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ABSTRACT

We describe a method for measuring the integrated Comptonization (YSZ) of clusters of galaxies from measurements
of the Sunyaev–Zel’dovich (SZ) effect in multiple frequency bands and use this method to characterize a sample
of galaxy clusters detected in the South Pole Telescope (SPT) data. We use a Markov Chain Monte Carlo method
to fit a β-model source profile and integrate YSZ within an angular aperture on the sky. In simulated observations
of an SPT-like survey that include cosmic microwave background anisotropy, point sources, and atmospheric and
instrumental noise at typical SPT-SZ survey levels, we show that we can accurately recover β-model parameters
for inputted clusters. We measure YSZ for simulated semi-analytic clusters and find that YSZ is most accurately
determined in an angular aperture comparable to the SPT beam size. We demonstrate the utility of this method to
measure YSZ and to constrain mass scaling relations using X-ray mass estimates for a sample of 18 galaxy clusters
from the SPT-SZ survey. Measuring YSZ within a 0.′75 radius aperture, we find an intrinsic log-normal scatter of
21% ± 11% in YSZ at a fixed mass. Measuring YSZ within a 0.3 Mpc projected radius (equivalent to 0.′75 at the
survey median redshift z = 0.6), we find a scatter of 26% ± 9%. Prior to this study, the SPT observable found to
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have the lowest scatter with mass was cluster detection significance. We demonstrate, from both simulations and
SPT observed clusters that YSZ measured within an aperture comparable to the SPT beam size is equivalent, in
terms of scatter with cluster mass, to SPT cluster detection significance.

Key words: galaxies: clusters: general – methods: data analysis – X-rays: galaxies: clusters

1. INTRODUCTION

Galaxy clusters are the largest gravitationally collapsed sys-
tems in the observed universe, and their abundance as a func-
tion of mass and redshift is a sensitive probe of the growth of
structure in the universe. The ability to accurately and precisely
estimate cluster masses is essential for using them to constrain
cosmological parameters. Typically this is done through cluster
observables, which do not directly measure cluster mass, but
can be related to it through scaling relations (Vikhlinin et al.
2009b; Rozo et al. 2010; Mantz et al. 2010; Benson et al. 2013).
The Sunyaev–Zel’dovich (SZ) effect (Sunyaev & Zel’dovich
1972) is caused by the inverse Compton scattering of cosmic
microwave background (CMB) photons off of hot intra-cluster
gas. It is a measure of the line-of-sight integral of the cluster
pressure and is expected to be a low scatter proxy for cluster
mass (Carlstrom et al. 2002; Kravtsov et al. 2006). In particular,
the integrated Comptonization of a cluster, YSZ, is expected to
have a low intrinsic scatter with cluster mass and to be relatively
insensitive to cluster astrophysics (Barbosa et al. 1996; Holder
& Carlstrom 2001; Motl et al. 2005; Nagai et al. 2007; Fabjan
et al. 2011).

However, for SZ observations where the cluster size is on
the order of the instrument beam size or smaller, there is
typically a degeneracy in the constraints on the amplitude and
shape of the assumed cluster profile (e.g., Benson et al. 2004;
Planck Collaboration et al. 2011a, 2013a). One potential way of
handling this degeneracy is to employ a Bayesian or Monte Carlo
analysis method. A number of experiments have used Monte
Carlo methods to characterize the profiles of galaxy clusters
in recent years, including Bolocam (Sayers et al. 2013), the
Arcminute Microkelvin Imager (AMI; AMI Consortium et al.
2012a, 2012b), the Planck Collaboration (Planck Collaboration
et al. 2012; Planck and AMI Collaborations et al. 2013), and the
Atacama Cosmology Telescope (ACT) and Sunyaev–Zel’dovich
Array (SZA; Reese et al. 2012). In this work, we present
a Markov Chain Monte Carlo (MCMC) analysis method for
analyzing observations of the SZ effect, which measures YSZ
while marginalizing other SZ model parameters. A feature of
the MCMC method is that the YSZ estimates it produces are
well constrained even for clusters with relatively small radii on
the sky. This method is related to the method presented in T.
E. Montroy et al. (2015, in preparation), which uses the same
likelihood, but employs a rapid grid method to directly evaluate
the likelihood throughout the parameter space.

We apply this MCMC method to simulated and real obser-
vations from the South Pole Telescope (SPT). Various experi-
ments have examined scaling relations between SZ signal and
optical or X-ray data. The Planck Collaboration has examined
YSZ–LX scaling relations (Planck Collaboration et al. 2011b) and
YSZ–MX scaling relations (Planck Collaboration et al. 2013b).
Sehgal et al. (2011), Sifon et al. (2013), and Hasselfield et al.
(2013) investigate the scaling between central Comptonization,
y0, or YSZ and mass for ACT clusters. Previous analyses of clus-
ters observed in the SPT-SZ survey used the cluster detection
significance, ξ , as a proxy for cluster mass (Vanderlinde et al.
2010; Andersson et al. 2011; Benson et al. 2013; Reichardt

et al. 2013). Here we show that YSZ integrated over a fixed an-
gular aperture near the SPT beam size and ξ have comparable
fractional scatter in their respective mass scaling relations. YSZ,
however, is more easily compared to cluster parameters derived
from other measurements.

2. CLUSTER SAMPLE AND OBSERVATIONS

2.1. SZ Observations

The SPT is a 10 m diameter off-axis Gregorian telescope
with a 1 deg2 field of view, designed to operate at millimeter
and submillimeter wavelengths (Carlstrom et al. 2011). In
2007–2011, the SPT surveyed 2500 deg2 in three frequency
bands centered at 95, 150, and 220 GHz. This survey is referred
to as the SPT-SZ survey. The cluster sample used in this work
is drawn from the two fields (∼100 deg2 each) observed with
the SPT in 2008, one centered at right ascension (R.A.) 5h30m,
declination (decl.) −55◦ (J2000), and one at R.A. 23h30m, decl.
−55◦. A nearly identical cluster sample was used in Vanderlinde
et al. (2010, hereafter V10), Andersson et al. (2011, hereafter
A11), and Benson et al. (2013, hereafter B13).

Observing procedures, data processing, and detection algo-
rithms for these clusters are described in detail in V10 and
Staniszewski et al. (2009) and are summarized here. Details
of the data processing pipeline are also described in Schaffer
et al. (2011).

Each field was observed by scanning the telescope back and
forth in azimuth at 0.◦25 s−1, and then stepping in elevation
and repeating until the entire field was covered. This process
covers a 100 deg2 field in approximately two hours Field scans
were repeated several hundred times until the noise in the co-
added maps reached a completion depth of 18 μKarcmin for
150 GHz. (See Staniszewski et al. 2009, V10, or Williamson
et al. 2011 for a description of field depth measurements.) The
timestreams of the individual detectors were filtered to remove
sky signal that was spatially correlated across the focal plane and
long timescale detector drift. The combination of these filters
effectively removes signals with angular scales larger than ∼0.◦5.
Data from individual detectors were combined using inverse-
variance weighting, and the resulting maps were calibrated
by comparison to the Wilkinson Microwave Anisotropy Probe
(WMAP) 5 yr CMB temperature anisotropy power spectrum
(Lueker et al. 2010).

2.2. Cluster Detection

Clusters are identified in the SPT maps using a matched filter
(MF; Haehnelt & Tegmark 1996; Herranz et al. 2002a, 2002b;
Melin et al. 2006). Specifics on this procedure can be found in
Staniszewski et al. (2009) and V10 for single frequency cluster
detection, and in Williamson et al. (2011) and Reichardt et al.
(2013) for multi-frequency detection. To locate clusters, the
maps are multiplied in Fourier space with a filter matched to the
expected spatial signal-to-noise (S/N) profile of galaxy clusters.
The MF, ψ , is given by

ψ(kx, ky) = B(kx, ky)S(|k|)
B(kx, ky)2Nastro(|k|) + Nterr(kx, ky)

, (1)
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where B is the instrument response after timestream filtering,
S is the source template, and the noise has been divided into
astrophysical (Nastro) and terrestrial (Nterr) components. Nastro
includes power from lensed primary CMB anisotropies, an SZ
background from faint undetected clusters, and millimeter-wave
emitting point sources. The noise power spectrum Nterr includes
atmospheric and instrumental noise, estimated from jackknife
maps. The source template is a two-dimensional projection of
an isothermal β-model, with β set to 1 (Cavaliere & Fusco-
Femiano 1976):

ΔT = ΔT0
(
1 + θ2

/
θ2

c

)−1
, (2)

where the central SZ temperature decrement ΔT0 and the core
radius θc are free parameters.

