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This paper proposes an adaptive controller for a class of multi-input multi-output (MIMO) plants where
the number of outputs is larger than the number of inputs, an example of which is very-flexible aircraft (VFA).
A dominant presence of model uncertainties and actuator anomalies necessitates an adaptive approach for
control of VFA. The proposed controller, denoted as the adaptive SPR/LTR controller, combines a baseline
observer-based design with loop transfer recovery (LTR) properties and an adaptive design based on strictly
positive real (SPR) transfer functions. In addition to accommodating the absence of full state measurements,
the controller includes a reference model that also plays the role of an observer through a closed-loop compo-
nent. Conditions are delineated under which this controller, can guarantee asymptotic reference tracking, and
the control design is validated using a VFA model around a single equilibrium flight condition with 707 states,
12 outputs and 2 control inputs. Simulation results show that the adaptive controller not only ensures stability
but also recovers a nominal performance both in time domain and in frequency domain despite the presence
of varying wing shape and actuator anomalies.

Nomenclature

A = Nominal state matrix with augmented errors q = pitch rate, rad/s
Am = Reference model state matrix R = Positive definite weight matrix
Az = Vertical acceleration S 1 = Output mixing matrix
B = Nominal input matrix t = Time, sec
Bz = Nominal reference input matrix u = Control input
C = Nominal measured output matrix V(·) = Lyapunov function candidate
Cz = Nominal tracking output measurement matrix Vz = Vertical climb rate
Dz = Nominal tracking output input matrix x = Plant model state
ex = State error xm = Reference model state
ey = Measured output error y = Measured output of plant
ez = Tracking output error ym = Reference model output
G(s) = Transfer function matrix z = Tracking output of plant
I = Identity matrix zm = Tracking output of reference model
K = State feedback gain zcmd = Command of tracking output
L = Nominal observer feedback gain α = Angle of attack, rad
Lv = Observer feedback gain designed by OBLTR Γ = Adaptation gain
Lρ = Observer feedback gain designed by SPR/LTR δe = Elevator angle, rad
M = Right null space of C Θ∗ = Uncertainty matrix
m = Number of input Θ = Adjustable parameter
N = Left null space of B Θ∗max = Upbound of uncertainty
n = Number of state Λ∗ = Uncertainty matrix
P = Positive definite matrix for KYP Lemma Λ = Adjustable parameter
p = Number of output Λ∗max = Upbound of uncertainty
Q = Positive definite weight matrix η = Dihedral angle of wing
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I. Introduction

Very Flexible Aircraft (VFA) platforms are being investigated with increased attention in the last decade, motivated
to a large extent by the desire to generate high-altitude low-endurance (HALE) flights1–3. VFA corresponds to an aerial
platform whose equilibrium flight condition (trim) critically depends on the flexible modes of wings2,4. One of the
challenges of VFA is a significant change in the rigid-body dynamics around a trim as the wing morphs. For example,
the pitch (short period) mode of VFA can become unstable when wing dihedral is trimmed at a high value4,5. As a
consequence, control designs based on rigid-body dynamics only may face unexpected adversities. An example of this
adversity occurred in 2003 during the second test flight of Helios when the flight controller failed to regulate the wing
dihedral and eventually, allowed the unstable pitch mode to diverge5. The lesson learned from the mishap is that the
model for control designs has to include body flexible effects4,5.

Recently, a VFA platform, denoted as Vulture, has been under development to meet the goals of HALE maneuvers
and will be used to demonstrate improved control designs6. Vulture is an experimental aircraft with a huge wingspan
of 400ft. The entire wing is made of light low-yield material and is flexible to deform. A large 707-state model has
been derived around a trim point, with a large number of body flexible modes6. A particular challenge is that only
a set of state measurements can be used for control because none of the body flexible modes are measurable. The
restriction necessitates control designs based on output-feedback, such as linear quadratic gaussian (LQG) controllers.

LQG controllers have been widely employed for the control of commercial aircraft and their performance is quite
satisfactory for a nominal plant model7,8. The corresponding design procedure is to trim aircraft around an equilibrium,
obtain a linearized model and design the LQG controllers so as to realize trajectory tracking near the trim. Combined
with full-state LTR techniques9,10, the resulting controllers, denoted as LQG/LTR, recover the guaranteed stability
margins of linear quadratic regulators (LQR) asymptotically9–11, and therefore can tolerate a certain amount of model
uncertainties. Application of LQG/LTR controllers on VFA, however, faces unique difficulties. First, since flexible
wings can deform to an unknown shape, the actual trim and the corresponding flight dynamics can drift far away from
the control model (trim drift). Second, a HALE flight can cause severe actuator anomalies such as power surge in
motors or structure damage in control surfaces. Both unknown adversities can exceed stability margins of LQG/LTR
controllers, and therefore make these controllers inadequate for VFA.

The above limitations of LQG controllers motivate an adaptive control solution that is able to accommodate the un-
knowns associated with VFA flights. In particular, trim drift can cause the displacement of wing flexible components,
which in turn changes the orientation of control surfaces in airflow, producing a state-dependent control perturbation.
When actuator anomalies occur, the actual lift/thrust force can be scaled by an unknown factor, producing a multiplica-
tive control perturbation. It can be shown that both types of the adversities can be modeled as parametric uncertainties
in the underlying plant model.

In this paper, we develop an adaptive output-feedback controller that can accommodate parametric uncertainties
in a typical MIMO plant model, and apply the control design on VFA models to achieve trajectory tracking despite
the presence of body flexible effects. The classical approach to MIMO adaptive controllers (see Ref.12 Chapter 10
and Ref.13 Chapter 9) is based on pre-conditioning plant transfer function matrix. Such a design typically requires the
knowledge of plant’s Hermite form14,15 and uses a non-minimal observer along with a reference model. In contrast to
the classical method, the approach used in this paper is similar to Ref.16 Chapter 14, which uses a minimal observer
to generate the underlying state estimates. The state estimates are then used for both feedback (similar to LQG
controllers) and parameter adaptation. In contrast to the classical approach, the same minimal observer is also used
to serve as a reference model, given rise to the notion of a closed-loop reference model (CRM) recently shown to be
a highly promising direction in adaptive control17–19. The resulting adaptive output-feedback controller needs much
fewer integrators than the classical controllers, and guarantees global stability and asymptotic tracking by utilizing SPR
properties of an underlying transfer function. In addition, the full-state LTR properties of LQG/LTR controllers are
retained in the baseline design. We denote the proposed controller as adaptive SPR/LTR controllers. The preliminary
results of this paper has been presented in Ref.20 and Ref.21. An alternate approach of the observer parameter design
using linear matrix inequality techniques was developed in Ref.22.

The paper is organized as follows. Section II introduces mathematical preliminaries necessary for the design and
analysis of the proposed controller. Section III formulates the control problem in the context of VFA. Section IV
presents the adaptive controller design and its SPR/LTR properties, and also includes stability analysis of the adaptive
system. Section V demonstrates the response of the resulting closed-loop system with the adaptive controller using
two numerical examples, including a simplified 3-wing VFA model and a linear model of Vulture VFA6 around a
single flight condition.
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II. Preliminaries

A few definitions and lemmas are presented in this section. Proofs of all lemmas in this section are redirected to
the corresponding references.

Definition 1. The notation {A, B,C,D} is defined as the transfer function matrix C(sI − A)−1B + D.

The case when D = 0 is denoted as {A, B,C}. We define transmission zeros in the following.

Definition 2. 23 For a non-degenerate linear system with minimal realization A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and
D ∈ Rp×m, the transmission zeros are defined as the finite values of s such that rank[R(s)] < min(n + m, n + p), where

R(s) =

[
sI − A B

C D

]
. (1)

Most non-square systems don’t have transmission zeros; square systems are more likely to lose rank and therefore
more likely to have transmission zeros24. With the definition of transmission zeros, the definition of minimum phase
systems becomes a natural extension from that of SISO systems.

Definition 3. The system is minimum phase if all transmission zeros are in open left half of the complex plane C−.

It is clear that a minimum phase MIMO system does not require zeros of each individual transfer functions to be
stable. One special category of minimum phase systems is a strictly positive real (SPR) system (or transfer function
matrix). This paper uses Ref.12 (see Definition 2.10) for the definition of SPR. Kalman–Yakubovich–Popov (KYP)
lemma links the frequency domain properties of an SPR transfer function to its realization.

Lemma 1. [KYP Lemma] A system {A, B,C} is strictly positive real if and only if there exists a P = PT > 0 such that

PA + AT P < 0 (2)
PB = CT . (3)

An SPR transfer function is a square system satisfying CB = BT PB = (CB)T > 0. This paper considers square
systems whose CB is full rank. Such systems have the following property.

Lemma 2. 25 Given a pair C ∈ Rm×n and B ∈ Rn×m, if CB has full rank, there exist matrices M ∈ Rn×(n−m) and
N ∈ R(n−m)×n such that NB = 0(n−m)×m, CM = 0m×(n−m) and NM = I(n−m)×(n−m).

In this context, N is called the null space of B and M is called the null space of C. With the definition of N, Eq.(3)
of KYP Lemma can be fully characterized as following.

Lemma 3. 26 Given a pair of C and B, if there exists a P = PT > 0 such that PB = CT , then P ∈P where

P = {P > 0 | P = CT (CB)−1C + NT WpN, Wp > 0} (4)

where N is the right null space of B and Wp is an arbitrary symmetric positive definite (SPD) matrix.

Proofs of Lemmas 2 and 3 can be found Ref.25 and Ref.26, respectively. Lemma 3 implies that there is a one-to-one
correspondence between Wp and P that satisfies (4). We present another property of CB-full-rank square systems in
Lemma 4 whose proof can be found in Ref.23.

Lemma 4. 23 For a square system {A, B,C} with CB being full rank, the square matrix (NAM) is the zero dynamics of
the system with its eigenvalue being the transmission zeros.

