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Abstract

We describe the development and application of a versatile semisynthetic strategy, based on a

combination of sortase-mediated coupling and tetrazine ligation chemistry, which can be exploited

for the efficient incorporation of tunable functionality into chimeric recombinant proteins. To

demonstrate the scope of the method, we present the assembly of a set of bivalent ligands, which

integrate members of the epidermal growth factor (EGF) ligand family. Using a series of bivalent

EGFs with variable intraligand spacing, we correlate the differences in structure with the ability to

bias signaling in the ErbB receptor family in a cell motility assay. Biasing away from EGFR-

HER2 dimerization with a bivalent EGF was observed to reduce cell motility in an intraligand

distance-dependent fashion, demonstrating the utility of the approach for the tailored assembly of

recombinant chimeric protein for acutely perturbing receptor-mediated cell signaling pathways.
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The ErbB/HER/epidermal growth factor receptor (EGFR) family comprises four closely

related receptor tyrosine kinases (RTK) known to regulate diverse organismal phenotypes

including cell migration, proliferation, and differentiation.[1] Evidence supports activation

by receptor-specific protein ligand binding that drives and stabilizes receptor dimerization or

oligomerization. One member, HER2, has no known ligands but exists in a conformation

that is poised for heterodimerization and subsequent signal transduction. Mutation,

dysregulation and/or overexpression of the EGFR family receptors and/or their ligands is

prevalent in many epithelial cancers, and specific receptor dimers –particularly heterodimers

with HER2– may propagate malignant signals.[2] Understanding the complex mechanisms

and interplay of these signaling processes and receptor dynamics is crucial for being able to

open up new paradigms for targeting the EGFR signaling pathway. As such, the

development of novel and diverse sets of tools designed to systematically manipulate

receptor activation via non-genetic means should advance our knowledge towards new

therapeutic approaches.

One promising strategy involves the tethering of two EGF family ligands to create “bivalent

ligands.[3]” Preliminary studies with cell lines treated with bivalent ligands for EGFR family

members exhibit phenotypic and signaling behaviors consistent with a biasing of receptor

dimerization or oligomerization away from those involving HER2, compared to treatment

with monovalent ligands (as illustrated in Figure 1). Early prototypes of these bivalent

ligands were created by recombinantly expressing individual ligands (either neuregulin-1β
(NRG) or epidermal growth factor (EGF)) fused to one partner of a coiled-coil monomer

motif and joining the desired ligands non-covalently, (later a bivalent single-chain construct

was expressed)[4] with a fixed amino acid linker spacing.

The bivalent ligand strategy has opened the door for progress in elucidating the complex

systems biology of the EGF receptor family in cancer therapeutics, regenerative medicine as

well as other physiological processes.[5] Therefore, the ability to efficiently produce a

variety of bivalent ligands with tailored functionality to interrogate the EGFR signaling

network and address fundamental biophysical questions regarding receptor dynamics and

trafficking could potentially provide guidance towards, and lead to new models for

therapeutic intervention.

To this end we have designed and established a general semisynthetic strategy for advancing

the scaffold of bivalent protein ligands as a practical and diversely functionalized tool by

taking a chemical approach in linking (in theory any) two recombinant protein ligands with

a synthetic linker. This strategy allows for distance tunability, facile label incorporation, a

covalent linkage, and a single expression strategy capable of producing multiple bivalent

tools with customized linkages tuned to experimental objectives. The approach (Figure 2)

relies on efficient expression of two proteins modified with short Nor C-terminal amino acid

sequences for sortase mediated ligation.[6] The ligation modifies the protein terminus with
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separate chemically-synthesized peptidic components including either a norbornene or

tetrazine moiety which undergo a metal-free bioorthogonal ligation[7] to link the proteins of

interest (e.g. growth factors) via their termini in a C-to-N fashion. We demonstrate the utility

of this method to synthesize an array of bivalent ligands based on EGF and NRG.