Clusters are detected using a (negative) peak detection al-
gorithm similar to SExtractor (Bertin & Arnouts 1996). The
significance of a detection, ξ , is defined to be the highest
S/N ratio across all θc. In our analysis, we use the unbiased
significance ζ =

√
〈ξ 〉2−3, where 〈ξ 〉 is the average detection

significance of a cluster across many noise realizations (V10).
It is important to note here that maximizing the S/N in the

MF maximizes the likelihood used in the MCMC method below
(Section 3) at a fixed θc. The two methods are exploring the
same likelihood, the difference is that the MF is optimized for
detecting clusters not parameterizing them, since it does not
simultaneously explore all dimensions in the parameter space.

2.3. Optical and X-Ray Observations

The optical and X-ray observations for the clusters used in
this work have previously been described in A11 and B13,
which we briefly describe here. All 18 clusters have redshift
measurements, 15 of which are spectroscopic, and 14 of the
clusters have X-ray measurements.

Optical griz imaging and photometric redshifts for these
clusters were obtained from the Blanco Cosmology Survey
(Desai et al. 2012), and from pointed observations using the
Magellan telescopes (High et al. 2010). Of the 15 clusters with
spectroscopic redshifts, 8 were obtained by the Low Dispersion
Survey Spectrograph (LDSS3) on the Magellan Clay 6.5 m
telescope (High et al. 2010), and 1 by the Inamori Magellan
Areal Camera and Spectrograph (IMACS) on the Magellan
Baade 6.5 m telescope (Brodwin et al. 2010). The final six
cluster redshifts were measured with IMACS and GMOS on
Gemini South (Ruel et al. 2013). X-ray follow-up observations
were performed with Chandra ACIS-I and XMM-Newton EPIC
(A11; B13).

3. MCMC ANALYSIS METHODS

In this work, we follow a Bayesian approach to parameter es-
timation, using a MCMC method to estimate the parameters of
our cluster source model. The application of MCMC methods
to the detection and characterization of compact astrophysi-
cal sources in noisy backgrounds was proposed by Hobson &
McLachlan (2003), and several experiments have used MCMC
methods for parameterizing SZ signals from galaxy clusters.
Bonamente et al. (2004), Bonamente et al. (2006), and LaRoque
et al. (2006) used MCMC methods to analyze SZ data from
BIMA and OVRO, in conjunction with X-ray data from Chan-
dra, and fit β-model profiles to galaxy clusters. Muchovej et al.
(2007), Culverhouse et al. (2010), and Marrone et al. (2009)
parameterized SZA clusters, and Halverson et al. (2009) param-
eterized the Bullet Cluster using APEX-SZ data, all using the

β-model. Culverhouse et al. (2010), Marrone et al. (2009), and
Marrone et al. (2012) additionally estimated cluster YSZ values.
In recent years there has been a surge of interest in MCMC meth-
ods for parameterizing cluster from a number of experiments,
including Bolocam (Sayers et al. 2013), AMI (AMI Consortium
et al. 2012a, 2012b), the Planck Collaboration (Planck Collabo-
ration et al. 2012; Planck and AMI Collaborations et al. 2013),
and ACT and SZA (Reese et al. 2012). Here we estimate galaxy
cluster YSZ values and YSZ–M scaling relations in addition to
estimating β-model parameters.

3.1. Posterior Distribution for a Compact Source

We use a Metropolis–Hastings algorithm implementation of
the MCMC method for parameter estimation (Metropolis et al.
1953; Hastings 1970). For the case of a compact object with
source template S(H) in a two-dimensional astronomical data
set D with Gaussian noise, the Bayesian likelihood has the form

P(D|H) = exp
(− 1

2 [D − S(H)]C−1[D − S(H)]∗
)

(2π )Npix/2|C|1/2
, (3)

where C is the noise covariance matrix for the data set D, and
Npix is the number of pixels in D (Hobson & McLachlan 2003).
In this method, C is composed of the combined Nastro and Nterr
noise terms in the MF ψ (Equation (1)).

We are interested in parameterizing galaxy clusters using
the SZ effect, which is the spectral distortion they produce in
the blackbody CMB spectrum. At two of the SPT’s observing
frequencies (95 and 150 GHz), this distortion is manifested as a
decrement in CMB power, while the net change in CMB power
at 220 GHz is negligible.

Equation (3) is easily generalizable to the case of astronomical
images in multiple frequency bands, where the unnormalized log
likelihood may be calculated in the Fourier domain as

log(P(D|H))

= −1

2

∑
k̄,νi ,νj

[
D̃νi

(k̄) − s̃Hνi
(k̄)

]
N−1

νiνj
(k̄)

[
D̃νj

(k̄) − s̃Hνj
(k̄)

]∗
,

(4)

where k̄ is the two-dimensional Fourier space vector, D̃νi
(k̄)

is the Fourier transform of the map for frequency νi , s̃Hνi
(k̄) is

the frequency-dependent Fourier transform of the cluster model
for parameter set H, and Nνiνj

(k̄) is the frequency-dependent
covariance matrix for the νi and νj frequency maps. Here
Nνiνj

(k̄) is simply the multiband extension of the covariance
matrix C in Equation (3). It is convenient to perform the
likelihood calculations in Fourier space rather than physical
space because Nνiνj

(k̄) is diagonal in Fourier space, assuming
stationary noise.

The frequency-dependent covariance matrix is computed as
follows. For a given k̄, the two frequency matrix for CMB+Noise
covariance is

Nνiνj
(k̄) =

[
C(k̄)B1(k̄)2 + N1(k̄) C(k̄)B1(k̄)B2(k̄)

C(k̄)B1(k̄)B2(k̄) C(k̄)B2(k̄)2 + N2(k̄)

]
(5)

where C(k̄) is the CMB power at k̄, B1(k̄) and N1(k̄) are the
beam and noise for the first frequency, and B2(k̄) and N2(k̄) are
the beam and noise for the second frequency.

3
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The covariance becomes more complicated when including
point sources and the SZ background because the signal compo-
nent has a different magnitude at different frequencies. If Q1(k̄)
and Q2(k̄) are the point source or SZ covariance at two of our
observing frequencies, then we have

Nνiνj
(k̄)

=

⎡⎢⎢⎢⎢⎣
C(k̄)B1(k̄)2 + N1(k̄) + B1(k̄)2Q1(k̄)

C(k̄)B1(k̄)B2(k̄) + B1(k̄)B2(k̄)
√

Q1(k̄)Q2(k̄)

C(k̄)B1(k̄)B2(k̄) + B1(k̄)B2(k̄)
√

Q1(k̄)Q2(k̄)

C(k̄)B2(k̄)2 + N2(k̄) + B2(k̄)2Q2(k̄)

⎤⎥⎥⎥⎥⎦ .

(6)

Before the log-likelihood is calculated, to account for the
filtering of the data set D̃νi

(k̄) as described in Section 2.1,
both the covariance Nνiνj

(k̄), and the source template s̃Hνi
(k̄),

are multiplied by a Fourier space filter function that emulates
the timestream filtering used to produce D̃νi

(k̄).

3.2. Implementation

Our MCMC is modeled after the generic Metropolis–Hastings
method described in Hobson & McLachlan (2003), and is im-
plemented in MATLAB38.

In this work, we use the MCMC method for cluster param-
eterization, not detection. Our testing found that it was more
computationally costly and not more effective at cluster detec-
tion than the MF method. Throughout this work, our MCMC is
run over a relatively small area of sky (512 pixels × 512 pixels,
or ∼2◦ × 2◦) centered on a cluster that has already been
identified.

Cluster parameter recovery is tested in single- and multi-
frequency simulations below (Section 5), but we use only
150 GHz when investigating scaling relations (for observed and
simulated clusters) to match the SPT cluster analysis in B13,
from which our sample is derived. We use the β-model source
template given in Equation (2). T. E. Montroy et al. (2015,
in preparation) demonstrate, using simulations and methods
similar to those described in Section 5, that YSZ is recovered
accurately with a β-model for either β-model or Arnaud profile
(Arnaud et al. 2010) input clusters.

Clusters, as described by the β-model, are characterized by
four parameters: their location on the sky in R.A. and decl., the
magnitude of the SZ temperature decrement ΔT0, and the core
radius θc. We apply priors in the form of uniform probability
distributions in each parameter. Given that we are characterizing
clusters that have already been detected by the MF, our position
priors can be quite tight. We impose a simple square-box prior on
R.A. and decl., centered at the MF cluster location and extending
±1.′25. Our ΔT0 and θc priors restrict these parameters to
broadly reasonable values given the expected mass and redshift
range of our cluster sample. Our SZ temperature decrement
prior is −2.5 mK � ΔT0 � 0.0 mK, and our radius prior is
0.′025 � θc � 2.′5. θc is not allowed to fall to zero for numerical
reasons.