From Lemma 4, it can be concluded that the minimum-phase property in Definition 3 is a necessary condition
for the system to be SPR. This can be shown by pre and post-multiplying Eq.(2) with MT and M , respectively, and
appealing Eq.(4) yields

WpNAM + MT AT NT Wp < 0. (5)

For Eq.(5) to hold for an SPD Wp, NAM has to be Hurwitz.
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III. Problem Statement

Aircraft dynamics around an equilibrium flight condition can be represented by a linear time invariant (LTI) model
as

ẋp = Apxp + Bpu
yp = Cpxp

z = Cpzxp + Dpzu
(6)

where xp ∈ R
np are states, u ∈ Rm are control input, yp ∈ R

pp are measurement outputs and z ∈ Rr are tracking outputs.
Since in most flight control applications, there are more sensors than actuators, and all states are not measurable, we
assume that np > pp ≥ m. The matrices have dimensions Ap ∈ R

np×np , Bp ∈ R
np×m, Cp ∈ R

pp×np , Cpz ∈ R
r×np and

Dpz ∈ R
r×m and are assumed to be known. Since z typically includes non-strictly proper outputs such as accelerations,

a constant matrix Dpz is assumed to be present. When yp includes non-strictly proper outputs, they are integrated to
become strictly proper outputs.

Eq.(6) corresponds to the ideal case where all plant matrices are known. In reality, these matrices are unknown
and are identified through various methods. The state matrix Ap can be determined through wind-tunnel tests fairly
accurately. Cp and Cpz are well known as well since the relation between measured outputs and states is well defined.
The input matrix Bp and Dpz, in contrast, may not be accurate as control inputs are subjected to perturbations in a VFA
flight. We address two of the dominant issues in this paper.

The first source of control perturbations we consider is the orientation change of control surfaces when the flexible
wing shape settles down to a value different from the trim as represented by the nominal model. In such a case, the
vertical lift produced on control surfaces may be increased or reduced. This effect can be modeled as an additive term
Θ∗T Φ(xp) where Φ(·) : Rnp → Rd is a known nonlinear function which maps the flexible positions of VFA (which
are part of states xp) to each local wing dihedral. Θ∗ ∈ Rd×m represents the map from a local wing dihedral to the lift
adjustment of each control surface and in general is unknown.

The second source of control perturbation that we address is actuator anomalies caused by electronic power surge or
control surface damage. This is modeled as an unknown multiplicative factor Λ∗ ∈ Rm×m. Together, both uncertainties
lead to a modified plant model given by

ẋp = Apxp + BpΛ∗[u + Θ∗T Φ(xp)]
yp = Cpxp

z = Cpzxp + DpzΛ
∗[u + Θ∗T Φ(xp)]

(7)

which is the plant model considered in Ref.16 (Chapter 14). The uncertainties in (7) are parametric and are given by
Λ∗ and Θ∗. The underlying control problem is to design u(t) such that in the presence of the uncertainties, z(t) follows
a specified reference zm(t), i.e. reference tracking.

The adaptive controller that we will present requires the following assumptions regarding the plant model in (7):

Assumption 1. (Ap, Bp) is controllable and (Ap,Cp) is observable;

Assumption 2. {Ap, Bp,Cp} is minimum phase;

Assumption 3. {Ap, Bp,Cpz,Dpz} does not have a transmission zero at the origin;

Assumption 4. rank(CpBp) = m.

Assumption 5. Λ∗ is diagonal, full rank, bounded by a known value, ‖Λ∗‖ < Λ∗max and the sign of each element
sign(Λ∗) is known;

Assumption 6. Θ∗ is bounded by a known value, ‖Θ∗‖ < Θ∗max; Φ(·) is globally differentiable, and is globally Lipschitz
continuous, i.e. there exists a finite constant lφ ∈ R such that ∀x1, x2 ∈ R

np ,

‖Φ(x1) − Φ(x2)‖ ≤ lφ ‖x1 − x2‖ . (8)

Assumption 1 is standard. The fact that the underlying plant model is non-square and typically has no transmission
zeros24 makes Assumption 2 reasonable. Assumption 3 usually holds, especially when Dpz , 0.
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For nominal MIMO plant models satisfying Assumptions 1 to 3, a baseline observer-based controller (such as
LQG/LTR9) can be designed to achieve a satisfactory tracking performance with adequate stability margins. Assump-
tions 4 to 6 are needed for the proposed adaptive controller. Of these, Assumption 4 is perhaps the most restrictive one,
and can be viewed as the MIMO counterpart of a relative degree one assumption (see Ref.12 Chapter 5). Assumption
5 implies that the actuator anomalies are bounded and independent from each other, and are bounded. Assumption 6
is commonly satisfied for the aerial platforms with varying dihedral wingshape, such as VFA.

IV. Adaptive SPR/LTR Controller

This section presents the adaptive output-feedback controller. Section A first introduces the architecture of the
controller, which includes an observer that also doubles as a CRM. The adaptation law is also shown in this section.
Section B presents the design of observer parameters and their SPR and LTR properties, as well as stability analysis
of the adaptive system. Section C summarizes the overall design procedure, and Section D compares our design with
other adaptive output-feedback controllers recently proposed16,21,22. The main challenge in our controller design is
in the selection of the observer parameters so as to ensure that an underlying transfer function matrix is SPR. This is
carried out in Section B, and described in Lemmas 8 and Theorem 1.

A. Controller Structure

Following the design procedure in Ref.16 (see Chapter 14), the controller is divided into two parts, a baseline
observer-based controller with an integral error modification, and an adaptive component augmentation.

1. Addition of Integral Error

Suppose a piecewise continuous command zcmd(t) is prescribed. For the purpose of command tracking, we first
introduce an integral error state epz = z − zcmd and wpz :=

∫
epzdt, which leads to a modified plant model:[

ẋp

ẇpz

]
=

[
Ap 0
Cpz 0

]
︸        ︷︷        ︸

A

[
xp

wpz

]
︸  ︷︷  ︸

x

+

[
Bp

Dpz

]
︸   ︷︷   ︸

B

Λ∗[u + Θ∗T Φ(xp)] +

[
0
−I

]
︸ ︷︷ ︸

Bz

zcmd

y =

[
Cp 0
0 I

]
︸       ︷︷       ︸

C

x

z =
[

Cpz 0
]︸        ︷︷        ︸

Cz

x +
[
Dpz

]︸︷︷︸
Dz

Λ∗[u + Θ∗T Φ(xp)].

(9)

Eq.(9) can be written compactly as (10):

ẋ = Ax + BΛ∗[u + Θ∗T Φ(xp)] + Bzzcmd

y = Cx
z = Czx + DzΛ

∗[u + Θ∗T Φ(xp)].
(10)

Define n := np + r and p := pp + r. Then x ∈ Rn and y ∈ Rp. We note that (A, B) is controllable because of
Assumptions 1 and 3, and (A,C) is observable because Assumption 1 holds and the additional error states are also
measured. Moreover, rank(CB) = m since Assumption 4 holds.

2. Augmentation Architecture

We choose the control input u in (10) as
u = ubl + uad (11)

where ubl is determined using a baseline observer-based controller and uad by an adaptive controller. The baseline
control ubl is chosen as

ubl = −Kxm (12)
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where K is designed by applying the linear quadratic regulator (LQR) technique on the nominal plant model {A, B,C},
and xm is the output of the state observer

ẋm = Axm + Bubl + Bzzcmd + Lρ(y − ym)
ym = Cxm

zm = Czxm + Dzubl.
(13)

which also serves as a CRM17–19. One can see the form of a CRM in (13) by substituting ubl with Eq.(12). Eq.(13)
serves two purposes, one of an observer, where Lρ is equivalent to an observer gain, whose purpose is to provide a state
estimate, and the other of a reference model, whose purpose is to provide a reference for the states. While Lρ can be
chosen using the LTR techniques when the uncertainties Λ∗ and Θ∗ are zero, its design in the presence of uncertainties
will depend also on an underlying SPR transfer function, which will be discussed in greater detail in Section 1 and 2.

The adaptive component uad is chosen as

uad = −[I − Λ−1(t)]ubl − ΘT (t)Φ(xmp) (14)

where xmp is the first np elements of xm, corresponding to the estimate of xp. It is noted that the inverse sign in Λ−1(t)
is for notation purpose only, i.e. Λ(t) does not necessarily exists. Λ−1(t) and ΘT (t) are estimates of Λ∗−1 and Θ∗T ,
respectively, both of which are to be suitably adjusted. To determine their adjustment, we derive the error model for
ex = x − xm by subtracting (13) from (10) as

ėx = Ax + Bubl + Bzzcmd + BΛ∗[uad + (I − Λ∗−1)ubl + Θ∗T Φ(xp)]
−Axm − Bubl − Bzzcmd − Lρ(y − ym)

= (A − LρC)ex + U(xp, xmp) + BΛ∗[Λ̃T ubl − Θ̃T Φ(xmp)] (15)

where U(xp, xmp) := BΛ∗Θ∗T [Φ(xp) − Φ(xmp)], Λ̃T (t) := Λ−1(t) − Λ∗−1, and Θ̃T (t) := ΘT (t) − Θ∗T . The structure of
(15) suggests the following adaptive laws (see also Ref.16)

Θ̇(t) = ΓθΦ(xmp)eT
y S T

1 sign(Λ∗)
Λ̇−T (t) = −ΓλubleT

y S T
1 sign(Λ∗) (16)

where Γθ > 0, Γλ > 0 are update gains, ey = y − ym and S 1 ∈ R
m×p is an output-mixing matrix which will be designed

together with Lρ in Section 1. The novelty in adaptation law (16) is that the state estimate xm(t) and the output errors ey
are used, which enables us to perform output feedback adaptation. Under the SPR conditions on an underlying transfer
function matrix and with Assumptions 5 and 6, it can be shown that the adaptive controller given by (11)(12)(13)(14)
and (16) (shown in Figure 1) leads to global asymptotic stability and reference tracking. This is addressed in detail in
Section B, along with the design of Lρ and S 1.

Figure 1. The architecture of the adaptive SPR/LTR controller: the adaptive component is added to a baseline observer-based controller
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B. SPR/LTR Design

Lρ in the observer/CRM (13) and S 1 in the adaptation law (16) will be chosen such that an underlying transfer
function matrix is SPR. Section 1 presents the SPR design for a simpler case when Θ∗ = 0 in (10), and Section 2
addresses the general case when Θ∗ , 0. The SPR design for both cases as well as the stability analysis of the adaptive
system is presented in these sections as well. The LTR properties of Lρ in the baseline controller are introduced in
Section 3. All proofs can be found in the Appendix.

1. Nominal SPR Design: Θ∗ = 0

Since Θ∗ = 0, we choose Θ(t) ≡ 0 and denote Lρ as L. The only uncertainty existing in the plant model (10)
is Λ∗. Lemma 5 guarantees stability of the adaptive design under the SPR conditions of {(A − LC), B, S 1C}. Define
ex = x − xm.

