
2: age, hit, evict, h’ ← Seed ⊲ Initialize distributions.
3: while not Converged :
4: h ← h′ ⊲ Hit rate from last iteration.
5: h′ ← 0 ⊲ x′ is solution of x for this iteration.
6: crd ← rdd[1] ⊲ Cumulative D probability, P[D ≤ a].
7: evBelow ← 0 ⊲ Prob. line evicted at D=a in Eq. 4.
8: age′[1] ← prd/S
9: for a← 1 to N :

10: hit′[a] ← rdd[a] (1− evBelow)
11: evict′[a]← (1−h) maxRankDist[R(a)] age′[a]/rankDist[R(a)]
12: age′[a+1] ← age′[a]− (hit′[a] + evict′[a])/S
13: h′ ← h′ + hit′[a]
14: evBelow ← evBelow + evict′[a]/(prd− crd)
15: crd ← crd + rdd[a+1]

16: age, hit, evict ← Average(age′, hit′, evict′)
17: return hit, evict

ized eviction distribution:

PE(a) =
(

1− P[hit]
)×

(

PA(a)

Prank

(

R(a)
)

)

× (14)

P
[

rank < R(a) + ∆r
]W − P

[

rank < R(a)
]W

∆r

5.3 Discussion
The complete cache model is given by the age (Eq. 1), hit
(Eq. 4), and eviction (Eq. 14) distributions. These equations
describe a cache using an arbitrary, age-based replacement
policy. Our model forms a system of equations that describe
a valid solution, but does not yield this solution directly.

The implicit nature of our model has benefits. The equations
organize the model into logical components. Each distribu-
tion is responsible for a specific model input: the age distri-
bution for the cache size, the hit distribution for the access
pattern, and the eviction distribution for replacement (both
associativity and replacement policy). This makes it easy
to adapt the model to new cache architectures. For exam-
ple, a new replacement policy only requires a new ranking
function, and all appropriate changes naturally propagate
through the eviction, hit, and age distributions. Likewise,
new applications change only the reuse distance distribution.

However the drawback is that, since these equations are not
explicit, their solution is not entirely obvious. We solve the
system through iteration to a fixed point, discussed next.

6. MODEL SOLUTION
All components of the model are interdependent, and a gen-
eral, closed-form solution is unlikely to exist. We solve the
model by iterating to a fixed point, simultaneously solving
the three distributions age by age (Algorithm 1). This simul-
taneous solution tightly couples the solution of each distri-
bution to the others, maintaining their relationships. That
is, each distribution is computed from the others as the so-
lution evolves, rather than from the distributions at the last
iteration. Only the hit rate and rank distribution are fixed
across iterations. We find this tight coupling improves con-
vergence time.

At each iteration, Algorithm 1 solves Eq. 1, Eq. 4 and Eq. 14
for age a in constant time, building on the solution from age
a − 1. Algorithm 1 uses the following recurrence relation
derived from Eq. 1:

PA(a + 1) = PA(a)− PH(a) + PE(a)

S
(15)

This allows the age distribution to be updated to reflect
the hit and eviction distributions as the solution evolves,
which in turn influences the solution of the hit and evic-
tion distributions. The hit and eviction distributions are
thus constrained, and negative feedback loops are imposed
on over-estimation. Sums in other equations are similarly
broken across iterations so that each age is solved in con-
stant time. For example, the variable evBelow is the inner
sum in Eq. 4.

We seed the first iteration with sensible but arbitrary pa-
rameters (e.g., hit rate of 50%). To avoid oscillating around
a stable solution, in each iteration we average the old and
new distributions using an exponentially weighted moving
average. We have empirically determined that a coefficient
of 1⁄3 yields good performance. We detect convergence when
the hit rate stays within a 10−3 range for ten iterations. Fi-
nally, the model sets a floor of 0 for all probabilities during
solution. In practice, Algorithm 1 reliably converges to the
steady-state distributions after a few iterations (typically
20-40) on hundreds of thousands of distributions from real
workloads (Sec. 8).

While involved, iteration is computationally cheap: in prac-
tice, we use and monitor coarse ages (see below) for which
N -point distributions with N ≈ 64–256 suffice, and each
iteration runs in linear time on the size of the distributions.

6.1 Convergence
Our model is designed with generality in mind, but this
comes at the cost of complicating some theoretical proper-
ties. Eq. 1, Eq. 4, and Eq. 14 form a non-linear system (par-
ticularly Eq. 14) operating in many dimensions (N points
per distribution and multiple distributions). Moreover, the
model accepts arbitrary N -point vectors as input (the reuse
distance distribution and ranking function). Demonstrating
the convergence of fixed point iteration for non-linear sys-
tems is difficult. Generally, it involves reducing the system
to a contraction mapping of some relevant model parame-
ter [15]. Although several intuitive parameters are attractive
(e.g., hit rate or modeled cache size), we cannot yet prove
a contraction mapping on these parameters in general—
indeed, it seems that for some degenerate ranking functions
(not those in Sec. 5.1), the model does not converge.

We instead take an empirical approach. We evaluate our
model on a diverse suite of real applications and demonstrate
its accuracy and utility in that context. Since the model is
solved online at regular intervals, our evaluation represents
hundreds of thousands of model solutions. Thus we conclude
that the model converges on distributions seen in practice.
We leave rigorous convergence conditions to future work.