For a detailed examination of the SPT beam functions and
noise properties, see Schaffer et al. (2011). Figure 2 of that work
shows how the SPT beams scale with physical radius and 	.
Figure 7 shows the signal+noise and noise PSDs for an SPT

38 Mathworks Inc., Natick, MA 01760, USA.

map, both from the raw map, and corrected for the beam and
transfer functions.

Burn-in, as evaluated by stability of the likelihood values,
is typically complete within several hundred steps. For
the 12,000 simulated cluster realizations in Section 5, we
cut the first 103 steps, using the rest of the 104 steps to char-
acterize the probability surface. In the scaling relation analysis
discussed in Section 6 many fewer clusters were analyzed, al-
lowing the chain length to be extended to 105 steps, from which
we exclude the first 104 steps in order to ensure convergence.
We define recovered parameter values to be the median of the
MCMC equilibrium distribution for each parameter, marginal-
izing over the other parameters. Uncertainties are given by the
68% confidence interval of the marginalized distribution for
each parameter, centered on the median value. Figure 1 shows
the parameter distributions for a typical cluster detected with
the SPT.

4. SIMULATIONS

4.1. Simulated Thermal SZ Cluster Maps

We used two sets of simulations: one uses β-model clusters
(defined by ΔT0 and θc) to investigate cluster parameter recovery
(Section 5), while the second uses cluster gas profiles inferred
from dark matter light cone simulations to calibrate YSZ–M
scaling relations (Section 6). The second set of simulations is
described in detail in Shaw et al. (2010) and will be referred to
as the S10 simulations for convenience. The thermal SZ (tSZ)
cluster profiles used in each set are discussed in more detail in
the relevant sections below.

4.2. Astrophysical Backgrounds

We use simulated maps of astrophysical backgrounds that
include contributions from the CMB and extragalactic point
sources. Simulated CMB anisotropies were generated based on
realizations of the gravitationally lensed WMAP 5 yr ΛCDM
CMB power spectrum.

The extragalactic point source population at 150 GHz consists
of two classes of objects: “dusty” sources dominated by thermal
dust emission from star formation bursts, and “radio” sources
dominated by synchrotron emission. We use the source count
model of Negrello et al. (2007) at 350 GHz, which is based on
physical modeling by Granato et al. (2004) for dusty sources.
Source counts at 150 GHz are estimated by assuming the flux
densities scale as Sν ∝ να , where α = 3 for high-redshift
protospheroidal galaxies, and α = 2 for late-type galaxies. For
radio sources we use the De Zotti et al. (2005) model at 150 GHz,
which is in agreement with observed radio source populations
at S < 100 mJy (Vieira et al. 2010; Marriage et al. 2011;
Planck Collaboration et al. 2011a; Marsden et al. 2013; Mocanu
et al. 2013).

Point source population realizations were generated by sam-
pling from Poisson distributions for each population in bins
with fluxes from 0.01 mJy to 1000 mJy. Sources were randomly
distributed across the map. Correlations between sources or
with galaxy clusters were not modeled, following V10. These
150 GHz simulated point source populations were used for the
scaling relation simulations of Section 6, but not for the multi-
band pipeline checks of Section 5.

4.3. Simulated Observations

Ideally, we could emulate the SPT transfer function for
the 95 GHz and 150 GHz frequency bands by producing

4
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Figure 1. From left to right; the top row shows (1) a 25′ × 25′ section of an SPT sky map centered on cluster SPT-CL J2341-5119 (ξ = 9.65, z = 0.9983); (2) a close
up of 7.′5 × 7.′5 centered on the cluster location, (3) the estimated posterior distribution of the cluster position, marginalizing over ΔT0; and θc, and (4) the estimated
posterior distribution of ΔT0 and θc, marginalizing over position. Likewise, the bottom row shows one-dimensional marginalized distributions of the parameters. (5)
Declination, (6) right ascension, (7) ΔT0, and (8) θc. Vertical red lines in the bottom row indicate the matched filter parameter values for this cluster.

synthetic timestreams from simulated maps convolved with
the SPT beam, observing them using the SPT scan strategy,
and convolving the resulting timestreams with detector time
constants. We would then produce maps by processing the
simulated timestreams as in Section 2.1. However, this full
emulation of the SPT transfer function is computationally
intensive. To simplify this process and produce a large number of
sky maps, we model the transfer function as a two-dimensional
Fourier filter. V10 show that this approximation introduces
systematic errors in the recovered cluster ξ values of less
than 1%.

The instrumental and atmospheric noise in the SPT maps
were estimated by creating difference maps, which were con-
structed to have no astrophysical signal. Each field con-
sists of several hundred individual observations. We ran-
domly multiply half of the observations by −1, and then
coadd the full set of observations. We repeat this several
hundred times, each time calculating the two-dimensional
spatial power spectrum, which we average to estimate the in-
strumental and atmospheric noise in the coadded SPT map.
This averaged noise spectrum is used to generate random
map realizations of the SPT noise, which are added to the
simulated maps.

5. PIPELINE CHECKS

5.1. Cluster Model

We use mock observations of clusters in simulated sky maps
to evaluate the accuracy and bias of the recovered cluster
parameters. We begin with simulated maps that contain the
astrophysical signals described in Section 4.2. To this we add
mock clusters with an assumed β-model profile, with known
SZ decrements and radii, at specified locations. Simulated SPT
observations are then performed on these maps. Three different

cluster core radii (0.′25, 0.′5, and 1.′0) are used, combined
with eight values for peak Comptonization between 175 μK
and 2 mK, spanning the range of values typically found for
SPT-detected clusters with ξ > 5. These cluster profiles are
convolved with the SPT transfer function, and then placed in
the simulated maps. For each combination of β-model cluster
parameters, we create five pairs of simulated maps (150 GHz and
95 GHz) by placing 100 copies of the cluster at random locations
in five unique noise maps. This results in 500 noise realizations
for each combination of cluster parameters, or 12,000 clusters
total. As usual, ∼2◦ × 2◦ cutouts are made around each cluster,
and the MCMC is run on each patch.

In Sections 5.2 and 5.3, we test parameter recovery in the
single-band (150 GHz) and multiband (95 GHz and 150 GHz)
cases. The 220 GHz data contain no SZ information, but could
in principle be used to remove primordial CMB anisotropy.
However, the noise level of the 220 GHz maps, dominated
by residual atmospheric emission, is larger than the intrinsic
astrophysical confusion caused by CMB anisotropy. Therefore,
we do not use the 220 GHz SPT measurements to fit the cluster
model.

5.2. Position, Radius, and Amplitude

We first examine the recovered values of the four baseline
cluster parameters: the R.A. and decl. position, ΔT0, and θc.
The cluster positions are measured accurately, and we find no
bias in either position parameter, for both the single-band and
multiband cases. For clusters near the SPT beam size (∼1′
FWHM at 150 GHz) and selection threshold, the amplitude
and shape of the cluster will not be well constrained, however
the integrated signal within the SPT beam will be. A similar
degeneracy has previously been noted in other cluster analyses
(e.g., Benson et al. 2004; Planck Collaboration et al. 2011a,
2013a). In Figure 2, we show the recovered ΔT0 and θc
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Figure 2. SPT-CL J0533-5005 (ξ = 5.59, z = 0.8810), an SPT observed cluster with core radius θc < 1′. The left figure shows the estimated posterior distribution
of ΔT0 and θc, and the right figure shows the posterior distribution of YSZ calculated from the ΔT0 + θc distribution. For clusters near the SPT beam size (∼1′ FWHM
at 150 GHz) and selection threshold, the position is well constrained; however, the radius and amplitude are degenerate. Despite this, the integrated Comptonization,
YSZ, is well constrained. The overplotted curves in the left figure are YSZ iso-curves. The dashed line is the recovered YSZ for this cluster, while the dot-dashed lines
are ±50% YSZ.

distributions for a typical cluster in the SPT catalog (SPT-CL
J0533-5005, ξ = 5.59, z = 0.8810, θc < 1.′0). While the
position is well-constrained, there is a significant degeneracy
between the constraints on θc and ΔT0.