Furthermore, the set of bivalent EGF tools is applied in a phenotypic single cell migration

assay, providing a structure-function relationship of effective reduction of cell migration as a

function of linker length.

Our strategy initially focused on optimization of recombinant growth factor expression using

the 53-amino acid EGF ligand as a prototype. Ultimately, we could obtain efficient

expression and purification of EGF in E. coli and “reagent quantities” (~30–50 mg/L) of

EGF could consistently be generated (see SI for gene sequences and expression methods).[8]

Mutagenesis allowed incorporation of either N-terminal GGG- or C-terminal –LPRTGGG

sortase recognition sequences and gave similar expression yields. Similar yields with

neuregulin-1β were also obtained.

Peptidic linker components for incorporation of chemical diversity into the bivalent linkage

were designed to systematically vary the linker length within the bivalent ligand to probe its

effect on biasing receptor interactions. To this end we synthesized a set of norbornene-

modified peptides 1–5 for N-terminal ligand modification (see SI for synthetic details). The

variation of linker length was achieved during peptide synthesis via commercially available

Fmoc-protected PEGn amino acid building blocks, ultimately providing intraligand distances

ranging from 50 Å – 180 Å. For C-terminal ligand modification, a 4-(6-methyl-1,2,4,5-

tetrazin-3-yl)benzylamine-functionalized, 5(6)-carboxyfluorescein-labeled triglycine peptide

6 was synthesized. The 6-methyl variant of the tetrazine was selected due to increased

stability towards aqueous environments and peptide synthesis conditions.[7b]

Using an evolved triple mutant of the sortase enzyme[10] and expressed GGG-EGF and

EGF-LPRTGGG constructs, EGFs were modified with either tetrazine-containing peptide 6,

or peptides 1–5 to produce a set of modular monovalent EGFs containing bioorthogonal

handles. Optimized conditions allowed for full conversion (as monitored by LC/MS) after

30 minutes up to milligram scales of protein using less than 3 equivalents of peptide.

Purification involved a simple two-step process of filtering through NiNTA resin to remove

the His6-tagged sortase enzyme, followed by size exclusion chromatography. Neuregulin-1β
was modified via sortase-mediated ligation with the same modular components. The

tetrazine/norbornene-PEGn-modified EGF and NRG products were verified by LC/MS

(Tables S1, S2, Figure S1) and showed biological activity comparable to wild type

EGF/NRG as confirmed by downstream kinase activation of ERK 1/2 and AKT (Figure S2).

With the tetrazine and norbornene handle-modified monovalent pieces in hand, simple

incubation of the appropriate components in aqueous buffer afforded bivalent ligands. The

various semisynthetic bivalent EGF (EE) and NRG (NN) ligands were synthesized by

combining the modified monovalent pieces in a 1.2:1 (tetrazine:norbornene piece) ratio

(~100 uM) and incubating at room temperature for 24 h, after which ligation progress

appeared to plateau as observed by SDS-PAGE (Figure 3A).[11] Purification via size

exclusion chromatography yielded a set functionalized bivalent ligands with variable tether
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lengths with purities estimated (by LC/MS profiles) at greater than 95% (Figure 3B, Figures

S3, S4).

To validate the new chimeric constructs and demonstrate the utility of the strategy, we

implemented the set of semisynthetic bivalent EGF ligands in single cell motility assays in

hTERT mesenchymal stem cells (hTMSCs). Previous studies showed that a coiled-coil

bivalent ligand induced EGFR clustering/oligomerization on the cell surface resulting in

biasing of EGFR-mediated signaling in hTMSCs suggesting that a role in cell motility may

also be biased upon bivalent ligand treatment.[11] This particular cell line is known to

express EGFR, HER2, and HER3 with no quantifiable HER4. It is hypothesized that an

important signaling pathway in hTMSC migration occurs through the initiation of EGFR-

HER2 heterodimerization from binding of EGF to EGFR (HER2 has no associated

ligand).[12] As such, biasing EGFR away from interaction with HER2 toward EGFR

homodimers should lead to a decrease in cell motility. Moreover, depending on the EE

intraligand distance, this motility phenotype may be attenuated to varying degrees, providing

a structure-function relationship in this context, which may reveal insight into signaling

pathways and guide potential strategies for intervention.