Lemma 5. For the uncertain plant model (10) with Θ∗ = 0, satisfying Assumptions 1 to 5, if a pair of L and S 1 are
chosen such that {(A − LC), B, S 1C} is SPR, the adaptive SPR/LTR controller (11)(12)(13)(14)(16) with L = Lρ and
Θ(t) ≡ 0, guarantees that i) the closed-loop system has bounded solutions and ii) ex(t)→ 0 as t → ∞.

Since Θ̃ = 0 and Lρ = L, the error model (15) becomes

ėx = (A − LC)ex + BΛ∗Λ̃T ubl. (17)

Eq.(17) reveals that the underlying transfer function matrix {(A − LC), B, S 1C} represents the signal path from Λ̃T ubl

to S 1ey. The conditions of Lemma 5 imply that this signal path is SPR, meaning that Λ̃T ubl and S 1ey is always in the
same direction27. The directionality is utilized in the adaptation law (16) to adjust parameters suitably.

The matrices L and S 1 that make the required signal path SPR are referred to as “SPR pairs” and are to be
determined. Using Lemma 1 (KYP Lemma), the design goal can be transformed into: given {A, B,C}, find an SPR
pair such that there exists a Q > 0 that can produce a solution P = PT > 0 to the following equations:

(A − LC)T P + P(A − LC) = −Q < 0 (18)
PB = CT S T

1 . (19)

The design in (18)(19) is the “feedback SPR designs” that have been attempted previously21,22,26,28. In contrast to
the designs in Ref.26,28 that requires CB > 0, the method in this paper extends the results to non-square plant models
with CB being full rank. Comparison between our method and Ref.21,22 is discussed in detail in Section D. We now
describe how an SPR pair can be designed.

First, a B̄ is designed by appending B with a B2 ∈ R
n×(p−m), i.e.

B̄ = [B, B2] (20)

where B2 represents the pseudo-inputs that are designed to square-up the system {A, B̄,C}, keep it minimum phase and
also satisfy that CB̄ is full rank. Under Assumptions 1 to 4, B2 can be designed using the method in Ref.29 for a plant
model without transmission zeros, or using the modified method in Ref.30 for a plant model with minimum-phase
transmission zeros. An output-mixing matrix S and C̄ are designed as

S := [S 1, S 2] = (CB̄)T (21)
C̄ := S C. (22)

S 1 ∈ R
m×p is a sub-matrix of S . A µ∗ ∈ R is chosen such that

0 < µ∗ < |µmax| (23)

where µmax is the maximum real part of the transmission zeros of {A, B̄, C̄}. An Ā is designed as

Ā = A + µ∗I. (24)

A finite L is calculated as
L = B̄R−1S (25)
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where R−1 is designed by applying the output-feedback SPR method28 on {Ā, B̄, C̄}:

R−1 = (C̄B̄)−1((C̄ĀB̄)T + C̄ĀB̄)(C̄B̄)−1 + εI > 0 . (26)

The finite constant ε in (26) should be chosen to be large enough such that

ε > ε∗, ε∗ = max
[
ε∗1 , ε

∗
2

]
ε∗1 = λmax

{
−(C̄B̄)−1((C̄ĀB̄)T + C̄ĀB̄)(C̄B̄)−1

}
ε∗2 = λmax

{
(C̄B̄)−1HT Q−1

I H(C̄B̄)−1
} (27)

where λmax(·) stands for the maximum real part of the eigenvalues and

H := MT ĀT C̄T + PI NĀB̄. (28)

N is the null space of B̄ and M is the null space of C̄ satisfying NM = I (see Lemma 2). PI is the unique solution to a
Lyapunov equation

PI NĀM + MT ĀT NT PI = −QI . (29)

Once a QI > 0 is chosen, a finite PI > 0 can always be found since NĀM is the zero dynamics of {Ā, B̄, C̄} and hence
is Hurwitz. It is noted that QI scales PI . Different from Ref.28, we choose a QI > 0 such that

PI ≥ λmax

{
MT [I + B̄T (C̄B̄)−1B̄T ]M

}
I(n−m). (30)

Eq.(20) to Eq.(30) complete our design of L and S 1. It is noted that the pseudo-input matrix B2 is only used to design
L and not used as real control inputs. Intuitively, L transforms LC into an output-feedback direction B̄R−1C̄, , which,
if large enough, overwhelms the error state dynamics in (17) and aligns the directions of Λ̃T ubl and S 1ey. This is
formally summarized in Lemma 6.

Lemma 6. Given a MIMO plant model {A, B,C} that satisfies Assumptions 2 to 4, the finite pair of L ∈ Rn×p as
in (25) and S 1 ∈ R

m×p as in (21) guarantees that ∀µ ∈ R satisfying 0 ≤ µ ≤ µ∗, the transfer function matrix
{(A + µI − LC), B, S 1C} is strictly positive real.

Lemma 6 extends the results in Ref.28 to a non-square plant model with a class of (A + µI). Lemma 6 (choosing
µ = 0) and Lemma 5 complete the controller design for the Θ∗ = 0 case.

2. Robust SPR Design: Θ∗ , 0

When Θ∗ , 0, the Lρ design in CRM (13) depends on the bound of Ψ∗, where Ψ∗ is defined as

Ψ∗ :=
l2φ
4

Λ∗Θ∗T Θ∗Λ∗T S 1C. (31)

lφ is defined as in (8), and S 1 is defined in (21). From Assumptions 5 and 6, a bound of Ψ∗ can be calculated as

‖Ψ∗‖ ≤
l2φ
4

Λ∗2maxΘ
∗2
max ‖S 1C‖ = Ψ∗max. (32)

Ψ∗max is finite and known. We introduce the following Lemma on the stability of the adaptive system, which provides
the guidelines for the design of Lρ.

Lemma 7. For the uncertain plant model (10) satisfying Assumptions 1 to 6, if a pair of Lρ and S 1 are chosen such
that the uncertain transfer function {(A + ηI + 1

η
BΨ∗ − LρC), B, S 1C} is guaranteed to be SPR for some η > 0, the

adaptive SPR/LTR controller (11)(12)(13)(14)(16) guarantees that i) the closed-loop system has bounded solutions
and ii) ex(t)→ 0 as t → ∞.

The error model for the general case Θ∗ , 0 has been presented in (15). Conditions of Lemma 7 imply that the
underlying directionality between Λ̃T ubl (or Θ̃T Φ(xmp)) and S 1ey can still be utilized to adjust the adaptive parameters.
The directionality, however, becomes implicit because of the presence of the nonlinear term U(xp, xmp) (see (15)).
Previous adaptive output-feedback control designs21 use the directionality implicitly in proving the stability. Lemma
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7 in this paper reveals the underlying directionality explicitly, and synthesizes observer parameter designs with stability
analysis, which is the central idea of our method. Lemma 5 is a special case of Lemma 7 when Ψ∗ = 0. The case when
Φ(xp) = xp (as considered in Ref.21,22), can be treated as a special case of Lemma 7 with Ψ∗ = Λ∗Θ∗ where Θ∗ should
be augmented with additional r columns of zeros.

We now present the design of an SPR pair for the case when Θ∗ , 0. First, we use Eq.(25) and Eq.(21) to design
an SPR pair of L and S 1. Then we introduce an additional term to L as

Lρ = L + ρB̄S = B̄(R−1 + ρI)S (33)

where ρ is a design parameter that is chosen to be sufficiently large:

ρ > ρ∗, ρ∗ =
Ψ∗2max ‖S 1‖

2

2µ∗2λmin(Q̃)λmin(S T S )
. (34)

µ∗ is chosen in (23), and Q̃ is found using

Q̃ = −NT H(C̄B̄)−1C̄ − C̄T (C̄B̄)−1HT N + C̄T (R−1 + εI)C̄ + NT QI N. (35)

It is noted that ε and ρ has the same effect on Lρ, and Lρ depends on Ψ∗max instead of Ψ∗. In general, µ∗ in (34) can be
chosen to be any scalars smaller than µ∗. Lemma 8 validates the SPR design.

Lemma 8. Given an uncertain plant model (10) that satisfies Assumptions 1 to 6, the finite pair of Lρ ∈ Rn×p as in
(33) and S 1 ∈ R

m×p as in (21) guarantees that ∀µ ∈ R satisfying 0 ≤ µ ≤ µ∗ and ∀Ψ ∈ Rm×n bounded by ‖Ψ‖ ≤ Ψ∗max,
the uncertain transfer function matrix {(A + µI + 1

µ∗
BΨ − LρC), B, S 1C} is strictly positive real.

With Lemma 8 (choosing µ = µ∗ and Ψ = Ψ∗) and Lemma 7 (choosing η = µ∗), we are able to summarize the
design, and realize the control goal, which is presented in Theorem 1. Define ey(t) = y − ym and ez(t) = z − zm.

Theorem 1. For an uncertain plant model (7) that satisfies Assumptions 1 to 6 and for any zcmd(t) that is piecewise
continuous, the adaptive SPR/LTR controller (11)(12)(13)(14)(16), with Lρ as in (33) and S 1 as in (21), guarantees
that i) the closed-loop system has bounded solutions, ii) ey(t)→ 0 as t → ∞ and iii) ez(t)→ 0 as t → ∞.

3. LTR Properties

The observer parameter Lρ as in (33) can replace the observer parameter in the baseline observer-based controller.
The following Lemma shows that the resulting baseline controller approaches full-state LTR asymptotically.

Lemma 9. For a nominal plant model {A, B,C} (without uncertainties Λ∗ or Θ∗) satisfying Assumptions 1 to 4, suppose
that a LQR controller with a parameter K has a loop gain at input L∗u(s) and a loop gain at output L∗o(s), and that the
baseline observer-based controller (12)(13) with K and Lρ as in (33), has loop gains Lu(s) and Lo(s); then as ε → ∞
or ρ→ ∞, i)

Lu(s)→ L∗u(s) (36)

and ii)
Lo(s)→ C

[
L∗o(s)

]
C†(s, B̄) (37)

where C†(s, B̄) ∈ Rn×p is a function of s and B̄ satisfying CC†(s, B̄) = Ip.