5.3. Integrated Comptonization

In general, the cylindrically projected integrated Comptoniza-
tion of a cluster is calculated by integrating the source function,
S(θ ), out to a given angular aperture θint:

YSZ = 2π

∫ θint

0
S(θ )θ dθ. (7)

For much of this work, θint will be a constant angular aperture.
We distinguish this estimator of YSZ from others by referring to
it as Y θ

SZ hereafter.
In the case of a two-dimensional projection of a spherical

β-model with β = 1 (Equation (2)), this integral can be
solved analytically:

Y θ
SZ = πΔT0θ

2
c

fxTCMB
log

[
1 +

(
θint

θc

)2
]

, (8)

where θc is the core radius in arcminutes, ΔT0 is the central
temperature decrement in units of KCMB, the equivalent CMB
temperature fluctuation required to produce the observed power
fluctuation, TCMB is the CMB blackbody temperature of 2.725 K,
and fx is given by

fx =
(

x
ex + 1

ex − 1
− 4

)
[1 + δ(x, Te)] , (9)

where x = hν/kTCMB, and δ(x, Te) accounts for relativistic
corrections to the SZ spectrum (Itoh et al. 1998; Nozawa et al.
2000). For the details of the calculation of fx for the SPT,
see A11.

We use this equation to calculate Y θ
SZ for every step in the

MCMC chain, and thus to produce a marginalized distribution
of Y θ

SZ values. In these simulations, integration to a radius ap-
proximately corresponding to the 150 GHz SPT beam diameter

(roughly the range 0.′75 < θint < 1.′25) produces Y θ
SZ distribu-

tions that are well constrained despite the degeneracy of θc and
ΔT0, with minimal error in recovered cluster Y θ

SZ values. Inte-
gration in this section is performed to θint = 0.′75, though other
values are explored for scaling relations in Section 6 below.
Note that we calculate Y θ

SZ from the marginalized distribution of
the source model parameters, not by integrating the flux on the
sky. It is also important to note that the likelihood is calculated
(in frequency space) over the full 2◦ × 2◦ patch of sky, θint is
simply the radius out to which the best fit β-model is integrated.

If the redshift of a cluster is known, it is also possible to
integrate YSZ within an angular aperture corresponding to a
specific physical radius, ρ:

θint = ρ D−1
A (z),

where DA(z) is the angular diameter distance to the redshift z. In
Sections 6 and 7, we examine YSZ integrated within a constant
physical radius, ρ, for all clusters in a sample. We will refer to
this quantity as Y

ρ

SZ.
In Figure 2, we show a typical SPT cluster in which Y θ

SZ is
well constrained despite the degeneracy between ΔT0 and θc.
Figure 3 shows YSZ and θc parameter distributions for 500 runs
of a typical simulated cluster with a radius smaller than the SPT
150 GHz beam size (θc = 0.′5, ΔT0 = 300 μK, ξ = 6.2). The
68% confidence interval for YSZ in these simulations is typically
∼14% of the central value. The cutoff at low θc is due to the
small, but non-zero, minimum priors on θc and ΔT0, this is not
a feature of the data likelihood. Despite only having an upper
bound on θc, YSZ is still well constrained. We find that YSZ is well
constrained and consistent regardless of whether the analysis is
single-band (150 GHz) or multiband (95 GHz and 150 GHz).

In Figure 4, we show the ratio of the recovered to input YSZ
as a function of core radius and cluster detection significance,
ξ , for 24 different combinations of θc and ΔT0, each with 500
independent noise realizations. Despite a slight apparent bias
for some θc values, we find no significant bias as a function of
the detection significance, and recover YSZ accurately to <2%
in all cases. On average recovered Y θ

SZ values are 0.27% lower
than input values, which is below the 0.49% error in the mean.
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Figure 3. The marginalized constraints on YSZ and θc from 500 noise realizations
of a typical simulated cluster with radius smaller than the SPT 150 GHz
beam (θc = 0.′5, ΔT0 = 300 μK, ξ = 6.2). The contours show the 68%
and 95% confidence regions. The cross marks the input θc and YSZ values

(Y 0.′75
SZ = 1.20×10−4 arcmin2). Despite only having an upper bound on θc, YSZ

is well constrained.

6. SCALING RELATIONS FROM SIMULATED CLUSTERS

In this section, we compare YSZ and ζ as SZ observables for
the SPT-SZ survey, focusing on their scatter with cluster mass.
To do this, we use maps derived from the S10 simulations, which
are intended to provide more realistic cluster profiles than the
β-model clusters used in Section 5.

The steepness of the galaxy cluster mass function will
introduce bias in a scaling relation fitted in the presence of noise
or intrinsic scatter in the population. Therefore, in Section 6.3
we fit Y θ

SZ–M scaling relations for clusters in simulated tSZ-
only maps, to minimize the selection bias. These maps contain
none of the celestial or instrumental noise spectra described
in Section 4 (CMB, point sources, atmospheric noise, and
instrumental noise), only tSZ signal.

In Section 6.4, we fit for a Y θ
SZ–M scaling relation using

clusters in S10 simulation maps containing the full astrophysical
and instrumental noise terms to evaluate the performance of the
MCMC in the presence of noise. The main reason to consider
intrinsic and measurement error is that both are important in
terms of the cosmological analysis. For example, both intrinsic
and measurement uncertainty affect the selection of the cluster
sample: a larger measurement uncertainty would cause lower
mass clusters to scatter into the cluster sample, decreasing the
purity. Therefore we consider the total scatter, which includes
both sources, to evaluate the performance of our method.

6.1. Simulated Clusters

The S10 simulations are based on a dark matter lightcone
simulation, with cosmological parameters consistent with the
WMAP 5 yr data and large-scale structure measurements (Dunk-
ley et al. 2009). To include baryons in the simulations, Shaw
et al. (2010) apply the semi-analytic gas model of Bode et al.
(2007), specifically their fiducial model, to the dark matter ha-
los identified in the output of the lightcone simulation. From the
simulations, we construct two-dimensional SZ intensity maps
at 150 GHz of clusters with virial mass (Mvir) greater than
5×1013M� h−1 by summing the electron pressure density along
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Figure 4. Average ratios of recovered to input YSZ for 24 β-model source
profiles, generated from different combinations of θc and ΔT0. Each point is
the mean recovered YSZ for a simulated cluster with 500 independent noise
realizations. The errorbars represent the error on the mean of these recovered
YSZ values.

the line of sight. The resulting maps are projections of all the
clusters in the lightcone simulation onto a simulated sky. Forty
10◦ × 10◦ maps were produced by this procedure, together with
catalogs of cluster masses, redshifts, and positions.

6.2. YSZ–M Scaling Relation Fitting Methods

We assume a scaling between YSZ and M of the form

YSZ = ASZ

(
Mvir

3 × 1014 M� h−1

)BSZ
(

E(z)

E(0.6)

)CSZ

, (10)

parameterized by the normalization ASZ, the mass scaling BSZ,
and the redshift evolution CSZ, and where E(z) ≡ H (z)/H0.
For self-similar evolution, BSZ = 5/3 and CSZ = 2/3 (e.g.,
Kravtsov et al. 2006). The pivot points of the scaling relation
were defined to match the approximate mean mass and redshift
for the SPT cluster sample.

We fit the Y θ
SZ–Mvir scaling relation by minimizing the

fractional scatter, S, in Y θ
SZ, defined as

S =
√√√√ 1

N

N∑
n=1

(
Y recov

n − Y
input
n

Y
input
n

)2

, (11)

where Y recov
n is the integrated Comptonization recovered by

the MCMC for the nth cluster, Y
input
n is the corresponding

Comptonization calculated from the input catalog mass and
the assumed scaling relation (Equation (10)), and we sum
over N simulated clusters. The scaling relation parameters ASZ,
BSZ, and CSZ are varied using a grid search method, and the
scatter S is calculated at each point in the parameter space. The
combination of parameters that minimizes S is taken to be the
best-fit set of parameters. This definition of fractional scatter
is used to fit Y θ

SZ–Mvir scaling relations in Section 6.3 and in
Section 6.4.

6.3. Results for Simulated Thermal-SZ-only Maps

We run both the MCMC and MF methods on tSZ-only maps
from the S10 dark matter lightcone simulations described in
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Figure 5. Fractional scatter vs. integration radius for tSZ-only and full noise simulations. Left panel: fractional scatter vs. integration angle in arcminutes. Right panel:
fractional scatter vs. integration radius in megaparsecs. The scatter in the tSZ-only simulations is essentially the intrinsic scatter in the population since only tSZ
fluctuations are present. Adding the other noise terms shifts the scatter up, and the minimum down in angular or physical scale because those noise terms dominate at
large angles. The optimal angular apertures correspond roughly to the optimal physical radii at the median redshift of the cluster sample, z = 0.6.

Section 6.1. These simulated tSZ maps contain only tSZ signal,
and no CMB, point sources, atmospheric noise, or instrumental
noise.

