
Palladium-Catalyzed Amination of Unprotected Five-Membered
Heterocyclic Bromides
Mingjuan Su, Naoyuki Hoshiya, and Stephen L. Buchwald*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

*S Supporting Information

ABSTRACT: An efficient method for the palladium-catalyzed
amination of unprotected bromoimidazoles and bromopyr-
azoles is presented. The transformation is facilitated by the use
of our newly developed Pd precatalyst based on the bulky
biarylphosphine ligand tBuBrettPhos (L4). The mild reaction conditions employed allow for the preparation of a broad scope of
aminoimidazoles and aminopyrazoles in moderate to excellent yields.

The past decade has seen growing efforts in developing
methods toward the functionalization of five-membered

nitrogen-containing heterocycles.1 Their unique biological
properties and their ability to engage in hydrogen bond
interactions has rendered these subunits useful components of
medicinally relevant molecules.2 Among these compounds, five-
membered aminoheterocycles such as aminoimidazoles3a,b and
aminopyrazoles3c,d have attracted considerable interest (Figure
1).

An obvious means to prepare aminoheterocycles is by using
the palladium-catalyzed C−N cross-coupling between five-
membered heterocyclic halides and amines.4,5 Despite the
significant advances in palladium-catalyzed C−N cross-coupling
methods, five-membered heterocyclic halides represent difficult
coupling partners,6 presumably due to their ability to inhibit
and/or deactivate the palladium catalyst.7 While success has
been made with halothiophenes and halofurans,8 and very
recently haloimidazoles and halopyrazoles,4,8d the use of five-
membered heterocycles bearing unprotected NH groups as
electrophiles in palladium-catalyzed C−N cross-coupling
reactions is comparatively rare9 and limited to specific substrate
combinations.4,10 Herein, we present a general method for the
palladium-catalyzed amination of a number of unprotected
bromoimidazoles and bromopyrazoles.
We initiated our investigation by examining the palladium-

catalyzed coupling between test substrates 4-bromo-1H-
imidazole and aniline. As depicted in Table 1, we observed

dramatic ligand effects in these initial experiments. For example,
L1 and L2 were previously reported to be effective for the
coupling between 4-bromo-1H-pyrazole and aniline;4,11a

however, these ligands proved to be ineffective for the coupling
of the 4-bromo-1H-imidazole as the electrophile (entries 1 and
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Figure 1. Biologically active compounds containing aminopyrazole
and aminoimidazole subunits.

Table 1. Ligand Effects in the Palladium-Catalyzed
Amination of 4-Bromo-1H-imidazolea

entry precatalyst ligand conversionb (%) yieldb (%)

1 P1 L1 27 13
2 P2 L2 7 0
3 P3 L3 100 77
4 P4 L4 100 85 (87)c

5 P5 L5 4 0
6 P6 L6 8 0

aReaction conditions: HetArBr (0.3 mmol), aniline (0.36 mmol),
LHMDS (0.66 mmol). bDetermined based on the 1H NMR of the
crude reaction mixture using 1,3,5-trimethoxybenzene as internal
standard, average of two runs. crt, 12 h.
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2). Conversely, the use of L3, previously developed for the
amidation of five-membered heterocyclic bromides,8d resulted
in the full conversion of the bromoimidazole and 77% yield of
the corresponding 4-amino adduct (entry 3). The use of a
catalyst based on L411b performed comparably, providing the
desired amination product in slightly higher yield (85%) under
otherwise identical conditions (entry 4). Notably, this process
could be carried out at room temperature, affording the product
in 87% yield in 12 h. Interestingly, these results contrast with
our previous observation that L4 was inferior to the bulkier L3
in the amidation reactions of five-membered heterocyclic
bromides.8d However, amines are significantly more nucleo-
philic than amides, and the use of L3, which bears the large 1-
adamantyl substituents on phosphorus, is presumably unneces-
sary to facilitate reductive elimination. Finally, reactions
employing catalysts derived from L511c or L611d yielded no
desired product (entries 5 and 6), thus providing further
information on the importance of the BrettPhos biaryl
backbone framework (such as in L3 and L4) to effect
amination of these types of heterocycles.11e