Remark 1. Since i) is a standard LTR result9 and ii) holds for any LQG/LTR controllers using a squared-up B̄, Lemma
9 implies that Lρ retains the full-state LTR properties of a LQG/LTR controller. LQR controllers can be designed to
have a L∗u(s) that yields good stability margins, and have a L∗o(s) that yields low output sensitivities at the integral loops
(see Ref.16 Chapter 2 and Chapter 5). As a result, Lemma 9 implies that once a large enough Lρ is chosen, the stability
margins of the baseline controller are guaranteed, and the output sensitivities at the integral loops can be tuned by
designing B̄ and K together, which is currently under investigation. However, one should be cautious to use a large Lρ
because L∗o(s) can have high output sensitivities at some other loops and so can Lo(s).

Lemma 9 and Lemma 8 imply that the baseline controller and the adaptive controller can share a same observer
and the controllers can switch between each other by simply turning uad on or off. When uad is off, the controller is
denoted as the baseline SPR/LTR controller. The Lρ design as in (33) has been preliminarily reported in Ref.21. This
paper formally proves its SPR properties and its LTR properties.
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C. Design Procedure

The overall control design can be summarized into the following step-wise procedure:

Step 1. Given a plant model < Ap, Bp,Cp,Cpz,Dpz >, check Assumptions 1 to 4;

Step 2. Add integral error states to the plant model and obtain < A, B,C,Cz,Dz > using (9);

Step 3. Design a baseline observer-based controller (12)(13) and choose K and an observer parameter using the LQR
and the LTR techniques, respectively;

Step 4. Design a µ∗ using (23) and ε using (27), then design a nominal SPR pair L using Eq.(25) and S 1 using Eq.(21);

Step 5. Calculate Ψ∗max using Eq.(32) and pick ρ using Eq.(34); then design a Lρ using Eq.(33) and replace the observer
gain in the baseline controller (13) with Lρ;

Step 6. Design parameter adaptation (16) and add the adaptive control (14) to the baseline control (11).

Step 1 to Step 3 are conventional observer-based controller designs. Step 4 to Step 6 are for the adaptive component
addition, which completes our adaptive SPR/LTR control design. It is noted that for both the baseline controller and
the adaptive controller, the Lρ design is independent from the K design. We can generally consider that K is designed
for performance, and Lρ is designed for stability.

D. Comparison with Other Adaptive Output-Feedback Controllers

Previous sections have presented the complete design of the proposed adaptive controller. The controller frame-
work in Section A has been proposed in Ref.16,21,22 but with different procedures for choosing L and S 1. We now
compare our SPR/LTR method described in Section C with the previous approaches.

In order to carry out the comparison, we first return to the solution P of (18) and (19) for the choice of Lρ as in
(33) and S 1 as in (21). We rewrite the unique solution P to (18) and (19) as

P = C̄T (C̄B̄)−1C̄ + NT PI N (38)

where PI > 0 is defined in (29) (see proof of Lemma 6 and Lemma 8). P validates our SPR design.
An alternate procedure for choosing L and S 1, denoted as the adaptive observer-based LTR (OBLTR) control

method, is presented in Ref.16 (see Chapter 14). The procedure is presented as follows. A B̄ is first designed using
(20), then the weights

Qv = Qv0 +
v + 1
v

B̄B̄T ; Rv =
v

v + 1
Rv0 (39)

are chosen using arbitrary constant matrices Qvo > 0 and Rv0 > 0, and a sufficiently small scalar v. The following ARE
is solved

PvĀT + ĀPv − PvCT R−1
v CPv + Qv = 0. (40)

for a unique SPD solution Pv. We choose Ā using (24) in Eq.(40), which is similar to Ref.4, but with a bound that
0 < µ∗ < |µmax| to ensure SPR properties (see below). L is chosen to be Lv as

Lv = PvCT R−1
v , (41)

and S 1 is chosen to be W1 ∈ R
m×p as

WR−
1
2

v0 = [W1,W2] (42)

where W ∈ Rp×p is designed as

W = UwVw, UwΛwVw = svd(B̄T CT R
1
2
v0) (43)

where svd stands for singular value decomposition. Combined with the control architecture in Section A, the procedure
from (39) to (43) completes the design of the adaptive OBLTR controller. The OBLTR design has been shown in Ref.16

(see Theorem 13.2) to lead to

Pv = P0 + O(v) (44)
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where P0 > 0 is an unknown SPD matrix satisfying

P0CT = B̄WR
1
2
v0 (45)

and O(v) represents an unknown symmetric matrix which approaches to zero as v→ 0, which further leads to

Lv = PvCT R−1
v →

1
v

B̄WR−
1
2

v0 → ∞, as v→ 0. (46)

and therefore retains the LTR properties asymptotically (see Lemma 9 in this paper for a detail proof). Moreover, the
OBLTR adaptive design has been shown in Ref.16 (see Theorem 14.1) to lead to the existence of a v that guarantees
bounded reference tracking for a plant model (10) in the presence of uncertainties. The same OBLTR adaptive design
has been shown in Ref.21 (see Theorem 3 and its proof in Ref.21, and combine with (24) and (40) in this paper) to lead
to the existence of a non-zero v that guarantees the SPR property of {(A + µ∗I + 1

µ∗
BΨ∗ − LvC), B,W1C} and in turn,

guarantees asymptotic reference tracking.
Now we compare our SPR/LTR method with the OBLTR method. Both methods can produce a finite SPR pair

of L and S 1. From Lemma 9, one can conclude that both methods lead to a L that retains the LTR properties of
LQG/LTR controllers. However, the OBLTR method relies on the existence of a small v for which the SPR properties
are guaranteed. In practice, it may not be easy to determine how small v needs to be. In contrast, our method (see (33))
provides a closed-form solution for both L and S 1.

An alternative procedure of designing L and S 1 based on the linear-matrix-inequality optimization techniques has
been proposed in Ref.22. The parameter L is determined using a numerical procedure22; no closed-form solution for
L or guaranteed LTR properties of the baseline controller are provided, unlike our SPR/LTR method.

V. Numerical Examples

This section presents the applications of the adaptive SPR/LTR controller on two VFA platforms. Section A
presents the first platform, a simplified 3-wing VFA, whose low order model allows us to illustrate the LTR properties
and the SPR properties of the controller. Section A introduces the application on the second platform, the Vulture
VFA, whose high order model demonstrates the numerical stability of the proposed control design.

It should be noted that the adaptive SPR/LTR controller required Assumptions 1 to 6. It can be shown that all of
these assumptions can be met by the VFA models of both platforms considered below. Of these, Assumption 4 is the
most restrictive one, as it requires the VFA sensors to include measurements of linear velocities and angular velocities
of the body components very close to actuators, and neglects actuator dynamics altogether.

A. Vertical Acceleration Tracking of 3-wing VFA

Consider a simple VFA comprised of three rigid wings with elastic pivot connections adjoining them4. The
longitudinal and vertical dynamics of the 3-wing VFA is coupled with the dynamics of rotational movement of outer
wings with respect to the center wing about the chord axis. The angle between the two wing planes is denoted as wing
dihedral (η). A 7-state nonlinear model has been derived in Ref.4 including the pitch mode, the phugoid mode, and
the dihedral dynamics. The nonlinear model was trim at 30ft/sec airspeed, 40,000 ft altitude and different dihedrals,
and the corresponding linearized models with respect to each dihedral were obtained4. Local stability analysis shows
that when the dihedral is above 15◦, the pitch mode becomes unstable4.

We performed sensitivity analysis (using the method in Ref.31 Chapter 9) on the linearized model and found
that the pitch mode and the dihedral dynamics (pitch-dihedral dynamics) can be decoupled from the phugoid mode.
Assuming that the airspeed is maintained by auto-thrust, we truncated the phugoid mode from the model and obtained
a 4-state LTI model with states as xp = [α, q, η, η̇], where α is the angle of attack and q is the pitch rate. Measurements
are vehicle vertical acceleration (Az), and q. However, α, η and its rate η̇ cannot be measured accurately and are not
available for control. We want to use all three elevators δe unanimously (as 1 control) to achieve the tracking of a
vertical acceleration command of the center wing while keeping the dihedral regulated. For Step 1, we obtained a
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plant model for η = 10◦ as
α̇
q̇
η̇
η̈
Az

 =


−4.104 1.013 0.193 0.100 0
−54.04 0.255 1.845 21.41 0

0 0 0 1 0
0.044 0.819 −0.075 −6.518 0
−123.12 0 0 0 0



α
q
η
η̇
Vz

 +


−0.795
5.991

0
0.195
−23.84

 δe

y =

[
q
Vz

]
=

[
0 1 0 0 0
0 0 0 0 1

]
x.

(47)

We have integrated Az into Vz, the climb rate measurement, for command tracking. Eq.(47) is {A, B,C} by Step 2. The
pitch mode is stable for this trim. Before control design, let’s consider the uncertainties in the plant model. First, there
might be a control surface damage up to 90% (Λ∗). Second, since the outer elevators are connected to the outer wings,
their control effectiveness is a function of η. To learn the function form, we obtained the linearized model for η = 16◦.
Compared with that of η = 10◦ in (47), the change in the control effectiveness can be approximated as Λ∗Θ∗T x added
to u, which leads to the following uncertain model

ẋ = (A + BΛ∗Θ∗T )x + BΛ∗u
Λ∗ = 0.1; Θ∗T =

[
− 31.94 0.91 9.1 −9.28 0

]
.

(48)

Λ∗ and Θ∗ are unknown to control design. The pitch mode of (48) is unstable and therefore loosing control effective-
ness imposes a threat to stability. The uncertain plant model (48) belongs to the class of models in (10) satisfying
Assumptions 1 to 6.