We measure the SZ signal in these maps using the methods
described in Sections 5.1 and 5.3 for clusters with Mvir >
4 × 1014M� h−1, and redshift 0.3 < z < 1.2. We then use
the cluster virial masses and Equation (10) to find the best-fit
scaling relation parameters by minimizing the fractional scatter
in Equation (11). We do this for both the YSZ–Mvir and ζ–Mvir
scaling relations, which allows for direct comparison of these
analysis methods. The redshift range corresponds to the redshift
range of observed SPT clusters, and the mass criteria correspond
to the mass of clusters at the lower SPT significance limit of the
Reichardt et al. (2013) cluster catalog (ξ = 4.5), at the survey
median redshift of z = 0.6.

As a baseline for the scatter in the measured YSZ–Mvir scaling
relations for these simulations, we examine the intrinsic scatter
between Mvir and Yvir, the contribution to the SZ flux from
within the spherical virial radius for each cluster. We fit the
Yvir–Mvir scaling relation parameters using the same method as
for measured YSZ values, and find the fractional scatter in the
best-fit scaling relation to be 16%.

We fit Y θ
SZ–Mvir relations for a range of angular apertures, θ ,

with Y θ
SZ defined in Equation (8). Figure 5 shows the fractional

scatter as a function of the integration angle for angles ranging
from 0.′25 to 3.′0. We find that the fractional scatter in Y θ

SZ
does not vary significantly with angular aperture, with a broad

minimum in the scatter at ∼0.′75–1.′0 (Y 0.′75
SZ ). The exact location

of the minimum scatter shifts between the tSZ-only maps and
the full-noise S10 maps, but is near 0.′75 in both cases (see
Figure 5). For simplicity, and for comparison between the
different simulated maps and observed clusters, we use the

Y 0.′75
SZ –Mvir scaling relation as our nominal scaling relation. The

Y 0.′75
SZ –Mvir scaling relation has 23% ± 2% fractional scatter in

YSZ, which is slightly less than the 27% ± 2% scatter in the
ζ–Mvir scaling relation for these clusters. The scatter in the tSZ-
only simulations is primarily due to the intrinsic scatter in the
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Figure 6. Y 0.′75
SZ vs. Mvir for 1187 mass-selected clusters in the S10 simulated

tSZ-only maps, where we only include clusters with Mvir > 4 × 1014M� h−1

in the redshift range 0.3 < z < 1.2. Fractional scatter in YSZ is 23% ± 2%.

The solid line is the best-fit Y 0.′75
SZ –Mvir scaling relation found for this cluster

sample.

mass to SZ observable scaling, scatter from the tSZ background
is sub-dominant. (Note that the scatter here is fractional scatter,
whereas previous SPT analyses in V10 and B13 quoted a log-
normal scatter, at a level consistent with the values found in
this work.)

Figure 6 shows Y 0.′75
SZ versus Mvir for the 1187 clusters

examined from this simulation. The solid line is the best-fit
Y 0.′75

SZ –Mvir scaling relation found for these clusters. The scaling

relation parameters (ASZ, BSZ, CSZ, and S) for the Y 0.′75
SZ scaling

relation are given in Table 1.
We also calculate YSZ within a constant physical radius, ρ,

(Yρ

SZ) for all the clusters in the catalog. The angular size of a
cluster is a function of its redshift; therefore, it is interesting
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Table 1
YSZ–M Scaling Relation Parameters

Data Set MCMC MF

Integration ASZ BSZ CSZ Scatter Scatter
Radius (×10−4)

tSZ-only S10 sims 0.′75 1.44 ± 0.11 1.20 ± 0.11 1.63 ± 0.24 23% ± 2% 27% ± 2%
0.3 Mpc 1.53 ± 0.16 1.26 ± 0.17 1.13 ± 0.13 28% ± 2%

Full-noise S10 sims 0.′75 1.37 ± 0.10 1.04 ± 0.11 1.02 ± 0.20 27% ± 1% 27% ± 2%
0.3 Mpc 1.49 ± 0.18 1.12 ± 0.22 0.53 ± 0.25 34% ± 2%

B13 SPT observed clusters 0.′75 1.85 ± 0.36 1.77 ± 0.35 0.96 ± 0.50 21% ± 11%a 21% ± 9%a

0.3 Mpc 2.09 ± 0.35 1.43 ± 0.20 0.35 ± 0.28 26% ± 9%a

Notes. The tSZ-only maps contain only thermal SZ signal, while the full-noise S10 maps include tSZ, CMB, point sources, atmospheric noise,
and realistic SPT instrumental noise. The values of scatter reported for the simulations are fractional scatter, while the values reported for the
B13 clusters are intrinsic log-normal scatter. In the S10 simulations virial masses are used to fit the scaling relations, while for the B13 cluster
sample the masses are M500. For comparison with the scatter in each YSZ–M scaling relation we list the scatter in the corresponding MF derived
ζ–M scaling relation for the same data set.
a These values are intrinsic log-normal scatter.

to measure YSZ within a fixed physical radius. In Figure 5, we
plot the best-fit scatter for a range of integration radii between
0.1 and 1.0 Mpc. We find that the minimum fractional scatter in
YSZ within a fixed physical radius is higher than the minimum
fractional scatter within a fixed angular aperture. For Y

ρ

SZ, the
scatter is increased by the varying angular size of the chosen
physical radius at different redshifts. The optimal physical radius
corresponds roughly to the optimal angular aperture, at the
median redshift of the cluster sample, z = 0.6. Clusters farther
from the median redshift will have integration angles farther
from the optimal angle, resulting in relatively higher scatter in
Y

ρ

SZ than in Y θ
SZ.

As can be seen in Figure 5, we find a broad minimum in
scatter at ∼0.3–0.4 Mpc, with a minimum scatter of 27%±3%.
This is comparable to the ζ–Mvir relation for these clusters,

and slightly higher than the scatter in the Y 0.′75
SZ –Mvir scaling

relation. The scaling relation parameters for YSZ within 0.3 Mpc
(Y 0.3 Mpc

SZ ; 0.3 Mpc being equivalent to 0.′75 at z = 0.6) are given
in Table 1.

6.4. Results for Full-noise Simulated Maps

We also fit Y θ
SZ–Mvir scaling relations for the simulated

clusters in the presence of other astrophysical and instrumental
noise components (see Sections 4.2 and 4.3). The same cluster
sample (Mvir > 4 × 1014M� h−1, and 0.3 < z < 1.2) was
analyzed in this set of simulations as in the simulated tSZ-
only maps. We will refer to this set of simulations as the full-
noise S10 simulated maps. These simulations are important
for understanding the cluster sample selection, which will be
affected by the total noise.

The scaling relation fitting for the clusters from this set of
simulations was performed as in Section 6.3. As in Section 6.3,
the scatter is a weak function of angular aperture, with the
minimum shifted to ∼0.′5–0.′75. Figure 5 shows the fractional
scatter as a function of angular aperture of integration.

For the Y 0.′75
SZ –Mvir scaling relation we find a fractional scatter

in YSZ of 27%±1%. Since the scatter here includes both intrinsic
scatter and the measurement uncertainty, we expect it to be larger

than the scatter in Y 0.′75
SZ in Section 6.3. This level of scatter is

comparable to the 27% ± 2% scatter in ζ found in the ζ–Mvir
scaling relation for these simulations.
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Figure 7. Y 0.′75
SZ vs. Mvir for 1187 mass-selected clusters in the full-noise

S10 simulations, which include CMB, point sources, astrophysical noise,
and realistic SPT instrument noise. We include only clusters with Mvir >

4 × 1014M� h−1 in the redshift range 0.3 < z < 1.2. Fractional scatter in

YSZ is 27%±1%. The solid line is the best-fit Y 0.′75
SZ –Mvir scaling relation found

for this cluster sample.

Figure 7 shows Y 0.′75
SZ versus Mvir for the 1187 clusters

analyzed from the full-noise S10 simulated maps. The solid line

is the best-fit Y 0.′75
SZ –Mvir scaling relation found for this cluster

sample. The mass scaling relation parameters for Y 0.′75
SZ in this

set of simulations are given in Table 1. It will be noted that some
of the scaling relation parameters here differ significantly from
those in the tSZ-only simulations in Section 6.3. This is expected
because intrinsic and measurement scatter are not distinguished
here. The full cosmoMC treatment of the data in Section 7 deals
with these issues. The scaling relation values from that section
are the most accurate. The results in this section are meant to be
illustrative only.

Using these simulations we also calculate Y
ρ

SZ for a range of
ρ values, as in Section 6.3, and fit Y

ρ

SZ–Mvir scaling relations
for each ρ. Figure 5 shows the fractional scatter as a function
of the integration radius for a range of physical radii. We find
a broad minimum in scatter at ∼0.2–0.3 Mpc, with a minimum
scatter of 33%±2%. The optimal integration radius shifts down
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Table 2
SPT Cluster Fluxes and Masses

Object Name z Y 0.′75
SZ Y 500

SZ YX M500
SZ M500

X
(1014M� keV) (1014M� keV) (1014M� keV) (1014M� h−1

70 ) (1014M� h−1
70 )

SPT-CL J0509-5342 0.463 0.9 ± 0.1 3.6+1.4
−1.1 4.3 ± 0.8 4.32 ± 1.11 5.11 ± 0.75

SPT-CL J0511-5154a 0.74 1.2 ± 0.2 . . . . . . 2.79 ± 1.43 . . .