Treatment of hTMSCs with various concentrations of either of the bivalent ligands (50 Å –

180 Å) or their tether-modified monovalent counterparts resulted in diverse motility

behaviors as quantified by tracking the paths of 50 individual cells for each condition

(Figure S5–S7) and analysing these tracks to obtain quantifiable metrics of cell motility:

total pathlength vs. net displacement from initial position (Figures 4A and S8A) and the

random motility coefficient, which captures contributions from cell speed and persistence

(Figure 4B, Figures S8B–S9). At 100 nM, a concentration expected to result in receptor

saturation (unmodified EGF KD ~1 nM), bivalent ligands with intraligand spacing ranging

from 90 – 180 Å showed a marked decrease in cell motility relative to unmodified

monovalent EGF or the monovalent tether-modified variants, with 90 Å-spaced bivalent

exhibiting the largest reduction (Figure 4B). Interestingly, for the shorter EE ligands (50 Å,

65 Å) at 100 nM the stimulated migration phenotype was comparable to the monovalent

counterparts and to unmodified EGF. Similar trends were observed at a ligand concentration

comparable to KD (1 nM), where the 90 Å spacing resulted the greatest inhibition of motility

compared to monovalent counterpart or native EGF (Figure S6B). One observation of note

is the PEG tether-modified EGF monovalent ligands stimulated motility parameters above

the levels for native unmodified EGF.

Crystallographic information from a structure of two bound EGFs in a EGFR homodimer

shows an estimated interligand distance of about 90–100 Å (C-to-N terminus, Figure 5).[13]

As such, our ligand set straddles the minimum required distance (linker distances estimated

via published or modeling data for peptide and PEG motifs)[14] for one bivalent ligand to

sequester a homodimer. Previous bivalent ligands had an intraligand distance of ~200 Å, and

while capable of exhibiting a biasing effect, our study shows the benefit of screening a

variety of distances to maximize a signal bias. The strongest migration reduction at 90 Å

does not seem too surprising considering the length of the PEG chain, allowing this bivalent

to span the EGFR homodimer. This could factor into the relatively slight increase in cell

migration with longer linker lengths, corresponding with the increase in entropy from less
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preorganization.[15] The restoration of cell motility at linker lengths below 90 Å may

suggest the inability of the bivalent ligand to “wrap around” an EGFR homodimer and

effectively bias away from an EGFR-HER2 heterodimer. However, it could also be possible

to bias receptor interactions via concatenation (as illustrated in Figure 1), which would not

necessarily require an intraligand distance that spans the homodimer active sites, but still

may be sterically hindered from occurring. Our migration data suggests with the shorter EE

ligands, that concatenation is not favored. Nevertheless, the ease with which these ligands

can be produced will allow future biophysical and biochemical assays to understand EGFR

dynamics and phenotypic effects. Nevertheless, the ease with which these ligands can be

produced will allow future biophysical and biochemical assays to understand EGFR

dynamics and phenotypic effects.

While the data support the concept that the bivalent ligands are biasing dimerization or

oligomerization toward EGFR homodimers and away from EGFR-HER2 heterodimers

(Figure S10), it is also possible that the ligands are perturbing the biophysical association of

the juxtamembrane domain involved in receptor activation to cause differential signaling, in

a manner similar to that reported for differences in TGFα and EGF.[16] The variable

stimulatory response of monovalent tether-modified EGF could similarly be altering EGFR

biophysical states during activation. Overall, the observation that the tether-modified

monovalent EGFs stimulate cell migration beyond that of wild type EGF is curious. It is

possible the PEG tethers may sterically impede binding, and previous studies of lower-

affinity, weaker binding EGF ligands having increased migration-promoting abilities are

known.[17] Quantitative binding data will be useful in confirming these observations.

