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An active conducting medium is one where the resistance (conductance) of the medium is modified by
the current (flow) and in turn modifies the flow, so that the classical linear laws relating current and
resistance, e.g., Ohm’s law or Darcy’s law, are modified over time as the system itself evolves. We consider
a minimal model for this feedback coupling in terms of two parameters that characterize the way in which
addition or removal of matter follows a simple local (or nonlocal) feedback rule corresponding to either
flow-seeking or flow-avoiding behavior. Using numerical simulations and a continuum mean field theory,
we show that flow-avoiding feedback causes an initially uniform system to become strongly heterogeneous
via a tunneling (channel-building) phase separation; flow-seeking feedback leads to an immuring (wall-
building) phase separation. Our results provide a qualitative explanation for the patterning of active
conducting media in natural systems, while suggesting ways to realize complex architectures using simple
rules in engineered systems.
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Flow through heterogeneous conductors is important in
many problems in physics, biology, geology, and engineer-
ing. While most studies are limited to transport through a
static medium, transport and flow can often modify the
medium itself, which then modifies transport. Thus, these
active heterogeneous conductors coevolve with the trans-
port through them. For example, in geophysics, branching
patterns are formed through the interplay of erosion,
transport, and deposition [1,2], while networks of electrical
fuses form complex patterns of failure due to the interplay
in changes in current and resistance [3,4]. In biological
systems, gradients and physical flows often arrange matter
through feedback mechanisms to control transport at the
cellular, organismal, and societal level. Specific examples
of active heterogeneous conducting media in biology
include network formation of slime molds [5–9], formation
and remodeling of vascular networks [10–13,13–15], and
the nest architectures of social insects [16–21].
Elements universal to these active conducting media are

conservation of current, feedback that changes resistance,
and stochasticity. A minimal distillation of the common
elements in these different systems corresponds to a
stochastically evolving network driven uniformly by fluxes
and forces at the boundary due to pressure, voltage, or
concentration gradients. Since problems involving steady
state diffusion of heat, concentration gradients, or flow
through a porous material are mathematically analogous to
current flow through electrical circuits, we will use the
language of circuit theory from now on.

We focus on a translationally symmetric case with
periodic boundary conditions and a uniform driving voltage
in the vertical ẑ direction. The vertices are arranged in a
square network, with the current I between neighboring
vertices i; j given by

Iij ¼
1

Ωij
ð½Vi − Vj� þ gẑ · r̂ijÞ;

X
j

Iij ¼ 0; ð1Þ

where Vi is the voltage at vertex i, g is the driving force, ẑ is
the vertical direction, and r̂ij is the relative position of i; j.
Each vertex i either contains a particle (ρi ¼ 1) or is empty
(ρi ¼ 0), and the resistance between two vertices Ωij

increases by ΔΩ when full; Ωij ¼ 1þ ΔΩðρi þ ρjÞ=2.
Particles are removed from their vertices at a

flow-dependent rate proportional to rðviÞ, where vi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

P
jI

2
ij

q
is the current through the cell [22]. They are

then added to an empty vertex with probability proportional
to aðvjÞ, leading to a simple algorithm for the evolution of
the medium [23]: 1) Remove a particle from filled vertex i
randomly selected with probability proportional to rðviÞ.
2) Solve for the new current through the network [24] [25].
3) Add the particle to an empty vertex j randomly selected
with probability proportional to aðvjÞ. 4) Solve for the
new current through the network. We emphasize that these
four steps conserve particle number, but the movement of
particles is nonlocal in that the distance between i; jmay be
arbitrarily large [26]. Furthermore, we note that the these
dynamics lack detailed balance [Fig. 1(d)].
Since the removal and addition rates can either increase

or decrease with local current in the active systems
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described earlier, we explore this range of possibilities with
two parameters αR, αA. For the removal process, we choose
rðviÞ ¼ vi−αR ; at positive αR, particles in high current will
rarely be removed (flow-seeking), and vice versa. For the
addition process, we choose aðvjÞ ¼ vjαA ; at positive αA,
empty vertices with high current will likely be filled
(flow-seeking) and vice versa.
For simplicity, we have chosen our functional forms such