SPT-CL J0521-5104a 0.72 1.1 ± 0.2 . . . . . . 2.46 ± 1.32 . . .

SPT-CL J0528-5259 0.765 1.1 ± 0.2 1.8+0.8
−0.5 1.6 ± 0.5 2.21 ± 1.14 2.54 ± 0.54

SPT-CL J0533-5005 0.881 1.4 ± 0.2 2.1+0.6
−0.4 1.0 ± 0.4 2.75 ± 1.39 1.86 ± 0.43

SPT-CL J0539-5744a 0.77 1.0 ± 0.2 . . . . . . 1.93 ± 0.93 . . .

SPT-CL J0546-5345 1.067 2.0 ± 0.3 5.0+1.1
−1.0 4.8 ± 0.8 4.18 ± 0.89 4.79 ± 0.86

SPT-CL J0551-5709 0.423 0.7 ± 0.1 3.4+1.7
−1.2 1.9 ± 0.4 3.57 ± 1.43 3.32 ± 0.46

SPT-CL J0559-5249 0.611 1.6 ± 0.2 9.0+2.1
−1.8 6.4 ± 0.8 5.46 ± 1.04 6.29 ± 0.86

SPT-CL J2301-5546a 0.748 1.0 ± 0.2 . . . . . . 1.89 ± 0.89 . . .

SPT-CL J2331-5051 0.571 1.4 ± 0.2 2.3+0.4
−0.3 3.5 ± 0.6 5.29 ± 1.00 4.50 ± 0.64

SPT-CL J2332-5358 0.403 0.9+0.2
−0.1 8.7+3.7

−3.1 6.1 ± 0.8 5.25 ± 1.04 6.39 ± 0.75

SPT-CL J2337-5942 0.781 3.1 ± 0.2 7.8+1.3
−1.4 8.5 ± 1.7 6.67 ± 1.29 6.82 ± 1.11

SPT-CL J2341-5119 0.998 2.3 ± 0.2 6.8 ± 1.1 4.7 ± 1.0 4.86 ± 0.93 4.64 ± 0.86
SPT-CL J2342-5411 0.074 1.5 ± 0.3 2.6 ± 0.6 1.4 ± 0.3 2.46 ± 1.32 2.36 ± 0.43
SPT-CL J2355-5056 0.320 0.4 ± 0.1 2.1+0.9

−0.7 2.2 ± 0.4 3.11 ± 1.61 3.75 ± 0.46

SPT-CL J2359-5009 0.774 1.4 ± 0.2 4.5+1.3
−1.1 1.8 ± 0.4 3.61 ± 1.11 2.86 ± 0.50

SPT-CL J0000-5748 0.701 1.1 ± 0.2 2.1+1.1
−0.6 4.2 ± 1.6 2.57 ± 1.36 4.14 ± 0.93

Notes. Cluster redshifts and X-ray fluxes are quoted from Benson et al. (2013). Y 0.′75
SZ is the integrated Comptonization within 0.′75, calculated with our YSZ

MCMC method. Y 500
SZ is the integrated Comptonization within r500. Y 0.′75

SZ and Y 500
SZ values are given in M� keV for comparison to YX and the YSZ values from

A11. Y 0.′75
SZ and Y 500

SZ are cylindrically projected. M500
SZ and M500

X are estimates of M500 calculated from the same CosmoMC chains, using only the Y 0.′75
SZ and

YX data, respectively.
a These clusters have only SZ data, and no X-ray observations.

here relative to the simulated tSZ-only maps because of the
scale dependence of the noise sources added in the full-noise
S10 maps, which dominate the scatter in these simulations. In
particular, the noise induced by the simulated CMB increases
with angular scale, leading to a preference for smaller integration
radii. The scatter in Y

ρ

SZ for these simulations is slightly higher

than the scatter in both the ζ and the Y 0.′75
SZ mass scaling relations.

The scaling relation parameters for the nominal Y
0.3 Mpc
SZ mass

scaling relation are given in Table 1. The optimal physical radius
again corresponds roughly to the optimal angular aperture, at
the median redshift of the cluster sample.

7. YSZ FOR SPT OBSERVED CLUSTERS

7.1. YSZ–M500 Scaling Relation Fitting Methods

In this section, we perform Y θ
SZ–M scaling relation fitting for a

sample of SPT observed clusters, using the same scaling relation
as in the simulations (Equation (10)) and the X-ray determined
cluster masses. We use only 150 GHz data in this section to be
directly comparable to the results in Benson et al. (2013), which
does not include 95 GHz data. In this section, we define cluster
mass as M500, the mass inside a spherical radius r500, within
which the average density is 500 times the critical density of
the universe at the cluster’s redshift. To fit this scaling relation
with clusters selected in the SPT-SZ survey, we have to account
for the shape of the cluster mass function and the SPT survey
selection, which was based on the SPT significance, ξ . This
is similar to the procedure followed in previous SPT analyses
(Reichardt et al. 2013; B13; V10), with the added complication
that in this work we must express the SPT selection function in
YSZ instead of ξ .

The (unnormalized) probability of a mass M given an inte-
grated Comptonization YSZ is given by

P(M|YSZ) = P (YSZ|M)P (M),

where P (YSZ|M) is the Gaussian probability distribution with
which we have been working previously, and P (M) is the mass
function. The number of clusters is a steep function of cluster
mass, which (combined with the measurement uncertainty in
YSZ) results in relatively more low-mass than high-mass clusters
at a given YSZ, an effect commonly referred to as Eddington bias.

For our cluster sample we use the 18 clusters from B13, 14
of which have X-ray derived masses (see Section 2.3), and all
of which have ξ > 5. For this analysis we use only the 150 GHz
data, the SPT band with the highest SZ sensitivity. For a list
of cluster names, ξ values, and redshifts for this sample, see
Table 2.

To fit for scaling relations, we use a method similar to the
one described in B13, which we modify to account for the
cluster selection based on YSZ instead of ζ . In B13, we used
a version of the CosmoMC (Lewis & Bridle 2002) analysis
package, modified to include the cluster abundance likelihood
in the CosmoMC likelihood calculation. All fitting is performed
assuming a standard flat ΛCDM cosmology, parameterized with
the standard six-parameters (Ωch

2, Ωbh
2, Θs , ns, Δ2

R , and τ ), and
using the WMAP 7 yr data set. The cosmological parameters
are held constant throughout, we marginalize over only the
cluster scaling relation parameters. At each step in the chain, a
point in the joint cosmological and scaling relation parameter
space is selected. The Code for Anisotropies in the Microwave
Background (Lewis et al. 2000) is used to compute the matter
power spectrum at 20 redshift bins between 0 < z < 2.5,
spaced logarithmically in 1 + z. The matter power spectrum,
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cosmological parameters, and YSZ–M500 and YX–M500 scaling
relation parameters are then input to the cluster likelihood
function. YX is defined as YX ≡ MgTX, where Mg is the
cluster gas mass within r500, and TX is the core-excised X-
ray spectroscopic temperature in an annulus between 0.15 and
1.0 × r500.

To calculate the cluster likelihood, first the matter power
spectrum and cosmological parameters are used to calculate the
cluster mass function, based on Tinker et al. (2008). Next, the
mass function is converted to the predicted cluster abundance
in our observable space, N (YSZ, YX, z). This conversion is
accomplished using our standard Y θ

SZ–M500 scaling relation
(Equation (10)), with flat unbounded priors on all parameters,
and the YX–M500 scaling relation from B13:

M500
X

1014M� h−1
= (

AXh3/2
) (

YX

3 × 1014M� keV

)BX

E(z)CX,

(12)
parameterized by the normalization factor AX, the mass scaling
BX, the redshift evolution CX, and the log-normal intrinsic
scatter DX. This scaling relation is based on the relation used in
Vikhlinin et al. (2009a).

The priors on the YX–M500 scaling relation parameters were
AX = 5.77 ± 0.56, BX = 0.57 ± 0.03, CX = −0.40 ± 0.20,
and DX = 0.12±0.08. All these priors are Gaussian. The slope
and normalization priors were motivated by Vikhlinin et al.
(2009a), and the priors on the redshift evolution and scatter
were motivated by the range observed in several different sets of
simulations that included varying astrophysics (Kravtsov et al.
2006; Fabjan et al. 2011). These priors are identical to those
used in Benson et al. (2013), and a more detailed description
motivating them is given there.