6.2 Increased step size
Reuse distances in practice can be quite large, and näıve
iteration over all ages would be quite expensive. Moreover,

7

0 100 200 300 400 500

Age

0.000

0.005

0.010

0.015

0.020

0.025

P
ro
b
a
b
ili
ty

Age

Hit

Evict

Figure 2: Model solution with increased step size on
a synthetic benchmark. Solid lines show a full-detail
solution; dashed lines show a solution with N =32.

age-by-age iteration is wasteful, since there are large age
ranges where few events occur or the event probabilities are
roughly constant. Modeling such ranges in detail is unneces-
sary, since they can be approximated by assuming constant
event probabilities throughout the range. This observation
allows the solution to take a large step over many ages at
once and greatly reduces N , the number of points that need
to be solved in Algorithm 1. Reducing N is important when
applying the model online, e.g. as part of a runtime system
(Sec. 9).

The concept is quite similar to adaptive step size in nu-
merical solutions of differential equations [31]. For example,
Fig. 2 shows a solution of all three model distributions for
a synthetic benchmark (solid lines). These distributions are
coarsened by increasing the step size (dashed lines), pro-
ducing a good approximation with much less computation.
Indeed, Fig. 2 shows that N = 32 is sufficient to model this
access pattern, even though ages go up to 500. This is pos-
sible because there are large regions (e.g., ages 0-100) where
few events occur. There is no reason to model these regions
in great detail. Instead, we adaptively divide ages into re-
gions, modeling regions of high activity at fine granularity
and others at coarse granularity.

We then model the total probability within each coarsened
region. For example, rather than computing the hit prob-
ability at a single age (e.g., P[H = a]), we compute the hit
probability over several ages (e.g., P[a ≤ H < b]). Remark-
ably, the model equations are basically unchanged by coars-
ening. For example, if regions are split at ages a1, a2, a3, . . .
then the coarsened hit equation is:

P[ai ≤ H < ai+1] ≈ (16)

P[ai ≤ D < ai+1]×

1−
i−1
∑

j=1

P[aj ≤ E < aj+1]

P[D > aj]

This equation is identical in form to the fine-grain hit equa-
tion (Eq. 4), except now operating on regions rather than
individual ages. Other model equations are similar (Ap-
pendix A).

Another important question is how to choose the regions.
The choice must balance two competing goals: modeling
regions with high activity at fine granularity, while modeling
other ages in sufficient detail for the model to converge. We

T
il

e
 A

rc
h

it
e

ct
u

re

Processor

Monitor

Local

LLC

Bank

L2

LLC bank

Processor

L1I L1D

Figure 3: An example implementation of our model.
A lightweight hardware monitor on each tile samples
a small fraction of LLC accesses. Our model runs
periodically in software.

address this in two steps. First, we divide all ages evenly
into N/2 regions. For example, with 8-bit ages and N = 64,
we first create the 32 regions divided at ages: 0, 8, 16 . . . 256.
Second, we further divide these regions N/2 times to try to
equalize the probability of hits and evictions in each region.
We sort regions by their probability of hits and evictions,
and recursively divide the largest in equal-probability halves
N/2 times. We find this procedure chooses regions that yield
efficient and accurate solutions.

7. IMPLEMENTATION
We now describe how to integrate our cache model into a full
system which we evaluate in simulation. In our validation
(Sec. 8) and case studies (Sec. 9 and Sec. 10), the model
is used to dynamically model or reconfigure the cache, as
shown in Fig. 3. A lightweight hardware monitor samples
a small fraction of accesses and produces the application’s
reuse distance distribution. Periodically (e.g., every 50 ms),
a software runtime models the cache’s behavior from the
sampled reuse distance distribution, which is then used to
predict the cache’s behavior over the next interval.

This configuration represents just one use case for the model;
it can also be used to model cache behavior offline. However,
Fig. 3 is the most demanding use case, since it imposes the
most stringent run-time requirements and the model must
contend with sampling error.

7.1 Application profiling
Our model works with several low-overhead, hardware mon-
itoring schemes. For instance, PDP [9] proposes a FIFO that
samples a small fraction of accesses and, when an access
hits in the FIFO, records its depth in the FIFO as the reuse
distance. Other monitors record stack distance and could
be adapted to work with our model. For example, utility
monitors [29] are a small, tag-only LRU cache that record
stack distance. Geometric monitors [5] extend utility moni-
tors to efficiently monitor very large stack distances. Stack
distances can then be approximately translated into reuse
distances in software [35]. Alternatively, the monitor itself
can be modified to include timestamps and record reuse dis-
tance directly. In all cases, these monitors impose small
overheads, typically around 1% of LLC area.

Finally, other schemes can sample the reuse distance distri-
bution without adding hardware. Software-only schemes can
sample access patterns, e.g. through injecting page faults [46].
Offline profiling can record the access trace, e.g. through
compiler hooks [8] or dynamic binary translation [40]. These

8

0 200 400 600 800 1000
Reuse Distance

0.000

0.005

0.010

0.015

0.020

0.025

0.030
P
ro

b
a
b
ili

ty
|

A
B
C
Sim
Our Model
PDP Model

0 64 128 192 256
Cache Size

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

a
te

LRU

0 64 128 192 256
Cache Size

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

a
te

PDP

0 64 128 192 256
Cache Size

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

a
te

IRGD

Figure 4: The cache model on three synthetically generated traces (A, B, C) driving small caches using LRU,
PDP, and IRGD replacement. Simulation results are shown as solid lines; model predictions as dashed lines;
PDP’s model as dotted lines.