that in any circuit, rðviÞ ∝ g−αR , aðvjÞ ∝ gαA . Because only
the ratios of currents are important, we may set this system
of equations to be dimensionless by making the substitu-
tions: Ω0 → 1, ΔΩ → ΔΩ=Ω0, g → 1. This gives four
dimensionless parameters: ΔΩ; αR; αA, and ρ̄, the mean
particle density. We want the difference between filled
and unfilled vertices to be large; here we choose ΔΩ ¼ 19
such that the resistance between filled vertices is 20 times
higher than empty vertices.
Simulations.—For each αR; αA, we start the system at a

uniform density ρ̄ and evolve it so that each particle or hole
moves an average of one thousand times. This procedure
is repeated twenty times for the parameters αR; αA ¼
ð−6;−3;…; 3; 6Þ, ρ̄ ¼ 1=4, computing the current through
the entire network at every step. The results in Fig. 1 show
that the system spontaneously forms channels (with high
conductivity) at sufficiently negative αR; αA, consistent
with natural systems sharing these qualitative biases. In
drainage networks, erosion increases with current (αR < 0),
while deposition decreases (αA < 0), while in biology, ants

have been observed to remove corpses from high-wind
areas (αR < 0) and place them in low-wind areas (αA < 0);
both of these systems form channels. Likewise, the system
forms walls at sufficiently positive αR; αA, consistent with
fuse networks (αA > 0). This kind of phase transition is also
similar to those seen in driven lattice gas models [27,28].
When the system channelizes due to negative αR, we find

thin channels; negative αA gives thick channels. To under-
stand these transitions, we consider their robustness to
perturbations. When the system has formed a set of parallel
channels, occasionally a channel gets blocked [Fig. 1(c)].
When the channel is thin, current must go through the clog
blocking the channel, and therefore total current through
the channel is reduced while the clogging particle has much
of this current forced through it. On the other hand, when a
channel is thick, current will go around the clog, and so is
barely impeded. Therefore, at negative αA, the thin channel
has reduced current, and this clogging will cause the thin
channel to fill, while a large channel is much more robust
and will not be filled. On the other hand, for negative αR,
the clog in the wide channel has little current through it, and
lingers, allowing the wide channel to eventually be filled;
the clog in the thin channel has high current forced through
it and is quickly removed. A similar argument shows that
positive αA leads to thin walls, while positive αR leads to
thick walls. The system exhibits large hysteretic effects
which are especially strong at very negative αA; αR, when
the system is “frozen” and fluctuations are suppressed.

(a)

(c)

(d)

(b)

FIG. 1 (color online). (a) Example system for ðαA; αRÞ ¼ ð0; 0Þ. Filled vertices are covered by gray squares. Current is driven in the
upwards ẑ direction; direction and magnitude of current between neighboring vertices is indicated by red arrows. (b) Phase diagram
for ρ̄ ¼ 1=4. Each individual box represents a single system that has equilibrated for a particular (αA; αR), where αA; αR have values
(−6, 3, 0, 3, 6). At positive αR, the system forms thick walls; negative αR gives thin channels. Positive αA leads to a series of thin walls;
negative αA gives thick channels. At positive αR, negative αA, a phase separation occurs at both orientations, giving a set of clumps.
(c) Robustness of thick and thin channels. (d) Lack of detailed balance: αA < 0, and K2 ≈ K3, as the current through the lower right
vertex has only weak dependance on the occupation of the upper left vertex. However K1 ≉K4, as the current through the upper left
vertex strongly depends on the occupation of the lower right vertex; therefore, K1K2 ≠ K3K4.
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Interestingly, when αR is positive and αA is negative, both
channelization and wall-building phase separations occur,
as the system phase separates into thick clumps, which can
be explained through a continuum model.
To characterize the wall-building phase separation,

we use the row density ρz ¼
P

xρxz=Lx as an order
parameter, consistent with the fact that when the dis-
tribution of row densities becomes bimodal [Fig. 2(d)
example, wall building has occurred] [29]. We character-
ize the channelization phase separation in terms of the
column density ρx ¼