Considering receptor dimerization or oligomerization is widely recognized among various

cell surface receptor-mediated signaling pathways, the use of the described strategy for

receptor ligands could also see utility in interrogating other signaling processes.[12c,18,19]

We are currently applying a similar set of bivalent neuregulins to downstream signaling,

proliferation and phenotypic assays to elucidate its relevance in cancerous cells.

Although examples of semisynthetic bivalent ligand constructs in the size range defined in

this study are limited, other approaches for synthesizing bivalent assemblies have included

application of SPPS (smaller peptidic ligands),[20a] site-selective incorporation of cysteines/

aldehydes into antibodies/proteins for subsequent ligation and linking via CuACC or metal-

free click reactions,[21,22] as well as CuAAC chemistries on peptides[23] or on proteins

containing incorporated unnatural amino acids.[24] We chose to employ sortase mediated

ligation due to robust conversion and small amino acid recognition sequences, allowing for

efficient near-native protein expression – ultimately increasing the final semisynthetic

bivalent ligand yields (3–6 mg/L vs. multi-μg/10 L for the coiled coil and single chain

constructs). Sortase mediated ligation has shown great use in linking proteins to proteins,

peptides or other chemical entities. Recently, Ploegh and coworkers described utilizing

sortase ligation and metal-free click chemistry to make N-to-N fusions of ubiquitin

vinylmethylester (UbVME) and C-to-C fusions of VHH, a variable region of camelid

antibodies.[25]
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While in this study linkers included variable PEG spacers and a fluorescent label, one could

envision incorporation of additional bioorthogonal handles for more diverse functionality,

recognition or specific delivery, or further variation of the rigidity of the spacer utilizing

polyproline motifs.[20] Slight modulations in tether flexibility properties have been shown to

play a remarkable role in stabilizing dimeric receptor interactions in other systems.[26]

In conclusion, we have described a robust, versatile method for incorporating tunable

functionality into chimeric proteins and applied this method to bivalent growth factor

ligands for studying and biasing EGFR signalling in hTMSCs using cell motility as a

phenotypic readout. Although numerous studies of structure-function relationships for small

molecules and their therapeutic targets are known and produce important insight, outside of

mutagenesis studies, less examples exist with respect to larger protein ligands and their

targets. Such studies, as well as methods for undertaking them will become invaluable

moving forward our knowledge and perhaps establish new thought paradigms toward

exploring the semisynthetic therapeutic space.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustration of biased signaling in ErbB receptors with bivalent ligands (E = epidermal

growth factor).
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Figure 2.
Semisynthetic bivalent linkage strategy assembles two protein ligands with tunable

functionality. Protein ligand, e.g. = Epidermal Growth Factor (EGF), Neuregulin (NRG).
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Figure 3.
Representative SDS-PAGE analyses A) click ligation reaction progress and B) final purified

bivalent ligand set (bivalent EGFs (EEs) shown, for bivalent NRG (NN) see SI).
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Figure 4.
hTMSC migration response to 100 nM semisynthetic bivalent EGF ligand treatment as

compared to the respective PEGn-modified monovalent EGF. A) Mean and S.E. of the net

displacement (μm) and total path length (μm) of hTMSCs upon treatment with monovalent

and bivalent EGFs (65 Å and 90 Å); B) Fold-change in the random motility coefficient

(RMC) (μm2/h) in response to various ligand treatments. See SI for statistical analyses.
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Figure 5.
Frontal (left) and top (right) views of crystal structure representation of a homodimer of two

extracellular EGFR domains with two bound EGFs, indicating approximate distance

between C, N termini of EGF ligands. (PDB ID: 3NJP).13
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