Cores Westmere-like OOO [34], 2.4 GHz

L1 caches
32 KB, 8-way set-associative, split D/I,
1-cycle latency

L2 caches
128 KB priv. per-core, 8-way set-assoc,
inclusive, 6-cycle

L3 cache
Shared, non-inclusive, 20-cycle; 16-way,
hashed set-assoc

Coherence
MESI, 64 B lines, no silent drops;
sequential consistency

Memory 200 cycles, 12.8 GBps/channel, 1 channel

Table 5: Configuration of the simulated systems.

schemes enable our model to work when hardware support
is unavailable.

7.2 Overheads
Our model requires modest run-time overheads and small
monitoring overheads, similar to prior schemes. The model
takes only a few arithmetic operations per age region per it-
eration (∼25). With N = 128 and 30 iterations on average,
the model completes in under 100 K arithmetic operations.
Since the model runs infrequently (e.g., every 50ms), this
overhead is small (<1% of a single core’s cycles). If this
overhead is too large, N can be reduced or the the recon-
figuration interval can be increased, typically at little per-
formance loss ([3], Fig. 6). Alternatively, the model can
be solved in the background with low-priority threads that
interfere minimally with active applications [16]. Finally,
computation can be reduced by specializing the model to
particular ranking functions.

8. VALIDATION
We now validate our model on synthetic and real bench-
marks, showing that it is accurate over diverse replacement
policies, access patterns, and cache sizes.

8.1 Synthetic
Fig. 4 compares the model against simulation of synthetic
traces. These experiments demonstrate the model’s accu-
racy in an environment that satisfies its assumptions (Sec. 4.1).
Each trace represents a different access mix: B and A expose
performance cliffs in LRU and PDP, respectively, while C is
a cache-friendly access pattern. Their reuse distance distri-
butions are shown on the left. On the right there is one
graph per replacement policy. On each graph, simulation
results are shown (solid lines) along with model predictions

0 25 50 75 100

Percentile

0.0

0.2

0.4

0.6

0.8

1.0

A
b
s
o
lu

te
 E

rr
o
r

IRGD

LRU

PDP

PDP model

(a) 128-point solution.

0 25 50 75 100

Percentile

0.0

0.2

0.4

0.6

0.8

1.0

A
b
s
o
lu

te
 E

rr
o
r

IRGD

LRU

PDP

PDP model

(b) Full solution.

Figure 5: Model error distribution over 250 K-access
intervals. Our model is accurate, while PDP’s model
(dotted line) has large error.

(dashed lines). The PDP graph also includes the predictions
of PDP’s analytical model (dotted lines).

Our model is accurate on every configuration. The dashed
lines are often not visible because model predictions are in-
distinguishable from simulation results. By contrast, PDP’s
model exhibits significant error from simulation, failing to
distinguish between B and C and mispredicting A badly.

8.2 Execution-driven
These results carry over to real benchmarks on a full system,
where model assumptions only approximately hold.

Methodology: We use zsim [34] to evaluate our model.
We perform execution-driven simulation of SPEC CPU2006

benchmarks on OOO cores using 16-way hashed, set-asso-
ciative last-level caches and parameters given in Table 5,
chosen to mimic Ivy Bridge-IP. We run each benchmark for
10 B instructions after fast-forwarding 10 B, and we perform
enough runs to achieve 95% confidence intervals ≤1%. All
results hold for skew-associative caches [36], zcaches [32],
and for systems with prefetching. This methodology also
applies to later case studies.

We evaluate a large range of cache sizes, from 128 KB to
128 MB, and solve the model every 250 K accesses from the
sampled reuse distance distribution in that interval. This
yields many samples—over 400 K model solutions in all.

Results: Fig. 5 shows the distribution of modeling error
(|predicted hit rate − actual hit rate|) in each interval for
LRU, PDP, and IRGD. We show results (a) for coarsened
solutions with N = 128 (Sec. 6.2) and (b) full solutions.

9

32 64 12
8

25
6

51
2 ∞

0

5

10

15

20
M

o
d
e
l
E
rr

o
r

(%
)

LRU36%

32 64 12
8

25
6

51
2 ∞

Points in solution, N

PDP

32 64 12
8

25
6

51
2 ∞

IRGD

Mean

90th pct

Figure 6: Sensitivity of model to step size for LRU,
PDP, and IRGD, measured by the number of steps,
N (Sec. 6.2). N = ∞ means full, age-by-age solution.

For 128-point solutions, median error is 0.1%/0.4%/0.6% for
LRU/PDP/IRGD, respectively; mean error is 3.7%/2.9%/2.1%;
and 90th percentile error is 6.9%/6.5%/5.5%. For full solu-
tions, median error is 0%/0.3%/0.5%; mean error is 2.6%/
2.6%/1.8%; and 90th percentile error is 4.7%/6.3%/4.8%.
Overall, the model is accurate, and there is modest error
from coarsening solutions. Fig. 6 shows the mean and 90th
percentile error for different values of N . (Median error is
negligible in all cases and not shown.) Our model is fairly
insensitive to coarsening, although reducing N below 64 no-
ticeably degrades accuracy on LRU.