Using this optimized protocol, with P4 (1−2 mol %), L4
(1−2 mol %), and LHMDS (2.2 equiv) in THF,12 we assessed
the scope of the amine coupling partners for the amination of
4-bromo-1H-imidazole (Scheme 1). This system was found to
be effective for electron-rich (1a and 1b), electron-deficient (1c
and 1d), and heteroarylamines (1e, 1f, and 1g).13 Notably,
there exist very few examples of preparing 4-aminoimidazoles
that have appeared to date.14 In addition, this investigation was

extended to the amination of 2-bromo-1H-imidazoles. As
shown in Scheme 1, a variety of amine nucleophiles including
anilines (1h, 1j, and 1k), alkylamines (1i), and heteroaryl-
amines (1l) underwent efficient arylation to afford 2-amino-
imidazoles in good yields.
Next, we turned our attention to amination reactions using 4-

and 3-bromo-1H-pyrazoles as electrophiles. Under the
optimized reaction conditions, various aliphatic and aromatic
amines of different electronic and steric properties represent
useful coupling partners for the transformation (Scheme 2).

Substituents such as phenoxy (2c), trifluoromethyl (2d), cyano
(2f), morpholinyl (2h), and furanyl (2j) were also well
tolerated, although coupling products with aminophenols and
aminoacetanilide functional groups could not be prepared in
useful yields.
There has also been an increasing interest in the synthesis of

diheteroarylamines,15 as these compounds have displayed
promising activity in assays targeting cancer,15a,b myeloprolifer-

Scheme 1. Scope of 4- and 2-Bromo-1H-imidazole
Couplinga

aReaction conditions: HetArBr (1.0 mmol), amine (1.2 mmol),
LHMDS (2.2 mmol). Isolated yields are an average of two runs. bP4
(1 mol %), L4 (1 mol %). cP4 (2 mol %), L4 (2 mol %). d80 °C. e12
h. fAmine (1.4 mmol).

Scheme 2. Scope of 4- and 3-Bromo-1H-pyrazoles Coupling
with Aliphatic, Aromatic, and Heteroaromatic Aminesa

aReaction conditions: HetArBr (1.0 mmol), amine (1.2 mmol),
LHMDS (2.2 mmol). Isolated yields are an average of two runs. bP4
(1 mol %), L4 (1 mol %), 50 °C. cP4 (2 mol %), L4 (2 mol %), 80 °C.
d12 h. eAmine (1.4 mmol). f16 h. gP4 (4 mol %), L4 (4 mol %).

Organic Letters Letter

dx.doi.org/10.1021/ol4035947 | Org. Lett. 2014, 16, 832−835833



ative disorders15c,d and platelet aggregation.15e Therefore, we
evaluated the utility of this protocol toward the synthesis of a
variety of diheteroarylamines from 4- and 3-bromo-1H-
pyrazoles and a range of interesting heteroaromatic amines
(Scheme 2). Various aminoheterocycles such as aminopyridines
(2k, 2i, and 2p), aminoquinolines (2m), aminopyrimidines (2n
and 2r), and aminopyrazines (2o and 2q) were found to be
suitable coupling partners, although in the case of 2q and 2r,
higher catalyst loadings and longer reaction times were
necessary. Unfortunately, 4-aminopyridine and 8-aminoquino-
line were not successfully transformed under our reaction
conditions.
In conclusion, we have developed a general method to cross-

couple 4- and 2-bromo-1H-imidazoles and 4- and 3-bromo-1H-
pyrazoles effectively with aliphatic, aromatic, and heteroar-
omatic amines. In particular, this method provides facile access
to 4-aminoimidazoles and diheteroarylamines. We anticipate
that this protocol will find widespread application in a variety of
settings to access these types of substituted five-membered
heterocycles that are traditionally difficult to prepare.
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