We now proceed to control design based on (48) with uncertain Λ∗ and Θ∗ . The classical adaptive approach
can only handle a minimum-phase square systems12,13, which is inapplicable here since the SISO transfer function
from δe to Vz is non-minimum-phase. The proposed controller in this paper can be applied here since the additional q
measurement makes (47) a non-square minimum-phase plant. Now we present our control design step by step. Step 3
used the LQR technique with a penalty diag

[
1 1 0.01 0.01 0.01

]
on the states and a penalty 10 on the input,

which yielded
K =

[
−0.9154 0.2534 0.1382 0.5614 −0.0316

]
. (49)

The following matrices are produced in Step 4:

B2 =
[

0 0.9699 0 0 0.2437
]T

(50)

S =

[
0.2437 −0.9699
0.9699 0.2437

]
. (51)

We used (42) to design S . It was confirmed that {A, B̄, C̄} remains minimum-phase and C̄B̄ = (C̄B̄)T > 0. Using
Eq.(25) with Ā = A and ε = 10 yielded

L =


−4.116 6.949
41.94 −52.53

0 0
1.011 −1.708
−120.74 208.44

 (52)

S 1 =
[

0.2437 −0.9699
]
. (53)

A P was found using Eq.(38) as

P =


82.71 0.689 −139.7 −19.21 −2.741
∗ 0.9489 −1.372 −0.2030 0.2036
∗ ∗ 963.9 140.3 5.462
∗ ∗ ∗ 26.70 0.8079
∗ ∗ ∗ ∗ 0.1898

 (54)

where ∗ represents symmetric elements. Quick examination confirmed that P > 0, and that P, L and S 1 satisfy Eq.(18)
and Eq.(19), which validates the SPR properties of {(A − LC), B, S 1C}.
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We assumed the uncertainties Λ∗ and Θ∗ can be bounded by Λ∗max = 1.1 and Θ∗max = 32. Also, it was assumed that
Φ(xp) = xp and therefore lφ = 1 and Ψ∗ = Λ∗Θ∗. Step 5 produced Ψ∗max = 11.9 and ρ∗ ≈ 4.92, and therefore ρ = 5 is
chosen and

Lρ =


−5.084 10.80
53.94 −80.40

0 0
1.249 −2.655
−148.6 324.37

 . (55)

The same P as in (54) guarantees the SPR properties of {(A + BΛ∗Θ∗ − LρC), B, S 1C}. This completes our SPR/LTR
control design.

For comparison, the design using the OBLTR method (41) with v = 0.0006, Qv0 = I and Rv0 = 10000I was also
obtained as

Lv =


−3.200 12.41
42.07 −94.32
0.286 −0.109
1.325 −3.187
−94.32 382.3

 (56)

W1 =
[

0.2437 −0.9699
]
. (57)

To validate that the pair of Lv and W1 produces an SPR {(A − LvC), B,W1C}, we propose a semidefinite programming
procedure (see Ref.32,33) that can be added to the OBLTR method: reduce v until a P∗0 can be found using

min Tr(W̄T
p W̄p) (58)

s.t. W̄p > 0,
(A − LvC)T P∗0 + P∗0(A − LvC) < 0,

and P∗0 ∈P ,

where P := {P > 0 | P = C̄T
w (C̄wB̄)−1C̄w + NT W̄pN, W̄p > 0}

where Tr stands for the trace of a matrix and C̄w = WR
1
2
v0C. A parser, Yalmip,34 was used to execute the program (58)

with Lv as in (56) and W as in (57). A P∗0 was found as

P∗0 =


41.72 0.3328 −1.5328 −2.162 −1.325
∗ 0.9457 −0.0177 −0.0194 0.2161
∗ ∗ 16.35 2.881 0.0703
∗ ∗ ∗ 1.215 0.0772
∗ ∗ ∗ ∗ 0.1398

 (59)

which guarantees that {(A−LvC), B,W1C} is SPR. However, to guarantee that {(A+ BΛ∗Θ∗−LvC), B,W1C} is SPR, we
need to further reduce v, for which the OBLTR method does not have a closed-form solution, whereas our SPR/LTR
method does.

Figure 2 shows that the two designs were able to constrain the phase of the target SPR transfer function within
±90 degree, which is a necessary condition of SPR properties. Figure 3 shows that the uncertainties in (47) broke the
±90 phase condition, and that replacing L with Lρ was able to recover the phase condition. It is observed in Figure 4
that the loop gain at input of the baseline SPR/LTR controller almost overlays that of the LQR controller in terms of
both phase and magnitude. The gain margin and phase margin of the baseline controller is [−44, 42]dB and ±59 deg,
respectively. Also shown in the Figure 4 is the baseline OBLTR controller. Both baseline controllers, as well as the
LQR controller, have adequate stability margins since their Lu(s) all avoid the unit circle around −1.
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The uncertain VFA model (48) with different η was simulated with the baseline SPR/LTR controller and with the
adaptive addition. An actuator model with a bandwidth 10 rad/sec was added in each simulation. The nominal case
with the 10◦ dihedral plant model is shown in Figure 5a. Both controllers were able to guide the aircraft following
an Az command and eventually achieved zero tracking error. Only small amount of control and control rates were
used. The same controllers were used to control the 16◦ dihedral, whose results are shown in Figure 5b. In this case,
the baseline controller was not able to suppress the unstable pitch mode, while the adaptive controller was. Figure
5c shows the adaptive controller was robust in the presence of noise and random disturbance (white noise with 0.15
standard deviation) in all input and measurement channels.

The parameter trajectories are shown in Figure 10. After four step commands, the parameters settled down to their
steady states. If we freeze Θ(t) and Λ−1(t) at different moments and use these instantaneous values in uad (14), the
resulting closed-loop systems represent the “snapshots” of the adaptive system in the time history. The examination in
frequency domain confirmed that these “snapshot” closed-loop systems approach to the nominal closed-loop system
as time evolves, as shown in Figure 6b.

14
American Institute of Aeronautics and Astronautics



0 50 100 150 200
−2

−1

0

1

2
V

er
tic

al
 A

cc
el

er
at

io
n 

[fp
s2 ]

 

 

0 50 100 150 200
−0.04

−0.02

0

0.02

0.04

E
le

va
to

r 
[r

ad
]

0 50 100 150 200
−0.04

−0.02

0

0.02

0.04

E
le

va
to

r 
R

at
e 

[r
ad

/s
]

Time [sec]

Cmd
Base
Ada

a) The nominal case

0 50 100 150 200

−1

0

1

2

V
er

tic
al

 A
cc

el
er

at
io

n 
[fp

s2 ]

 

 

0 50 100 150 200

−0.1

−0.05

0

0.05

0.1

E
le

va
to

r 
[r

ad
]

0 50 100 150 200
−0.05

0

0.05

E
le

va
to

r 
R

at
e 

[r
ad

/s
]

Time [sec]

Cmd
Base
Ada

b) The uncertain case

0 50 100 150 200

−1

0

1

2

V
er

tic
al

 A
cc

el
er

at
io

n 
[fp

s2 ]

 

 

0 50 100 150 200

−0.1

−0.05

0

0.05

0.1

E
le

va
to

r 
[r

ad
]

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2

E
le

va
to

r 
R

at
e 

[r
ad

/s
]

Time [sec]

Cmd
Base
Ada

c) The uncertain case with noise and distur-
bance

Figure 5. The simulation results of the vertical acceleration tracking of the 3-wing VFA using the adaptive output-feedback controller,
compared with the baseline SPR/LTR controller
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model for the run in Figure 5b

B. Vulture VFA Bank-To-Turn Control

The previous example of 3-wing VFA represents building blocks of the Vulture VFA. One can consider the wings
of the Vulture as hundreds of 3-wing segments adjoined together. The huge wings are in junction with 4 long booms in
the middle of wingspan and 2 end devices at the tips. The control model for the VFA is a non-strictly proper LTI model
with 707 states, 21 control inputs and 212 outputs, representing the VFA trim at a nominal HALE flight condition at an
airspeed of 34.6 ft/sec, an altitude of 66,000 ft, and with zero dihedral6. The 21 inputs includes 15 engine propellers
evenly placed across the wingspan and 6 tail elevators at the end of each boom (see Ref.6 for details). If dividing
the 707 states into three groups, i.e. rigid body dynamics states xRB for 6 vehicle degrees of freedom, 340 flexible
positions x f lex, and 340 flexible velocities v f lex, the Vulture model manifests itself in the following block matrix form: ẋRB

v̇ f lex

ẋ f lex

 =

 × × ∗

× o\o ×

0 I 0


 xRB

v f lex

x f lex

 +

 0
×

0

 u +

 ∗×0
 u̇ +

 ∗×0
 ü

yp = Cpx + Dpu + D1u̇ + D2ü

(60)

where × represents dense entries, ∗ represents sparse entries and o\o represents diagonal entries. Some observations
are made. First, the flexible modes are strongly coupled with rigid-body dynamics. Second, the control u only
acts on flexible component. Third, there are control rate u̇ and control acceleration ü effects, which represent aero-
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elastic-coupling between unsteady aerodynamics and flexible effects of boom. These features imposes great control
challenges.

The desired maneuver is to bank the VFA to turn (BTT). The controller needs to force the VFA to follow a roll
angle while keeping the aircraft oriented. In order to do so, we used tails to roll the aircraft and used engine thrusts to
keep the side slip angle at zero. The 6 tails were divided into two groups, 3 on right and 3 on left. Same magnitude but
opposite sign of movement was issued to each group. The 15 engines were also divided into two groups with an even
number of engines in each group. This treatment reduced the number of input to 2, one for engine and one for tail. Bp

was suitably treated. The control rate and acceleration effects were ignored in the design stage and were brought back
in the simulation.

The high-order nature of the model necessitates a state-space reduced-order approach. Using the balanced real-
ization method35, we obtained a 80-state model which preserves the frequency domain performance of the model at
low frequencies (lower than 100Hz)20. Using sensitivity analysis on the reduced model (see Ref.31 Chapter 9), we
determined the 12 independent outputs that yields CB full rank. They are roll rate, pitch rate, yaw rate, longitudinal,
lateral and vertical accelerations at the wingroot, and corresponding angular rates and accelerations measured at tail 2.
The measurements at tail 2 are used to satisfy Assumption 4. After integrating non-strictly proper outputs, we obtained
a strictly proper LTI model with np = 92 states, m = 2 inputs and pp = 12 outputs.