It is important to emphasize that these results are for 250 K-
access intervals—it is not the case that 10% of benchmarks
have error above 6%. Rather, 10% of intervals have this er-
ror. The distinction is critical. Many benchmarks have an
unstable access pattern, and their hit rate changes rapidly
between intervals. Fig. 7 shows an example of gcc on a 1 MB

LLC, plotting its hit rate over its first 25 M LLC accesses
(Fig. 7a). gcc’s hit rate fluctuates wildly across intervals,
and our model does a good job of tracking these fluctua-
tions. (Recall that the model only uses the application’s
reuse distance distribution; it does not observe the cache’s
current hit rate.) However, since gcc’s behavior is unsta-
ble, its reuse distance distribution is not representative of
its equilibrium behavior, and model error is large in some
intervals. But this model error tends to average out in the
long-run, and indeed our model is quite accurate at predict-
ing gcc’s miss curve over its entire execution (Fig. 7b).

As a result, model error is slightly reduced in the long run
(i.e., over 10 B instructions). For 128-point solutions, the
long-run mean model error is 2.3%/1.9%/1.1% for LRU/
PDP/IRGD, respectively, while the 90th percentile error is
5.5%/4.3%/3.4%. Results for full solutions are similarly re-
duced, with long-run mean error of 1.6%/1.7%/0.9% and
90th percentile error of 3.7%/4.2%/2.9%.

Hence, the model error presented in Fig. 5 is a conservative
assessment of our model’s accuracy. We find that in prac-
tice the model is accurate and useful at predicting cache
behavior, as we now illustrate in two case studies.

9. CASE STUDY: CACHE PARTITIONING
In this section and the next, we show how to apply our
model to improve cache performance with high-performance
replacement policies. This section focuses on shared caches,
while the next focuses on single-threaded performance.

Prior work has demonstrated that explicit partitioning of

0 5 10 15 20 25

Accesses (x1M)

0.0

0.2

0.4

0.6

0.8

1.0

H
it
 R

a
te

Simulation Model Error

(a) gcc over 25 M accesses on
a 1 MB LLC.

12
8K

B

25
6K

B

51
2K

B
1M

B
2M

B
4M

B
8M

B

16
M

B

32
M

B

64
M

B

12
8M

B
0.0

0.1

0.2

0.3

0.4

0.5

M
is

s
 R

a
ti
o

Simulation

Model

(b) Long-run miss ratio miss
ratio vs. LLC size.

Figure 7: Analysis of gcc. Benchmarks are unstable
over time, introducing model error on some inter-
vals. Model is accurate on long-run performance.

cache capacity can greatly improve shared cache perfor-
mance [29]. Indeed, partitioned LRU outperforms thread-
aware variants of high-performance replacement policies [4,
33]. Cache partitioning works by isolating each application’s
data in a partition of well-defined size. Partitioning elimi-
nates interference between applications, and since applica-
tions vary widely in how well they use cache capacity, it can
greatly improve performance if partitions are sized correctly.

Partitioning algorithms use each application’s miss curve to
size partitions. Miss curves allow the partitioning algorithm
to choose sizes that minimize misses. (The optimal solution
is NP-complete, but good approximations exist [3, 26, 29].)
Moreover, since partitioning is done in software, it can be
used to achieve system objectives other than performance;
e.g., quality of service [17], fairness [28], and security [27].

In principle, cache partitioning is complementary to high-
performance cache replacement: cache partitioning allocates
capacity among applications, and the replacement policy
then maximizes each application’s hit rate on its partition.
However, cache partitioning is only effective when miss curves
are available—otherwise, software cannot predict the effect
of different partition sizes, and therefore cannot size them
to achieve system objectives.

Cache partitioning and high-performance policies are thus
in unintended conflict. Our model resolves this conflict. It
can model high-performance replacement policies at arbi-
trary cache sizes, and thus predicts the replacement policy’s
miss curve. These miss curves are given to the partition-
ing algorithm, which can then choose partition sizes that
maximize performance (or achieve other objectives).

We evaluate the performance of a shared 4 MB LLC on a
4-core system running 100 random mixes of SPEC CPU2006

applications. We compare four schemes: (i) unpartitioned
LRU, (ii) a representative thread-aware high-performance
policy (TA-DRRIP [14]), (iii) LRU with utility-based cache
partitioning (UCP) [29], and (iv) a high-performance policy
(IRGD) with utility-based cache partitioning (UCP+IRGD).
All schemes reconfigure every 50ms and we employ a fixed
work methodology [12].