The predicted cluster density as a function of YSZ, YX, and z
can be written as follows:

dN(YSZ, YX, z| p)

dYSZ dYX dz

=
∫

P (YSZ, YX|M, z, p) P (M, z| p) Φ(YSZ) dM, (13)

where p is the set of cosmological and scaling relation parame-
ters, and Φ(YSZ) is the selection function in YSZ. This predicted
cluster density function differs from B13 in that the selection
function must be transformed from a Heaviside step function at
ξ = 5 into a function of YSZ. We assume that YSZ and ξ can be
related with a log-normal distributed scaling relation, and that
the selection in B13 can therefore be well approximated by an
error-function in YSZ. We then define our selection function as

Φ(YSZ) = 1

2
erf

(
YSZ − Y

φ

SZ(z)√
2 Y

φ

SZ(z) D

)
+

1

2
, (14)

where the selection threshold, Yφ

SZ(z) is defined as the YSZ value
corresponding to ξ = 5 at the redshift z. We estimate Y

φ

SZ(z) by
fitting a YSZ–ξ scaling relation of the form

YSZ = AξBE(z)C, (15)

using the catalog of SPT observed clusters given in R13. The
width of the selection error-function is given by the scatter in
the YSZ–ξ scaling relation, D.

We evaluate Equation (13) on a 200 × 200 × 30 grid in
(YSZ, YX, z) space, and convolve with a Gaussian error term

in YSZ to account for the measurement noise. The width of the
Gaussian is given by the uncertainty in YSZ as a function of
YSZ, δYSZ(YSZ), as determined by the cluster parameterization
MCMC (see Section 5.3).

The likelihood function of the observed cluster sample is
defined by the Poisson probability:

log (L( p)) =
∑

i

log

(
dN(YSZi , YXi , zi, | p)

dYSZ dYX dz

)
−

∫
dN(YSZ, YX, z, | p)

dYSZ dYX dz
dYSZ dYX dz, (16)

where the summation is over the SPT clusters in our catalog.
Note also that this is the unnormalized log-likelihood.

There is a complication, in that YX is dependent on the
cosmological parameters. YX ≡ Mg TX, where Mg is the gas
mass within r500, and TX is the core-excised X-ray temperature
in an annulus between 0.15 × r500 and 1.0 × r500. To maintain
consistency with the cosmological parameters, we recalculate
YX for each cluster at every step in CosmoMC, given the current
YX–M500 relation and r500. In the likelihood, we add

∑
i log(YXi)

to the right hand side of Equation (16) to account for the
recalculation of YX. For a detailed explanation of this correction
term, see Appendix B of B13.

To account for measurement error in YX and z for each
cluster, we marginalize over the relevant parameter, weighted
by a Gaussian likelihood determined by its uncertainty. For
the few clusters without observed YX data, we instead weight
the marginalized parameter by a uniform distribution over the
allowed parameter range.

The likelihood of this set of cosmological and scaling rela-
tion parameters is then used by CosmoMC in the acceptance/
rejection computation. Only the Y θ

SZ–M500 scaling relation pa-
rameters are of interest to us in this analysis. The cosmological
and YX–M500 scaling relation parameters were used as a cross-
check to verify that the results were in agreement with the analy-
sis performed on these clusters in B13, but will not be presented
here. All parameters differed from the values presented in B13
by 1σ .

7.2. YSZ–M500 Scaling Relation Results

We use CosmoMC to fit Y θ
SZ–M500 scaling relations for a

range of angular apertures, and find a broad minimum in scatter
in the range 0.′5–0.′75, with a minimum intrinsic log-normal
scatter of 21% ± 11%. For these scaling relation parameters we
apply flat, unbounded priors. The scatter in the ζ–M500 scaling
relation for these clusters is comparable, at 21% ± 9%. The

scaling relation parameters for the Y 0.′75
SZ –M500 scaling relation

are given in Table 1.
We also fit mass scaling relations for Y

ρ

SZ integrated within a
range of physical radii, ρ, from 0.1 Mpc to 0.5 Mpc. We find
a broad minimum in scatter in the range 0.2–0.3 Mpc, with
a minimum intrinsic log-normal scatter of 23% ± 5%. This is

comparable to the scatter in both the ζ and Y 0.′75
SZ mass scaling

relations. The parameters for the nominal Y
0.3 Mpc
SZ mass scaling

relation (0.3 Mpc corresponds to 0.′75 at the survey median
redshift of z = 0.6) are listed in Table 1.

7.3. Cluster Masses

To calculate the masses of the clusters, the Y 0.′75
SZ CosmoMC

chains were used. The probability density function for the mass

11



The Astrophysical Journal, 799:137 (14pp), 2015 February 1 Saliwanchik et al.

1 2 3 4 5 6 7 8 9

x 10
14

1

2

3

4

5

6

7

8

9
x 10

14

  M
X
500   [M

sun
 h

70
−1]

  M
S

Z
50

0    
[M

su
n h

70−
1 ]

Figure 8. Masses computed from Y 0.′75
SZ for the 14 SPT observed clusters in

Table 2 with follow-up X-ray observations vs. corresponding M500
X values. For

reference we overplot the relation M500
SZ = M500

X .

was computed on an evenly spaced mass grid for each step in
the CosmoMC chains. These probability density functions were
then summed to obtain a mass estimate fully marginalized over
all scaling relation and cosmological parameters. This was done

for CosmoMC chains containing only Y 0.′75
SZ data, and no YX data,

and vice versa, to obtain mass estimates based on only the SZ
and X-ray data, respectively. The cluster M500 masses derived

from the Y 0.′75
SZ and YX data (M500

SZ and M500
X , respectively) can

be found in Table 2, along with the corresponding Y 0.′75
SZ and YX

values. Y 0.′75
SZ values are given in M� keV for ease of comparison

with YX.
Figure 8 shows the cluster masses calculated from the

YSZ–M500 scaling relation versus the masses calculated from
the YX–M500 scaling relation for the B13 cluster sample. The
solid line is the reference line M500

SZ = M500
X .

7.4. YSZ(r500)

The self-similar model of cluster formation assumes that
clusters scale in well-defined ways based on their mass, typically
defined within physical radii proportional to the critical density
of the universe at the cluster’s redshift (e.g., Kravtsov & Borgani
2012; Kaiser 1984). For this reason, studies of the scaling
relations of clusters typically measure physical observables
defined by this physical radius, usually r500. In this section
we will calculate YSZ(r500), denoted Y 500

SZ , for comparison with
other published parameters for the clusters in B13.

We investigated a method for estimating r500 from SZ data, as
a way to measure Y 500

SZ solely from SZ data. This method proved
to be problematic, however, because it required estimating M500
from a fixed angular aperture, and calculating r500 from that

estimate. This results in the scatter in the Y 0.′75
SZ –M500 scaling

relation feeding back into the calculation of Y 500
SZ . Instead, we

use the X-ray determined r500 in our calculations of Y 500
SZ .

In Table 2, we give the measured Y 500
SZ values for our cluster

sample. We note that, as defined in Equation (7), the MCMC
fits for a cylindrically projected measure of Y 500

SZ rather than the
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Figure 9. Y 500
SZ for the 14 SPT clusters from Table 2 with follow-up X-ray

observations, calculated by the MCMC method described here, and by the
MF method of Andersson et al. (2011). We also show the reference line
Y 500

SZ (MCMC) = Y 500
SZ (A11) (solid), the best-fit line (green dashed), and the

uncertainty in the fit defined as the range for which Δχ2 < 1 compared to
the best fit (red dot-dashed). The best-fit normalization is A = 0.98 ± 0.09,
demonstrating that the scaling relation is consistent with equality between
Y 500

SZ (MCMC) and Y 500
SZ (A11).

spherical de-projected value often used in other YSZ–M scaling
relation results (e.g., A11; Arnaud et al. 2010). Y 500

SZ values are
given in M� keV here, for comparison with A11.

A11 describe a template fitting method of estimating Y 500
SZ ,

which uses an SZ source template motivated from X-ray
measurements of each cluster. The profile is assumed to match
the product of the best-fit gas density profile to the X-ray
measurements of each cluster, and the universal temperature
profile of Vikhlinin et al. (2006). These profiles are multiplied
together to produce the radial pressure profile, and projected
onto the sky using a line-of-sight integral through the cluster.
A11 then construct a spatial filter using Equation (1), and this
X-ray derived source model. The X-ray determined cluster
position is used to place priors on the cluster location to
prevent maximization bias in the recovered Y 500

SZ values. Y 500
SZ

is calculated by integrating the source model over a solid angle
corresponding to r500, as in Equation (7).