P
zρxz=Lz; when this is bimodal,

channelization has occurred (Fig. 1). We characterize a
clumping phase separation through local density ρ̄r ¼
ð1=AÞPr0Θð

ffiffiffi
6

p
− jr − r0jÞρr0 , where Θ is the Heaviside

function [30]; when this is bimodal and neither column
or row density are bimodal, clumping has occurred.
Characterizing the distribution of filled vertices with a

mean density field ρ, the continuum version of Eq. (1) is

J ¼ κðρÞ½−∇V þ gẑ�; ∇ · J ¼ 0; ð2Þ
where κ, the conductivity, is a function of density.
Similarly, in the continuum limit, the discrete addition
and removal activity are replaced with a stochastic equation
for density evolution,

_ρ ¼ −Rðρ; J; αRÞ þNAðρ; J;αAÞ þ η; ð3Þ
whereRðρ; J; αRÞ is the mean removal rate from a region of
with density ρ, current J, and a bias of αR. A is the mean
addition rate, and J is itself a functional of ρ obtained by
solving Eq. (2). N ¼ ∬R=∬A acts as a sort of chemical
potential, which is set to conserve total particle number. η is
the stochastic noise term, whose form will be discussed
later [31]. The predictions of the continuum model depend

strongly on the functions κ;A;R. To determine them, we
use a hybrid approach, sampling via numerical experiment
using randomly placed particles and then varying the
density to approximate the entire functions, leaving us
with no fitting parameters [32]. While the discrete and
continuum model both lack detailed balance and thus we
cannot write down a free energy function associated with
their dynamics, we can use equilibrium considerations
when certain limits or symmetries are assumed.
Nearly disordered limit.—In the limit where αR; αA → 0,

only the linear response is important. We write Eq. (3) as

_ρ ¼ −T ðρ; J; ~αÞ þ η; ð4Þ
where T ðρ; J; ~αÞ ¼ −Rðρ; J; αRÞ þNAðρ; J; αAÞ is the
time derivative functional and ~α ¼ ðαR;αAÞ. In Fourier
space, we separate the effects of J and ρ on T :

dT ðkÞ
dρðkÞ ¼ ∂T

∂ρ
����
J;~α

þ ∂T
∂Jz

����
ρ;~α

∂JzðkÞ
∂ρðkÞ : ð5Þ

When k ∝ x̂, density fluctuations are horizontal
(channels) and cause fluctuations in current; when
k ∝ ẑ, fluctuations are vertical (walls) and current is
uniform. The full relation can be shown [33] to be
½∂JzðkÞ=∂ρðkÞ� ¼ ð∂κ=∂ρÞk2

x=jkj2.
To first order _ρðkÞ ¼ −½dT ðkÞ=dρðkÞ�ρðkÞ þ η, where

η is independent of k. This allows us to predict the mean
amplitude of fluctuations:

hρðkÞ2i ∝
�∂T
∂ρ

����
J;~α

þ ∂Jz
∂ρ

����
ρ;~α

∂κ
∂ρ

k2
x

jkj2
�

−1
: ð6Þ

We note that this is independent of the magnitude of k,
and is a function of its direction alone [Fig. 2(a)], because

(a1) (b) (d) (f)

(e)

(c)

(a2)

FIG. 2 (color online). (a1) hρðkÞ2i for ðαR; αAÞ ¼ ð0.1; 0.1Þ. (a2) Scatter plot of hρðkÞ2i vs ðk̂ · ẑÞ2 ¼ cos2ðθÞ for ðjkjLÞ=2π ≤ 5

compared with prediction from continuum model. Note that the majority of dependence is on direction k2
x=jk2j, not magnitude jkj.

(b) Fokker-Planck dynamics of continuum model for wall phase separation for a slice of area A. (c) Visualization of Eqs. (7), (9), for
ðαR; αAÞ ¼ ð2.6; 0Þ. (d) Comparison of histograms of row density, αA ¼ 0 for a 40 × 40 system. The right histogram is bimodal, so a
wall phase transition is considered to have occurred. (e) Comparison of snapshots and row density histograms for a wall-building phase
transition. (f) Observed phase transitions though observation of order parameters on ensemble vs predictions of the continuum model,
αA, αR ¼ ð−6; 3; 0; 3; 6Þ.
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of the dipolelike interactions between particles which
inhibit current upstream and downstream, while increasing
it laterally. Similar interactions have been noted in fuse
networks [34–36].
x̂ translation symmetry.—To predict wall building, we

assume translation symmetry in the x̂ direction, so that
Jðx; zÞ is constant throughout the system. In the discrete
model the current through any vertex is proportional to J,
so that we may make the simplification Rðρ; J; αRÞ →
Rðρ; αRÞJ−αR ;Aðρ; J; αAÞ → Aðρ; αAÞJαA [37].
We can view a horizontal slice containing A vertices as

having uniform density, obeying the dynamics shown in
Fig. 2, with a mean addition rate Aðρ;αAÞJαAN , and a
mean removal rate of Rðρ; αRÞJ−αR . The first criteria for a
phase separation to occur is mass balance, i.e., no net
particle transfer, between two horizontal slices of densities
ρ1, ρ2:

N ¼ Rðρ1; αRÞJ−αR
Aðρ1;αAÞJαA

¼ Rðρ2; αRÞJ−αR
Aðρ2; αAÞJαA

¼ ~N
J−αR

JαA
; ð7Þ

where we have defined ~N in order to separate the
dependence of J and ρ. Assuming each slice is large
(A → ∞), we may find a recursion relation for the
equilibrium distribution of densities:

Pðρþ 1=AÞ
PðρÞ ≈

Aðρ; αAÞ ~N
Rðρ; αRÞ

; ð8Þ

giving conditions for free energy balance

Z
ρ2

ρ1

ln

�
Aðρ0; αAÞ ~N
Rðρ0; αRÞ

�
dρ0 ¼ 0: ð9Þ

The continuum model predicts the system to form walls
when ρ̄ falls between ρ1; ρ2 which satisfy both mass and
free-energy balance. Note that the wall phase separation is
independent of J.
ẑ translation symmetry.—To predict channelization, we

assume translation symmetry in the ẑ direction, so
Jðx; zÞ ¼ κ(ρðxÞ)ẑ. As before, each vertical slice will obey
the dynamics in Fig. 2, except the mean removal rate is
now Rðρ; αRÞκðρÞ−αR ; the mean addition rate becomes
NAðρ; αAÞκðρÞαA . Following the same procedure, the
criteria for mass balance becomes

N ¼ Rðρ1; αRÞ
Aðρ1; αAÞ

κðρ1Þ−αR
κðρ1ÞαA

¼ Rðρ2; αRÞ
Aðρ2; αAÞ

κðρ2Þ−αR
κðρ2ÞαA

ð10Þ

and the condition for free energy balance becomes

Z
ρ2

ρ1

ln

�
Aðρ0; αAÞN κðρ0ÞαAþαR

Rðρ0; αRÞ
�
dρ0 ¼ 0: ð11Þ

We note that when αA ¼ −αR, the criteria for wall building
and channelization become identical; if a phase separation

occurs, it will occur in both orientations, giving rise to a
clumping phase separation. This is consistent with our
observations in simulations Figs. 1(b) and 1(c).
Our model for active heterogeneous conductors relies

on a small number of very simple elements: a conserved
current in a medium where flow and resistance are coupled
to each other, in the presence of noise. This allows us to
provide a unified coarse-grained approach that links a
number of different physical and biological systems with
different underlying fine-grained mechanisms that are often
considered disparately. Despite its minimal complexity, our
numerical simulations of the model produce the same
channeling and immuring phase separations through the
variation of only two parameters corresponding to biases in
material addition and removal, consistent with the biases
of the systems it is inspired by; flow-avoiding drainage
networks and ant corpse piles lead to channels, and
flow-seeking fuse breaks that lead to walls.
A complementary continuum model corroborates our

numerical simulations and also leads to the formation of
walls, channels, and clumps. However, the functions
characterizing conductivity and activity used in this con-
tinuum model come from numerical experiments which
neglect microscopic correlations, resulting in a prediction
of a continuous phase transition as opposed to the observed
discontinuous one. In addition, because there is no inherent
length scale to the continuum model, it cannot explain the
transition between thin and thick structures. A continuum
model considering the formation of the thinnest structures
also predicts channelization and walling [38], but a theory
combining both elements has no additional predictive
power. Additionally the model predicts scale-free dipolelike
correlations observed in the discrete model, which ought to
exist in all nearly disordered systemswhere conductivity and
current are coupled. While in these systems, addition and
removal biases complement each other, our model shows
that only one type of bias is needed for a phase separation.
Opposing removal and addition biases, if they could be
engineered, offer new possibilities for patterning that
explore the entire phase diagram.
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