Results: Fig. 8 shows the distribution of weighted and har-
monic speedup over the 100 mixes [10], normalized to unpar-

10

12
8K

25
6K

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

Cache Size

0

2

4

6

8

10
M

P
K

I
cactusADM

LRU

DRRIP

IRGD

IRGD w/ Reuse

12
8K

25
6K

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

Cache Size

0

5

10

15

20

25

30

35

M
P

K
I

lbm

LRU

DRRIP

IRGD

IRGD w/ Reuse

12
8K

25
6K

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

Cache Size

0

5

10

15

20

25

30

M
P

K
I

mcf

LRU

DRRIP

IRGD

IRGD w/ Reuse

12
8K

25
6K

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

Cache Size

0

1

2

3

4

5

M
P

K
I

o
v
e

r
M

IN

All CPU2006 (29 apps, 10Bins/app)

MIN

LRU

DRRIP

IRGD

IRGD w/ Reuse

Figure 9: Misses per thousand instructions (MPKI) vs. cache size for (left) three applications and (right) all
of SPEC CPU2006. Lower is better. Our model extends IRGD [39] to support reused/non-reused classification,
making it outperform DRRIP on most applications and on gmean MPKI over all of SPEC CPU2006.

LRU TA-DRRIP UCP UCP+IRGD

0 20 40 60 80 100

Workload

0.95

1.00

1.05

1.10

1.15

1.20

1.25

W
e
ig

h
te

d
 S

p
e
e
d
u
p

1.5x1.3x 1.4x|

0 20 40 60 80 100

Workload

0.95

1.00

1.05

1.10

1.15

1.20

1.25

H
a
rm

o
n
ic

 S
p
e
e
d
u
p

|

Figure 8: Weighted and harmonic speedup for 100
random mixes of SPEC CPU2006 apps. Our model
enables partitioning of IRGD, improving perfor-
mance over the state-of-the-art.

titioned LRU. TA-DRRIP and UCP outperform the LRU base-
line respectively by 3.1%/5.1% on gmean weighted speedup,
and 1.1%/3.6% on gmean harmonic speedup. Meanwhile,
IRGD+UCP improves gmean weighted speedup by 9.5% and
gmean harmonic speedup by 5.3%. Our model combines the
single-stream benefits of high-performance cache replace-
ment and the shared-cache benefits of partitioning, outper-
forming the state-of-the-art.

10. CASE STUDY: IMPROVING CACHE
REPLACEMENT

As noted in Sec. 2, classifying lines into classes (e.g., reused
vs. non-reused) and treating each class differently can signif-
icantly improve replacement policy performance [14,18,42].
However, many otherwise attractive policies do not exploit
classification, or do so in limited ways, e.g. using fixed heuris-
tics that prioritize certain classes. For instance, PDP [9] sug-
gests classification as a promising area of future work, but
lacks a modeling framework to enable it; and IRGD [39] re-
quires several additional monitors to perform classification.
Our model provides a simple analytical framework for clas-
sification. Specifically, we extend IRGD (Eq. 8) to support
reused vs. non-reused classification.

We support classification by modeling the reuse distance dis-
tribution of each class, in addition to the hit and eviction dis-
tributions. Doing so requires modest changes to the model.
Since policies like PDP and IRGD are reuse distance-based,
this is sufficient for them to support classification. The de-

tailed changes to the model are presented in Appendix B.
Crucially, our model captures the highly dynamic interac-
tions between classes, which is essential for dynamic classi-
fications like reused vs. non-reused.

Model-based classification has a further advantage. Unlike
some prior high-performance policies (e.g., DRRIP [14]), we
do not assume that reused lines are preferable to non-reused
lines. We instead model the behavior of each class, and rely
on the underlying policy (e.g., IRGD) to make good decisions
within each class. This approach allows for direct compar-
ison of candidates across classes according to their rank,
removing the need for heuristics or tunables to penalize or
prefer different classes. We thus avoid pathological perfor-
mance on applications where, contra expectations, reused
lines are less valuable than non-reused lines.

Results: Fig. 9 shows the LLC misses per thousand in-
structions (MPKI) for three representative benchmarks and
average performance over all 29 SPEC CPU2006 on caches
of size 128 KB to 128 MB (note log scale on x-axis). Lower
MPKIs are better. Our model improves on IRGD on most
SPEC CPU2006 benchmarks, and never degrades performance.
On cactusADM, our model enables IRGD to match DRRIP’s
performance, since this benchmark exhibits clear differences
between reused and non-reused lines. On lbm, our model
provides no additional benefit, but unlike DRRIP, we do not
degrade performance compared to LRU. Finally, on mcf, our
model improves performance, but does not match the per-
formance of DRRIP.

On net, our model makes a slight but significant improve-
ment to IRGD’s overall performance. The rightmost figure
plots the MPKI over optimal cache replacement (Belady’s
MIN [6]) averaged over all of SPECCPU2006. Without clas-
sification, DRRIP outperforms IRGD on many cache sizes.
With classification, IRGD outperforms DRRIP at every cache
size. On average across sizes, IRGD (without classification)
and DRRIP perform similarly, closing 44% and 42% of the
MPKI gap between LRU and MIN, respectively. With clas-
sification, IRGD closes 52% of this gap.

11. CONCLUSION
We have presented a cache model for modern LLCs with
high-performance replacement policies. Our model is mo-
tivated by observations of modern cache architecture that

11

allow us to abstract away details of array organization and
focus on modeling the replacement policy. As a result, we
capture a broad class of policies at relatively low complexity.
We have presented an efficient implementation of the model
and thoroughly evaluated its accuracy and implementation
tradeoffs. Finally, we showed how to use the model to im-
prove cache performance over state-of-the-art techniques.