In Figure 9, we plot the Y 500
SZ estimated by the MCMC method

against the Y 500
SZ estimated by the template fitting method in

A11. The best fit relation between the two is Y 500
SZ (MCMC) =

(0.98 ± 0.09) Y 500
SZ (A11), where the uncertainty is the range for

which Δχ2 < 1 (68% confidence limit) compared to the best-
fit. (For a treatment of the calculation of χ2 with uncertainty
in both variables, see, for example, Numerical Recipes in C++,
Section 15.3, Press et al. 2002.) We see that these two methods
of calculating Y 500

SZ are consistent, that is, the best-fit scaling
relation is consistent with equality between Y 500

SZ (MCMC) and
Y 500

SZ (A11). The scatter about the expected one-to-one line here
is dominated by differences in cluster model shape between the
two methods (X-ray derived SZ profile versus β-model).

We also verify that our Y 500
SZ values for these clusters are

in agreement with the YX values presented in B13, given the
expected YSZ–YX scaling. Figure 10 shows the Y 500

SZ values of
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Figure 10. Y 500
SZ (MCMC) vs. YX for the 14 SPT clusters from Table 2 with

follow-up X-ray observations. We also show the expected scaling relation from
Arnaud et al. (2010): Y 500

SZ = 1.08 YX (solid), the best-fit line (green dashed),
and the uncertainty in the fit defined as the range for which Δχ2 < 1 compared
to the best fit (red dot-dashed). The best-fit normalization is A = 1.17 ± 0.12,
consistent with the expected scaling between Y 500

SZ and YX.

our catalog of SPT observed clusters plotted against their YX
values from B13.

We can make a prediction of the relationship between YSZ
and YX based on the universal pressure profile from Arnaud
et al. (2010), based on X-ray measurements of a representative
sample of local, massive clusters. Even though YSZ and YX are
effectively measures of the cluster pressure, they depend on
the details of the shape of the profile differently, which can
still vary somewhat between clusters. Assuming the Arnaud
et al. (2010) pressure profile, we predict a relationship of
Y 500

SZ = 1.08 YX, where Y 500
SZ is integrated within a fixed

angular aperture corresponding to r500 (often called a cylindrical
projection). In Figure 10, we plot the YSZ estimated by the
MCMC method against the YX measured in B13. We fit a scaling
relation of the form Y 500

SZ = A YX, and find that the best-fit
normalization is A = 1.17 ± 0.12, consistent with the expected
normalization. This fit has a total χ2 of 19.46 for 14 degrees
of freedom, with a probability to exceed of P = 0.15. The
uncertainty in the normalization is the range for which Δχ2 < 1
compared to the best fit.

8. CONCLUSIONS

We describe and implement a method of constraining YSZ
generalizable to any cluster profile, and we show that this
method accurately recovers YSZ in simulations. We compare
YSZ to SPT cluster detection significance, focusing on scatter
with mass. Finally, we apply this method to clusters detected
in the SPT-SZ survey, and compare the estimated YSZ values to
YSZ estimated by a template fitting method, and to YX.

We apply our method to clusters in simulated tSZ-only
maps and measure Y θ

SZ, the integrated Comptonization within a
constant angular aperture. We find that YSZ is measured with the
lowest fractional scatter in an aperture comparable to the SPT
beam size (∼1′ FWHM at 150 GHz). We fit Y θ

SZ–Mvir scaling
relations for a range of angular apertures and find a minimum
fractional scatter of 23% ± 2% in YSZ, at a fixed mass, with
the minimum occurring for an angular aperture of 0.′75. We

also calculate YSZ within a range of physical radii, ρ, and find
a minimum scatter in Y

ρ

SZ at an integration radius of 0.3 Mpc,
which corresponds roughly to 0.′75 at the survey median redshift
(z = 0.6), with a fractional scatter of 28%±2% at a fixed mass.
Using the same simulated clusters, we also fit a ζ–Mvir relation,
where ζ is the MF SZ detection significance measured by SPT,
and find a fractional scatter of 27% ± 2%.

We also analyze clusters in simulations including tSZ, CMB,
point sources, atmospheric noise, and realistic SPT instrumental

noise. In these full-noise simulations, the Y 0.′75
SZ –Mvir scaling

relation has 27%±1% scatter, the Y
0.3 Mpc
SZ –Mvir scaling relation

has 34% ± 2% scatter, and ζ–Mvir scaling relation has 27% ±
2 % scatter. These simulations demonstrate that scatter in Y θ

SZ is
comparable to the scatter in ζ .

To investigate YSZ scaling relations in SPT observed clusters,
we fit Y θ

SZ–M500 and Y
ρ

SZ–M500 scaling relations to the sample of
18 SPT clusters described and examined in Benson et al. (2013).
Of these, 14 have X-ray observations and measured YX values,
which we use to estimate the cluster M500 masses. We fit the
scaling relations using a version of CosmoMC, similar to the
one described in Benson et al. (2013), modified to account for
the cluster selection based on YSZ instead of SPT significance.

For these clusters, the Y 0.′75
SZ –M500 scaling relation is found to

have 21% ± 11% intrinsic log-normal scatter in YSZ at a fixed
mass, the Y

0.3 Mpc
SZ –M500 scaling relation has 26% ± 9% scatter,

and the ζ–M500 relation has 21% ± 9% scatter.
We also calculate a cylindrically projected Y 500

SZ , the integrated
Comptonization within r500, for the clusters in the Benson et al.
(2013) sample. We compare the Y 500

SZ values recovered by our
Markov Chain Monte Carlo method to those calculated for the
same clusters by the template fitting method described in A11
and find the two methods to be consistent. We further compare
the MCMC derived Y 500

SZ values to the YX values for these clusters
from Benson et al. (2013) and find that they are consistent with
the expected scaling between YSZ and YX, based on the universal
pressure profile of Arnaud et al. (2010).

We have demonstrated, with both simulations with realistic
SPT noise and SPT observed clusters, that YSZ is most accurately
determined in an aperture comparable to the SPT beam size. We
have used this information in measuring YSZ for the catalog of
clusters observed with the SPT in the 2008 and 2009 seasons
(Reichardt et al. 2013). The SPT-SZ survey of 2500 deg2

was completed in 2011 November, and has detected ∼500
clusters with a median redshift of ∼0.5 and a median mass of
M500 ∼ 2.3 × 1014M� h−1. The methods and results presented
here will inform the measurement and use of YSZ for the clusters
detected in the full SPT-SZ survey.
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580, 610
Herranz, D., Sanz, J. L., Hobson, M. P., et al. 2002b, MNRAS, 336, 1057

High, F. W., Stalder, B., Song, J., et al. 2010, ApJ, 723, 1736
Hobson, M. P., & McLachlan, C. 2003, MNRAS, 338, 765
Holder, G. P., & Carlstrom, J. E. 2001, ApJ, 558, 515
Itoh, N., Kohyama, Y., & Nozawa, S. 1998, ApJ, 502, 7
Kaiser, N. 1984, ApJL, 284, L9
Kravtsov, A. V., & Borgani, S. 2012, ARA&A, 50, 353
Kravtsov, A. V., Vikhlinin, A., & Nagai, D. 2006, ApJ, 650, 128
LaRoque, S. J., Bonamente, M., Carlstrom, J. E., et al. 2006, ApJ, 652, 917
Lewis, A., & Bridle, S. 2002, PhRvD, 66, 103511
Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473
Lueker, M., Reichardt, C. L., Schaffer, K. K., et al. 2010, ApJ, 719, 1045
Mantz, A., Allen, S. W., Ebeling, H., Rapetti, D., & Drlica-Wagner, A.

2010, MNRAS, 406, 1773
Marriage, T. A., Baptiste Juin, J., Lin, Y.-T., et al. 2011, ApJ, 731, 100
Marrone, D. P., Smith, G. P., Okabe, N., et al. 2012, ApJ, 754, 119
Marrone, D. P., Smith, G. P., Richard, J., et al. 2009, ApJL, 701, L114
Marsden, D., Gralla, M., Marriage, T. A., et al. 2013, MNRAS, 439, 1556
Melin, J.-B., Bartlett, J. G., & Delabrouille, J. 2006, A&A, 459, 341
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & E. Teller

1953, JChPh, 21, 1087
Mocanu, L. M., Crawford, T. M., Vieira, J. D., et al. 2013, ApJ, 779, 61
Motl, P. M., Hallman, E. J., Burns, J. O., & Norman, M. L. 2005, ApJL,

623, L63
Muchovej, S., Mroczkowski, T., Carlstrom, J. E., et al. 2007, ApJ, 663, 708
Nagai, D., Kravtsov, A. V., & Vikhlinin, A. 2007, ApJ, 668, 1
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