We designed the adaptive controller based on the reduced-order model. Quick examination confirmed that the
reduced-order model satisfies Assumptions 2 to 4. The effects of the dihedral drift and actuator anomalies were
modeled by Θ∗Φ(xp) and Λ∗, respectively. Assumptions 5 and 6 are satisfied with lφ = 10. The state-feedback gain
K was found using a penalty of 1.45 on each of the outputs and a penalty of 1 on each of the inputs. The gain matrix
Lρ and S 1 were found with µ∗ = 0.01, ε = 50 and ρ = 10. To show the robustness of the baseline controller, the
“Gang-of-Six”36 is examined in Figure 7. The ideal LQR controller is also shown in the figure for comparison. The
figure shows that the loop gain at input Lu(s) of the baseline SPR/LTR controller almost recovers that of a LQR; gain
margin and phase margin are found to be [−5.04, 4.75]dB and ±25 deg, respectively. The crossover frequency of Lu(s)
is around 0.1 rad/sec. The output sensitivity function S o(s) (only the integral loops are shown in the figure) has low
magnitude. The magnitude of the noise-to-control transfer function gradually rolls off at high frequencies.
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Figure 7. The frequency domain analysis of the closed-loop system using the baseline SPR/LTR controller on the Vulture VFA model,
compared with a LQR

Three controllers, i.e. the LQR controller, the baseline SPR/LTR controller, and the adaptive SPR/LTR controller
were simulated on the original Vulture model. We included control rate and control acceleration effects in the simula-
tion. Also, second-order actuators with a natural frequency of 50 rad/sec and a damping ratio of 0.6 were introduced
to all control channels. Magnitude saturation of ±10 deg and rate saturation of ±40 deg/s were imposed on the tail.
Magnitude saturation of [−50, 40] lbs and rate saturation of ±20 lbs/s were imposed on the engine. For additional
robustness, a projection algorithm37 was incorporated into the adaptation law (16)

Θ̇(t) = pro j[Θ; ϑ, ε; ΓθΦ(xmp)eT
y S T

1 sign(Λ)]
Λ̇−1(t) = pro j[Λ−1; ϑ, ε; −ΓλubleT

y S T
1 sign(Λ)] (61)

16
American Institute of Aeronautics and Astronautics



to bound Θ(t) and Λ−1(t) without altering the stability and tracking results in Theorem 1. The projection parameters
were set as Γθ = 0.01I, Γλ = 0.01I ϑ = 10−3I and ε = 10−3I.

The simulation results of the nominal plant model (without uncertainty) is shown in Figure 9a. All three controllers
had exactly the same performance and achieve perfect command tracking for both roll angle and side slip angle. The
non-minimum-phase behavior in the responses were caused by the flexible effect of booms and by the interaction
between wing sections. Figure 9b shows the performance of controllers in the presence of uncertainties. Before time
started, we let the aircraft settle down to a different dihedral angle, emulating turbulence-driven dihedral drift. 10ft
dihedral on the outer wing was present at t = 0, as shown in the wing shape evolution Figure 8b. Correspondingly,
Φ(x) was a parabolic function with suitable coefficients to represent the concave wingshape. Also, there was a power
surge in all actuators with Λ∗ = 1.5. In the presence of uncertainties, neither LQR or the baseline SPR/LTR controller
was able to stabilize the aircraft, as shown in the Figure 9a and 9b, . On the other hand, the adaptive controller not
only stabilized the aircraft but also recovered the reference performance (as that in Figure 9a). The adaptive controller
did so by actively reducing its control gains and therefore using much less control rates than the other two controllers.

Figure 9c shows the same uncertain case with gust wind (white noise with a standard deviation of 10−3) and
measurement noise (white noise with a standard deviation of 10−3) in all 12 measurement channels. It is shown in
the figure that adaptive controller is robust under these adversities. Figure 10 shows the parameter trajectories in this
simulation. The 89 adaptive parameters settled down to steady-state values after three step commands. The smooth
trajectories show that the noise and disturbance was attenuated by the controller. Figure 8a shows the flight path and
attitude of the VFA in 3D space. The rendered aircraft represents the center section of the VFA, and the roll angle
of the wing section in the figure only represents the local roll angle very close to the center wingroot (only about 1
deg). The actual dihedral shape of the entire wingspan was found by recording the flexible positions of the wing and
is shown in Figure 8b. The dihedral was trimmed at a parabolic shape at t = 0 sec and ended at a nonlinear form at
t = 80 sec. After that it gradually returned to the trim value (not shown in the figure).

a) The flight path and attitude of the center wing (not in
scale)
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b) The wing dihedral shape evolution (rear view)

Figure 8. The flight path and dihedral shape of the VFA in the BTT maneuver, controlled by the adaptive SPR/LTR controller.
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b) The uncertain case
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c) The uncertain case with noise and distur-
bance

Figure 9. The tracking of roll angle (ψ) and side-slip angle (β) in the BTT maneuver of the VFA through thrust (T1) and tail (δ1) using the
adaptive SPR/LTR controller, compared with the baseline controller and a LQR.
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Figure 10. The adapted parameters settle down to steady-state values after three step commands of BTT on the Vulture model

VI. Conclusions

VFA imposes a great challenge for existing control technologies because the autonomous systems are required to
endure a large amount of uncertainties and anomalies in a high-altitude long-endurance flight. The control problem
is even more difficult since the flexible modes of aircraft cannot be measured despite their critical effects on the
flight dynamics. To tackle the challenge, this paper proposes a new model reference adaptive output-feedback control
solution, denoted as the adaptive SPR/LTR controller, for a class of MIMO plants with more outputs than inputs.
The proposed adaptive controller is applied on two typical VFA models and the adaptive systems achieve asymptotic
reference tracking.

An important feature of the adaptive controller is that it shares the same minimal observer with a baseline observer-
based controller and therefore it can be constructed as an additional component to the baseline. Moreover, the observer
also doubles as a closed-loop reference model, and therefore the number of integrators required for implementation
is greatly reduced. The observer parameters are redesigned to retain the desirable LTR properties, which produces a
robust baseline controller, and in addition, satisfy an underlying SPR condition, which guarantees global asymptotic
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reference tracking in the presence of uncertainties. Current work is focused on relaxing the requirement regarding the
placement of sensors and actuators as in Assumption 4.

Acknowledgments

The work presented in this paper was supported by the Boeing Strategic University Initiative. The authors would
like to thank Eugene Lavretsky of The Boeing Company for several highly useful discussions.

References
1Langford, J., “The Daedalus project - A summary of lessons learned,” American Institute of Aeronautics and Astronautics, 1989.
2Shearer, C. and Cesnik, C., “Nonlinear Flight Dynamics of Very Flexible Aircraft,” AIAA Atmospheric Flight Mechanics Conference and

Exhibit, 2005.
3Su, W. and S., C. E. C., “Dynamic Response of Highly Flexible Flying Wings,” AIAA Journal, Vol. 49, No. 2, 2011, pp. 324–339.
4Gibson, T., Annaswamy, A., and Lavretsky, E., “Modeling for Control of Very Flexible Aircraft,” Guidance, Navigation, and Control and

Co-located Conferences, American Institute of Aeronautics and Astronautics, 2011.
5Noll, T. E., Brown, J. M., Perez-Davis, M. E., Ishmael, S. D., Tiffany, G. C., and Gaier, M., “Investigation of the Helios Prototype Aircraft

Mishap Volume I: Mishap Report,” NASA, 2004.
6Gadient, R., Wise, K., and Lavretsky, E., “Very Flexible Aircraft Control Challenge Problem,” Guidance, Navigation, and Control and

Co-located Conferences, American Institute of Aeronautics and Astronautics, 2012.
7Rynaski, E., “Flight control synthesis using robust output observers,” American Institute of Aeronautics and Astronautics, 1982.
8Thompson, C., Coleman, E., and Blight, J., “Integral LQG controller design for a fighter aircraft,” American Institute of Aeronautics and

Astronautics, 1987.
9Doyle, J. and Stein, G., “Multivariable feedback design: Concepts for a classical/modern synthesis,” Automatic Control, IEEE Transactions

on, Vol. 26, No. 1, 1981, pp. 4–16.
10Wise, K. and Lavretsky, E., “Asymptotic Properties of LQG/LTR Controllers in Flight Control Problems,” AIAA Guidance, Navigation, and

Control Conference, 2012.
11Maciejowski, J. M., Multivariable feedback design, Addison-Wesley, Wokingham, England; Reading, Mass., 1989.
12Narendra, K. S. and Annaswamy, A. M., Stable adaptive systems, Dover Publications, 2004.
13Tao, G., Adaptive control design and analysis, Wiley-Interscience, Hoboken, N.J., 2003.
14Morse, A. S., “Parameterizations for multivariable adaptive control,” Proceedings of the 20th IEEE Conference on Decision and Control

including the Symposium on Adaptive Processes, IEEE, New York, NY, USA, 1981, pp. 970–972.
15Singh, R. P. and Narendra, K. S., “Prior information in the design of multivariable adaptive controllers,” IEEE Transactions on Automatic

Control, Vol. AC-29, No. 12, 1984, pp. 1108.
16Lavretsky, E. and Wise, K. A., Robust and adaptive control [electronic resource] : with aerospace applications, Springer, London ; New

York, 2013.
17Gibson, T., Annaswamy, A., and Lavretsky, E., “Improved Transient Response in Adaptive Control Using Projection Algorithms and Closed

Loop Reference Models,” Guidance, Navigation, and Control and Co-located Conferences, American Institute of Aeronautics and Astronautics,
2012.

18Gibson, T. E., Annaswamy, A. M., and Lavretsky, E., “Closed-Loop Reference Models in Adaptive Control: Stability, Robustness and
Performance,” .

19Gibson, T. E., Annaswamy, A. M., E., and Lavretsky, “Output Feedback Adaptive Control with Closed-Loop Reference Models,” European
Control Conference, 2013.

20Qu, Z., Lavretsky, E., and Annaswamy, A. M., “An Adaptive Controller for Very Flexible Aircraft,” American Institute of Aeronautics and
Astronautics, 2013.

21Gibson, T. E., Qu, Z., Annaswamy, A. M., and Lavretsky, E., “Adaptive Output Feedback based on Separation Principle and Closed-loop
Reference Models,” IEEE Transactions Automatic Control (submitted 2013).

22Wiese, D. P., Annaswamy, A. M., Muse, J. A., Bolender, M. A., and Lavretsky, E., “Adaptive Output Feedback Based on Closed-Loop
Reference Models for Hypersonic Vehicles,” AIAA Guidance, Navigation, and Control Conference (To Appear), American Institute of Aeronautics
and Astronautics, 2015.

23MacFarlane, A. G. J. and Karcanias, N., “Poles and zeros of linear multivariable systems : a survey of the algebraic, geometric and complex-
variable theory,” International Journal of Control, Vol. 24, No. 1, 1976, pp. 33–74.

24Kouvaritakis, B. and MacFarlane, A. G. J., “Geometric approach to analysis and synthesis of system zeros. II. Non-square systems,” Inter-
national Journal of Control, Vol. 23, No. 2, 1976, pp. 167–181.

25Kouvaritakis, B. and MacFarlane, A. G. J., “Geometric approach to analysis and synthesis of system zeros. I. Square systems,” International
Journal of Control, Vol. 23, No. 2, 1976, pp. 149–156.