12. REFERENCES
[1] A. Agarwal, J. Hennessy, and M. Horowitz. An

analytical cache model. ACM Transactions on
Computer Systems (TOCS), 7(2), 1989.

[2] D. H. Albonesi. Selective cache ways: On-demand
cache resource allocation. In MICRO-32, 1999.

[3] N. Beckmann and D. Sanchez. Jigsaw: Scalable
Software-Defined Caches. In PACT-22, 2013.

[4] N. Beckmann and D. Sanchez. Talus: A Simple Way
to Remove Cliffs in Cache Performance. In HPCA-21,
2015.

[5] N. Beckmann, P.-A. Tsai, and D. Sanchez. Scaling
Distributed Cache Hierarchies through Computation
and Data Co-Scheduling. In HPCA-21, 2015.

[6] L. A. Belady. A study of replacement algorithms for a
virtual-storage computer. IBM Sys. J., 5(2), 1966.

[7] D. Chiou, P. Jain, L. Rudolph, and S. Devadas.
Application-specific memory management for
embedded systems using software-controlled caches. In
DAC-37, 2000.

[8] C. Ding and Y. Zhong. Predicting whole-program
locality through reuse distance analysis. In PLDI,
2003.

[9] N. Duong, D. Zhao, T. Kim, R. Cammarota,
M. Valero, and A. V. Veidenbaum. Improving Cache
Management Policies Using Dynamic Reuse Distances.
In MICRO-45, 2012.

[10] S. Eyerman and L. Eeckhout. System-level
performance metrics for multiprogram workloads.
IEEE micro, 28(3), 2008.

[11] C. M. Grinstead and J. L. Snell. Introduction to
probability. American Mathematical Soc., 1998.

[12] A. Hilton, N. Eswaran, and A. Roth. In Proc. MoBS.

[13] S. Jahagirdar, V. George, I. Sodhi, and R. Wells.
Power management of the third generation Intel Core
micro architecture formerly codenamed Ivy Bridge. In
Hot Chips, 2012.

[14] A. Jaleel, K. Theobald, S. C. S. Jr, and J. Emer. High
Performance Cache Replacement Using Re-Reference
Interval Prediction (RRIP). In ISCA-37, 2010.

[15] M. Javidi. Iterative methods to nonlinear equations.
Applied Mathematics and Computation, 193(2), 2007.

[16] M. Kamruzzaman, S. Swanson, and D. M. Tullsen.
Inter-core prefetching for multicore processors using
migrating helper threads. In ASPLOS-XVI, 2011.

[17] H. Kasture and D. Sanchez. Ubik: Efficient Cache
Sharing with Strict QoS for Latency-Critical
Workloads. In ASPLOS-XIX, 2014.

[18] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache
replacement based on reuse-distance prediction. In
ICCD, 2007.

[19] G. Keramidas, P. Petoumenos, and S. Kaxiras. Where
replacement algorithms fail: a thorough analysis. In

Proc. CF-7, 2010.

[20] S. M. Khan, Z. Wang, and D. A. Jiménez. Decoupled
dynamic cache segmentation. In HPCA-18, 2012.

[21] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee. Using
Prime Numbers for Cache Indexing to Eliminate
Conflict Misses. In HPCA-10, 2004.

[22] N. Kurd, S. Bhamidipati, C. Mozak, J. Miller,
T. Wilson, M. Nemani, and M. Chowdhury. Westmere:
A family of 32nm IA processors. In ISSCC, 2010.

[23] R. Manikantan, K. Rajan, and R. Govindarajan.
Probabilistic shared cache management (PriSM). In
ISCA-39, 2012.

[24] J. Mars, L. Tang, R. Hundt, K. Skadron, and
M. Soffa. Bubble-up: Increasing utilization in modern
warehouse scale computers via sensible co-locations. In
MICRO-44, 2011.

[25] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.
Traiger. Evaluation techniques for storage hierarchies.
IBM Systems journal, 9(2), 1970.

[26] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou,
and M. Valero. FlexDCP: A QoS framework for CMP
architectures. ACM SIGOPS Operating Systems
Review, 43(2), 2009.

[27] D. Page. Partitioned Cache Architecture as a
Side-Channel Defence Mechanism. IACR Cryptology
ePrint archive, (2005/280), 2005.

[28] A. Pan and V. S. Pai. Imbalanced cache partitioning
for balanced data-parallel programs. In MICRO-46,
2013.

[29] M. Qureshi and Y. Patt. Utility-based cache
partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In
MICRO-39, 2006.

[30] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive insertion policies for high
performance caching. In ISCA-34, 2007.

[31] L. Richard and J. Burden. Douglas Faires, Numerical
analysis, 1988.

[32] D. Sanchez and C. Kozyrakis. The ZCache:
Decoupling Ways and Associativity. In MICRO-43,
2010.

[33] D. Sanchez and C. Kozyrakis. Vantage: Scalable and
Efficient Fine-Grain Cache Partitioning. In ISCA-38,
2011.

[34] D. Sanchez and C. Kozyrakis. ZSim: Fast and
Accurate Microarchitectural Simulation of
Thousand-Core Systems. In ISCA-40, 2013.