26Huang, C. H., Ioannou, P. A., Maroulas, J., and Safonov, M. G., “Design of strictly positive real systems using constant output feedback,”
Automatic Control, IEEE Transactions on, Vol. 44, No. 3, 1999, pp. 569–573.

27Weiss, H., Wang, Q., and Speyer, J. L., “System characterization of positive real conditions,” IEEE Transactions on Automatic Control,
Vol. 39, No. 3, 1994, pp. 540–544.

28Yu, J.-t., Chiang, M.-L., and Fu, L.-C., “Synthesis of static output feedback SPR systems via LQR weighting matrix design,” Decision and
Control (CDC), 2010 49th IEEE Conference on, 2010, pp. 4990–4995.

19
American Institute of Aeronautics and Astronautics



29Misra, P., “A computational algorithm for squaring-up. I. Zero input-output matrix,” Proceedings of 1992 31st IEEE Conference on Decision
and Control, IEEE, New York, NY, USA, 1992, pp. 149–150.

30Qu, Z., Wiese, D., Lavretsky, E., and Annaswamy, A. M., “Squaring-Up Method In the Presence of Transmission Zeros,” 19th World
Congress, The International Federation of Automatic Control.

31Durham, W., Aircraft Dynamics and Control, 2013.
32Vandenberghe, L. and Boyd, S., “Semidefinite programming,” SIAM Review, Vol. 38, No. 1, 1996, pp. 49–95.
33Parrilo, P. A., “Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization,” 2000.
34Lofberg, J., “YALMIP : a toolbox for modeling and optimization in MATLAB,” Computer Aided Control Systems Design, 2004 IEEE

International Symposium on, 2004, pp. 284–289.
35Moore, B., “Principal component analysis in linear systems: Controllability, observability, and model reduction,” IEEE

Trans.Automat.Contr.IEEE Transactions on Automatic Control, Vol. 26, No. 1, 1981, pp. 17–32.
36Astrom, K. J. and Murray, R. M., Feedback systems : an introduction for scientists and engineers, Princeton University Press, Princeton,

2008.
37Lavretsky, E. and Gibson, T. E., “Projection Operator in Adaptive Systems,” arXiv:1112.4232.

Appendix

Proof of Lemma 5

Proof. The goal is to show ex(t) → 0 as t → ∞. Since we have designed an SPR pair L and S 1 such that {(A −
LC), B, S 1C} is SPR, there exists a P = PT > 0 such that Eq.(18) and Eq.(19) holds for a Q > 0. We propose a
Lyapunov function candidate using the P as

V = eT
x Pex + Tr(Λ̃T Γ−1

λ Λ̃ |Λ∗|) + Tr(Θ̃T Γ−1
θ Θ̃ |Λ∗|) > 0 (62)

where Tr stands for the trace of a matrix. Using Eq.(15), V has a derivative as

V̇ = eT
x ((A − LρC)T P + P(A − LρC))ex + 2eT

x PBΛ∗Θ∗T [Φ(xp) − Φ(xmp)]

+ 2eT
x PBΛ∗Λ̃T ubl − 2eT

x PBΛ∗Θ̃T Φ(xmp) + 2Tr(Λ̃T Γ−1
λ

˙̃
Λ |Λ|) + 2Tr(Θ̃T Γ−1

θ
˙̃
Θ |Λ|) (63)

= eT
x ((A − LρC)T P + P(A − LρC))ex + 2eT

x PBΛ∗Θ∗T [Φ(xp) − Φ(xmp)]

+ 2eT
x [PB −CT S T

1 ]Λ∗Λ̃T ubl − 2eT
x [PB −CT S T

1 ]Λ∗Θ̃T Φ(xmp). (64)

To achieve (64), we used the property of trace and adaptation law (16). By far, the derivation is general for Θ∗ , 0.
For the special case Θ∗ = 0, we choose Θ(t) ≡ 0, then Θ̃(t) ≡ 0. Also, L = Lρ. As a result, the error model (15) has a
form of (17). Then the derivative of Lyapunov function (64) becomes

V̇ = eT
x ((A − LC)T P + P(A − LC))ex + 2eT

x [PB −CT S T
1 ]Λ∗Λ̃T ubl. (65)

Using Eq.(18) and Eq.(19) turns (65) into
V̇ = −eT

x Qex ≤ 0. (66)

As a result, ex, Λ̃ and Θ̃ are bounded. Moreover, V̈ exists and is bounded and Barbalet’s Lemma implies ex(t) → 0
as t → ∞, which proves ii). Consequently, the observer/CRM (13) approaches to a open loop reference model when
t → ∞ and its state trajectory xm is bounded (by the design of K). This in turn implies x is bounded. It then can be
concluded that all signals in the system are bounded, which proves i). �

Proof of Lemma 6

Proof. The proof follows the idea in Ref.28, but uses a different approach. First, we will show that {(Ā − LC), B, S 1C}
is SPR, where Ā = A + µ∗I. We note that {Ā, B̄, C̄} is minimum phase. A weight R−1 is chosen in (26) and a weight Q̄
(different from Ref.28) is chosen as

Q̄ = −NT H(C̄B̄)−1C̄ − C̄T (C̄B̄)−1HT N + εC̄T C̄ + NT QI N (67)

where H is defined in (28) and ε is chosen in (27). N is the null space of B̄ and M is the null space of C̄ satisfying and
NM = I. We will show that the finite constant ε chosen in inequality (27) guarantees R−1 > 0 and Q̄ > 0. R−1 > 0
because ε > ε∗1 where ε∗1 is defined in (27). To show Q̄ > 0, it is equivalent to show that T T

B̄
Q̄T B̄ > 0, where

T B̄ = [M, B̄] (68)
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is an invertible matrix. Examination on T T
B̄

QT B̄ yields

T T
B̄ Q̄T B̄ =

[
MT Q̄M MT Q̄B̄
B̄T Q̄M B̄T Q̄B̄

]
=

[
I −H
−HT ε(C̄B̄)C̄B̄

]
> 0. (69)

The inequality is guaranteed to hold using Schur complement and the fact that ε > ε∗2 , where ε∗2 is defined in (27), and
therefore Q̄ > 0 is guaranteed.

Propose a P as
P = C̄T (C̄B̄)−1C̄ + NT PI N (70)

where PI > 0 is the unique solution to Eq.(29) and therefore P > 0. We will show because of the L design in (25) and
S 1 design in (21), the P as in (70) satisfies

(Ā − LC)T P + P(Ā − LC) = −Q̄ − C̄R−1C̄ < 0 (71)

and Eq.(19) simultaneously. First, let’s show Eq.(71) holds. Using L as in (33) and the fact PB̄ = C̄T , Eq.(71) can be
rewritten as

{�} := (Ā − B̄R−1C̄)T P + P(Ā − B̄R−1C̄) + C̄T R−1C̄ + Q̄. (72)

To show {�} = 0, it is equivalent to show T T
B̄
{�}T B̄ = 0. Examination on the block elements of T T

B̄
{�}T B̄ reveals

T T
B̄ {�}T B̄ =

[
MT {�}M MT {�}B̄
B̄T {�}M B̄T {�}B̄

]
= 0. (73)

Eq.(73) holds since C̄M = 0, NB̄ = 0, PB̄ = C̄T , PM = NT PI , R−1 is chosen in (26) and Eq.(29) holds. This proves
Eq.(71). The choice of P as in (70) implies PB̄ = C̄T . Then proper partition as in Eq.(21) and (20) allows element-wise
equality (19). This implies that {(Ā − LC), B, S 1C} is SPR.

Now, we note that for any µ satisfying 0 ≤ µ ≤ µ∗, (µ∗ − µ)P ≥ 0. Following (71), it is clear that

(A + µI − LC)T P + P(A + µI − LC) = −Q̄ − C̄R−1C̄ − 2(µ∗ − µ)P < 0. (74)

Eq.(74) and Eq.(19) implies that {(A + µI − LC), B, S 1C} is SPR. Because ε is finite, L is finite. This completes the
proof of Lemma 6.

An additional result, λmin(P) > 1, will be used later and therefore is proved here. With the proposed solution P in
(70), it can be shown that

T T
B̄ {P − I}T B̄ =

[
PI − MT M −MT B̄
−B̄T M C̄B̄

]
. (75)

Applying Schur complement shows that since PI satisfies (30), T T
B̄
{P − I}T B̄ > 0 and therefore P > I. �

Proof of Lemma 7

Proof. Given that we have designed an SPR pair of Lρ and S 1 for the system {(A + ηI + 1
η

BΨ∗ − LρC), B, S 1C} with
some η > 0, there exist a P > 0 such that

(A + ηI +
1
η

BΨ∗ − LρC)T P + P(A + ηI +
1
η

BΨ∗ − LρC) = −Qρ < 0 (76)

and Eq.(19) hold simultaneously for a Qρ > 0. Without loss of generality, we assume λmin(P) ≥ 1, which can always
be satisfied by scaling Qρ and S 1. For our solution of P, see the end of proof of Lemma 6.

A Lyapunov function V as in (62) is proposed using the P in Eq.(76)(19), and therefore V̇ is as in Eq.(64). Since
Θ∗ , 0, ėx is as in Eq.(15) and the second term of the right hand side of Eq.(64) is no longer zero. By Assumption 6,
the non-zero term can be bounded as

eT
x PBΛ∗Θ∗T [Φ(xp) − Φ(xmp)] ≤

∥∥∥eT
x PBΛ∗Θ∗T

∥∥∥ lφ ‖ex‖

≤
lφ
√
η

∥∥∥eT
x PBΛ∗Θ∗T

∥∥∥ ∥∥∥∥√ηP
1
2 ex

∥∥∥∥
≤

l2φ
4η

eT
x PBΛ∗Θ∗T Θ∗Λ∗BT Pex + eT

x ηPex. (77)
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Substituting the definition of Ψ∗ (31) and Eq.(19) into Eq.(77) yields

eT
x PBΛ∗Θ∗T [Φ(xp) − Φ(xmp)] ≤ eT

x
1
η

PBΨ∗ex + eT
x ηPex. (78)

Using inequality (78), the derivative of Lyapunov function (64) can be bounded as

V̇ ≤ eT
x ((A − LρC)T P + P(A − LρC))ex + 2

[
eT

x
1
η

PBΨ∗ex + eT
x ηPex

]
+ 2eT

x [PB −CT S T
1 ]Λ∗Λ̃T ubl − 2eT

x [PB −CT S T
1 ]Λ∗Θ̃T Φ(xmp) (79)

= eT
x ((A + ηI +

1
η

BΨ∗ − LρC)T P + P(A + ηI +
1
η

BΨ∗ − LρC))ex

+ 2eT
x [PB −CT S T

1 ]Λ∗Λ̃T ubl − 2eT
x [PB −CT S T

1 ]Λ∗Θ̃T Φ(xmp) (80)

Substituting Eq.(76) and Eq.(19) turns Eq.(65) into

V̇ ≤ −eT
x Qρex ≤ 0. (81)

Thus, Eq.(62) is indeed the Lyapunov function of the system. Following the last part of the proof of Lemma 5, it can
be concluded that ex(t)→ 0 as t → ∞, which proves ii) and x, ex, Λ̃ and Θ̃ are bounded, which proves i). �

Proof of Lemma 8

Proof. We will show that with the Lρ design (33), the P that guarantees the SPR properties of {(A + µI − LC), B, S 1C}
also guarantees the SPR properties of {(A+µI + 1

µ∗
BΨ−LρC), B, S 1C} for ∀Ψ that ‖Ψ‖ ≤ Ψ∗max and ∀µ that 0 ≤ µ ≤ µ∗.

Since {(A + µI − LC), B, S 1C} is SPR by design (see Lemma 6), Eq.(74) and Eq.(19) holds for a P > 0 and Q̄ in
(35). Therefore, the following equation also holds:

(A + µI +
1
µ∗

BΨ − LC)T P + P(A + µI +
1
µ∗

BΨ − LC) ≤ −Q̃ +
1
µ∗

PBΨT +
1
µ∗

ΨBT P

= −Q̃ +
1
µ∗

CS 1ΨT +
1
µ∗

ΨS T
1 CT (82)

where Q̃ = Q̄+C̄R−1C̄ > 0. Because of the extra CS 1ΨT term, the right hand side of (82) may not be negative definite.
Adding an extra term 2ρCT S T S C on both sides of Eq.(82) yields

(A + µI + 1
µ∗

BΨ − LρC)T P + P(A + µI + 1
µ∗

BΨ − LρC)

≤ −Q̃ +
1
µ∗

CS 1ΨT +
1
µ∗

ΨS T
1 CT − 2ρCT S T S C , Qρ (83)

with Lρ defined in Eq.(33). We will show that the ρ chosen in (34) will always produce a negative definite Qρ. Consider
the following block matrix

M(ρ) =

 −2ρS T S 1
µ∗

S T
1 ΨT

1
µ∗

ΨS 1 −Q̃

 . (84)

Q̃ < 0 since Lemma 6 holds for the L and S 1. Using Schur complement, it can be proved that when ρ is picked using
inequality (34), M(ρ) < 0 for any Ψ bounded by ‖Ψ‖ ≤ Ψ∗max. Perform a transformation on M(ρ) using a tall matrix
TC

TC =

[
C

In×n

]
(85)

shows that

Qρ = T T
C M(ρ)TC =

[
CT I

]  −2ρS T S 1
µ∗

S T
1 ΨT

1
µ∗

ΨS 1 −Q̃

 [ C
I

]
< 0. (86)

The last inequality holds because M(ρ) < 0 and TC does not have a right null space. Combining Eq.(83)(86) and (19)
proves that {(A + µI + 1

µ∗
BΨ− LρC), B, S 1C} is SPR. Finally, it is noted that Eq.(21) ensures the boundedness of S and

S 1. Ψ∗max in (32) is finite. µ∗ is non-zero. As a result, a finite ρ∗ always exists, so does a finite Lρ. �
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Proof of Theorem 1

Proof. Choosing µ = µ∗ and Ψ = Ψ∗ in Lemma 8 proves that the Lρ (33) and S 1 (21) guarantees the SPR properties
of {(A + µ∗I + 1

µ∗
BΨ∗ − LρC), B, S 1C}. Therefore, the results of Lemma 7 holds: i) all signals in the system, including

Λ̃T (t) = Λ−1(t) − Λ∗−1 and Θ̃T (t) = ΘT (t) − Θ∗T , are bounded and; ii) state error ex(t) → 0 as t → ∞, which implies
ey(t)→ 0 as t → ∞.

To prove iii), similar to epz(t) = z(t)− zcmd, denote emz(t) = zm(t)− zcmd + LeCex where Le is the corresponding rows
of Lρ.

∫
epz(t)dt is a state of x and

∫
emz(t)dt is a state of xm (see Section 1). As a result, the fact ex(t) → 0 as t → ∞

implies that [∫
epz(t)dt −

∫
emz(t)dt

]
→ 0, as t → ∞. (87)

Substituting the definitions of epz(t) and emz(t) transforms (87) into{∫
[z(t) − zcmd]dt −

∫
[zm(t) − zcmd + LeCex]dt

}
→ 0, as t → ∞. (88)

Since zcmd is piecewise continuous and both z(t) and zm(t) are integrable, Eq.(88) can be simplified as∫
ez(t)dt → LeC

∫
exdt < ∞, as t → ∞. (89)

where ez(t) = z − zm. On the other hand, using the definition of z in (10) and definition of zm in (13), ez(t) has the
following expression

ez = Czex + DzΛ
∗Θ∗T [Φ(xp) − Φ(xmp)] + DzΛ

∗[Λ̃T ubl − Θ̃T Φ(xmp)] (90)

whose derivative is

ėz = Czėx + DzΛ
∗Θ∗T [Φxp ẋp − Φxmp ẋmp] + DzΛ

∗[ ˙̃
Λ

T
ubl + Λ̃T u̇bl −

˙̃
Θ

T
Φ − Θ̃T Φxmp ẋmp] (91)

where Φ(·) stands for ∂Φ
∂(·) . Because all signals in the system are bounded and Φ is globally differentiable, ėz is bounded.

Applying Barbalat’s Lemma shows that ez(t)→ 0 as t → ∞, which proves iii). �

Proof of Lemma 9

Proof. Define φp(s) = (sI − Ap)−1, φ(s) = (sI − A)−1, φ(s) = (sI − A + BK)−1 and φL(s) = (sI − A + BK + LρC)−1.
Denote R̄−1 = R−1 + ρI. As ε → ∞ or ρ→ ∞, R̄−1 → ∞ and

Lρ = B̄R̄−1S → ∞. (92)

For loop gain at input, we can treat the error integrator (introduced in Section 1) as a part of the plant. The loop gain
at input for a LQR controller is

L∗u(s) = KφB (93)

The loop gain at input for a observer-based controller with a Lρ and the same K is

Lu(s) = K[sI − A + BK + LρC]−1LρCφB (94)

To prove i), define K̄ ∈ Rp×n as

K̄ =

[
K

0(p−m)×n

]
(95)

such that BK = B̄K̄. The asymptotic relation (92) implies

L̄u(s) , K̄[sI − A + BK + LρC]−1LρφB̄ (96)
= K̄[sI − A + B̄K̄ + LρC]−1LρφB̄ (97)
→ K̄φB̄. (98)
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Given (97), the proof of (98) can be found in Ref.9, which can be applied here because CφB̄ is square and minimum
phase. The partition (95) and (20) shows that element-wise convergence holds, i.e. the submatrix Lu

Lu(s) , K[sI − A + BK + LρC]−1LρCφB→ KφB (99)

as ε → ∞ or ρ→ ∞, which proves i).
For loop gain at output, we have to include the error integrator in our controller. Divide K = [Kp,Ki] where

Kp ∈ R
m×np and Ki ∈ R

m×r. For a LQR controller, the loop gain at output is

L∗o(s) =

([
Inp

Cpz

]
φp(s)Bp +

[
0

Dpz

]) [
Kp

1
s Ki

]
(100)

Divide Lρ = [Lp, Li] where Lp ∈ R
n×pp and Li ∈ R

n×r. Define

Ak =

[
A − BK − Lρ Li

0 0

]
; Bk =

[
Lp 0
0 I

]
; Ck =

[
K 0

]
(101)

For the LQG controller, the transfer function of the controller is Ck(sI − Ak)−1Bk and the loop gain at output is

Lo(s) =

([
Cp

Cpz

]
φp(s)Bp +

[
0

Dpz

])
Ck(sI − Ak)−1Bk (102)

=

([
Cp

Cpz

]
φp(s)Bp +

[
0

Dpz

])
KφL(s)

[
Lp

1
s Li

]
. (103)

From (102) to (103), we used the identity

(sI − Ak)−1 =

[
φL φLLi

1
s

0 1
s

]
.

To prove ii), we need to rely on an asymptotic relation

φLLρ = [φ
−1

+ LρC]−1Lρ (104)

= φ[I + LρCφ]−1Lρ (105)
= φ[I + BKφ + LρCφ]−1Lρ (106)

= φ
{
I + B̄[K̄ + R̄−1S C]φ

}
−1B̄R̄−1S (107)

= φB̄
{
I + [K̄ + R̄−1S C]φB̄

}
−1R̄−1S (108)

→ φB̄[CφB̄]−1 (109)

as ε → ∞ or ρ → ∞. From (105) to (109), we used the equality φ = φ[I + BKφ]−1, the design Lρ, the equality
BK = B̄K̄, the matrix equality X[I + XY]−1 = [I + YX]−1X, and the asymptotic relation (92). It is noted that [Cφ(s)B̄]
is invertible except at its transmission zeros, and therefore is invertible for all s on the imaginary axis, which is the
region of our frequency domain analysis. Now we proceed to prove ii). Since φB̄[CφB̄]−1 is a right inverse of C, we
can write

C†(s, B̄) := φB̄[CφB̄]−1 =

[
C†p(s, B̄) 1

s Mp(s, B̄)
0 Ir

]
(110)

where C†p(s, B̄) satisfies CpC†p(s, B̄) = Ipp . and Mp(s, B̄) ∈ Rpp×r satisfies CpMp(s, B̄) = 0pp×r. Since 0 < |s| < ∞, when
Lρ → ∞

KφL(s)
[

Lp
1
s Li

]
→

[
Kp

1
s Ki

]
C†(s, B̄). (111)

Combining (103) and (111) yields

Lo(s) →

([
Cp

Cpz

]
φp(s)Bp +

[
0

Dpz

]) [
Kp

1
s Ki

]
C†(s, B̄) (112)

= C
[
L∗o(s)

]
C†(s, B̄) (113)

as ε → ∞ or ρ→ ∞, which proves ii). �
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