[35] R. Sen and D. A. Wood. Reuse-based online models
for caches. In Proc. SIGMETRICS, 2013.

[36] A. Seznec. A case for two-way skewed-associative
caches. In ISCA-20, 1993.

[37] S. Srikantaiah, R. Das, A. K. Mishra, C. R. Das, and
M. Kandemir. A case for integrated processor-cache
partitioning in chip multiprocessors. In SC09, 2009.

[38] Sun Microsystems. UA 2007 Family Programmer’s
Reference Manual. Technical report, 2009.

[39] M. Takagi and K. Hiraki. Inter-reference gap
distribution replacement: an improved replacement
algorithm for set-associative caches. In ICS’04, 2004.

[40] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.
RapidMRC: approximating L2 miss rate curves on

12

commodity systems for online optimizations. In
ASPLOS-XIV, 2009.

[41] H. Wong. Intel Ivy Bridge Cache Replacement Policy,
http://blog.stuffedcow.net/2013/01/

ivb-cache-replacement/, 2013.

[42] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi,
S. C. Steely Jr, and J. Emer. SHiP: Signature-based
hit predictor for high performance caching. In
MICRO-44, 2011.

[43] M.-J. Wu, M. Zhao, and D. Yeung. Studying
Multicore Processor Scaling via Reuse Distance
Analysis. In ISCA-40, 2013.

[44] H. Yang, A. Breslow, J. Mars, and L. Tang.
Bubble-flux: precise online qos management for
increased utilization in warehouse scale computers. In
ISCA-40, 2013.

[45] X. Zhang, E. Tune, R. Hagmann, R. Jnagal,
V. Gokhale, and J. Wilkes. CPI 2: CPU performance
isolation for shared compute clusters. In EuroSys,
2013.

[46] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman,
Y. Zhou, and S. Kumar. Dynamic tracking of page
miss ratio curve for memory management. In
ASPLOS-XI, 2004.

13

APPENDIX

A. COMPLETE COARSENED MODEL
The coarsened model equations are obtained by assuming
constant event probabilities within a region. Ages are broken
into regions at the ages 1 = a1 < a2 < . . . < aN+1, giving N
coarsened age regions. We start from the model equations
(Eq. 1, Eq. 4, and Eq. 14) and sum over each region to
derive the coarsened equations. For example, the coarsened
hit equation for region i is derived as:

P[ai ≤ H < ai+1] =

ai+1−1
∑

a=ai

P[H = a] (17)

=

ai+1−1
∑

a=ai

P[D = a]×

1−
a−1
∑

x=1

P[E = x]

P[D > x]

We now model the eviction probability (i.e., the second fac-
tor in the above equation) as approximately constant in this
region, and pull it out of the sum.

≈

ai+1−1
∑

a=ai

P[D = a]

×

1−
ai
∑

x=1

P[E = x]

P[D > x]

 (18)

Applying this approximation to the second factor, we break
the sum over x across prior regions, and we simplify the first
factor.

= P[ai ≤ D < ai=1]×

1−
i−1
∑

j=1

P[aj ≤ E < aj+1]

P[D > aj]

(19)

The equation for the coarsened eviction distribution is simi-
lar, although it is complicated by ranking functions. A rank-
ing function may map distinct age regions to overlapping
rank regions, so there is no strict rank-ordering of ages be-
tween two regions. The correct solution to this problem is to
compute the rank distribution at full fidelity, i.e. age-by-age.
But doing so sacrifices much of the benefit of coarsening,
since it means each iteration of the solution must consider
every age. We instead coarsen ranks by representing every
age within a region by the mean rank over that region, de-
noted R̄i for the ith region. If regions are chosen poorly, this
approach can be inaccurate, but when regions are chosen
intelligently it is a good approach. The eviction distribution
is thus computed:

P[ai ≤ E < ai+1] =

ai+1−1
∑

a=ai

P[E = a] (20)

= P[miss]×
ai+1−1
∑

a=ai

P[A = a]

P
[

rank = R(a)
] × Pmax rank

(

R(a)
)

≈ P[miss]×
ai+1−1
∑

a=ai

P[A = a]

P
[

rank = R̄i

] × Pmax rank

(

R̄i

)

We model the age distribution as approximately constant in
the region, so using Eq. 11 we obtain:

≈ P[miss]× P[A = ai]

P
[

rank = R̄i

] × Pmax rank

(

R̄i

)

(21)

The age distribution is simple to derive assuming the hit
and eviction distributions are constant in the region. The
simplest way to derive our coarsened approximation of the
age distribution is as an extension of the recurrence relation
Eq. 15. In a single step, the age distribution PA(a) decreases
by PH(a)+PE(a). Hence in the coarsened region from ai to
ai+1, it decreases by the total hit and eviction probability
in the region. Thus Eq. 15 becomes:

PA(ai) ≈ PA(ai−1)− P[ai−1 ≤ H < ai] + P[ai−1 ≤ E < ai]

S
(22)

B. MODELING CLASSIFICATION
For the most part, each class c can be modeled indepen-
dently using a per-class reuse distance distribution PD,c(d)
and rank function Rc(a) representing how the policy treats
class c. Because classes share the cache, we need two addi-
tional refinements. First, the age distribution must change
to reflect the relative frequency of accesses to each class.
Recall from Sec. 4.2 that PA(1) = 1/S because each ac-
cess creates a line of age 1. With classification, PA,c(1) is
proportional to the total probability of accesses to class c
(Algorithm 1, line 8):

PA,c(1) =

∑∞
d=1 PD,c(d)

S
(23)

Thus, summing across classes, the probability at age 1 is
unchanged at 1/S.

Second, since any access can force an eviction and victims
are chosen from all classes, the eviction distribution uses the
cache’s total hit rate and combined rank distribution. These
are obtained by summing over all classes:

P[hit] =
∑

c

∞
∑

a=1

PH,c(a) (24)

Prank(r) =
∑

c

∑

a:Rc(a)=r

PA,c(a) (25)

The complete model equations for access class c are:

PA,c(a) =
P[L ≥ a, c]

S
=

∞
∑

x=a

PH,c(x) + PE,c(x)

S
(26)

PH,c(d) = PD,c(d) ·

1−
d−1
∑

x=1

PE,c(x)

P[D > x, c]

 (27)

PE,c(a) = (1− P[hit]) · Pmax rank

(

Rc(a)
) · PA,c(a)

Prank

(

Rc(a)
) (28)

along with Eq. 24 and Eq. 25. These are simply the original
model equations (Eq. 1, Eq. 4, and Eq. 14) with joint prob-
ability on class c where appropriate. Note that although
we focus on reused/non-reused classification, the above is a
general framework that admits other classifications.

14

B.1 Predictive reused/non-reused classification
Performing reused/non-reused classification is challenging
because being reused is a dynamic property of the cache, not
an independent property of the access stream. This means
we must somehow derive the reuse distance distribution of
reused lines PD,reused(d) to perform classification, e.g. by
using Eq. 8 or computing the protecting distance a là PDP.
Modeling this distribution is possible because reused lines
are just those that hit, and the model gives the distribu-
tion of hits in the cache (Eq. 4). So with some information
about how lines behave after hitting, we can compute the
reuse distance distribution of reused lines. We first model
this behavior exactly, and then show a practical implemen-
tation.

Exact: To model the behavior of lines after they have hit,
we need to introduce a new distribution D′, which gives a
line’s next reuse distance after the current one. D′ is dis-
tributed identically to D unless the some other condition is
specified. Specifically, D′ is dependent on the prior reuse
distance D, and D is a property of the cache independent
of the replacement policy. Moreover, H = d implies a prior
reuse distance of d, so knowing the distribution of D′ condi-
tioned on D lets us reason about how lines will behave after
they are reused.

In particular, the reuse distance transition probabilities
P
[

D′ = d|D = x
]

let us compute the reuse distance distri-
bution of reused lines. These are the probabilities that lines
with previous reuse distance D=x will have a next reuse
distance of D′=d. Since reused lines are those that have hit
in the cache, the reuse distance distribution of reused lines
is:

PD,reused(d) =

∞
∑

x=1

PH(x) · PD′
(

d|D=x
)

(29)

The distribution of non-reused lines is just the difference of
this and the full reuse distance distribution.

The all-to-all transition probabilities are difficult to gather
in practice, however, since they require a two-dimensional
histogram indexed by previous reuse distance × next reuse
distance. The resulting distributions are expensive to sam-
ple and can have significant noise.

Simplified: We account for this by instead using a simpler
distribution: the reuse distance distribution of lines that
were previously reused at a distance d less than some limit
ℓ. We choose the limit to serve as an effective proxy for
being reused. Specifically, ℓ covers 90% of hits as computed
by the model, P[H < ℓ] ≈ 0.9. We chose this parameter
empirically; performance is relatively insensitive to its value.

We then compute the reuse distance distribution of reused
lines, PD,reused(d), from whether the reuse came before or
after the limit:

PD,reused(d) ≈ P
[

D′ = d, H < ℓ
]

+ P
[

D′ = d, H ≥ ℓ
]

(30)

We compute each term assuming the hit probability of the
current access is independent of the reuse distance of the

next access.3 For example, the former term:

P
[

D′ = d, H < ℓ
]

= P
[

hit|D′ = d, D < ℓ
]

· P
[

D′ = d, D < ℓ
]

(Independence) = P
[

hit|D < ℓ
] · P

[

D′ = d, D < ℓ
]

(Simplify) =
P[H < ℓ] · P[D′ = d, D < ℓ

]

P[D < ℓ]

= P[H < ℓ] · P
[

D′ = d|D < ℓ
]

(31)

This allows us to gather only two distributions, PD(d) and
P
[

D′ = d, D < ℓ
]

, in order to model reused/non-reused clas-

sification.4 For this model to be informative, ℓ must be cho-
sen intelligently. We choose ℓ to cover most hits (90%).

Although this limit scheme is a rough approximation of the
full transition probabilities, our evaluation (Sec. 10) shows
that it captures the benefits of reused/non-reused classifica-
tion with much simper modeling and monitoring hardware.

3The same assumption is implicit in the exact derivation
above, and follows nearly an identical form to the derivation
that follows.
4The third distribution, P

[

D′ = d, D ≥ ℓ
]

, is their differ-
ence.

15

