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ABSTRACT

The Laser Interferometer Gravitational wave Observatory (LIGO) and Virgo advanced ground-based gravitational-
wave detectors will begin collecting science data in 2015. With first detections expected to follow, it is important
to quantify how well generic gravitational-wave transients can be localized on the sky. This is crucial for
correctly identifying electromagnetic counterparts as well as understanding gravitational-wave physics and source
populations. We present a study of sky localization capabilities for two search and parameter estimation algorithms:
coherent WaveBurst, a constrained likelihood algorithm operating in close to real-time, and LALInferenceBurst,
a Markov chain Monte Carlo parameter estimation algorithm developed to recover generic transient signals with
latency of a few hours. Furthermore, we focus on the first few years of the advanced detector era, when we expect
to only have two (2015) and later three (2016) operational detectors, all below design sensitivity. These detector
configurations can produce significantly different sky localizations, which we quantify in detail. We observe a clear
improvement in localization of the average detected signal when progressing from two-detector to three-detector
networks, as expected. Although localization depends on the waveform morphology, approximately 50% of detected
signals would be imaged after observing 100–200 deg2 in 2015 and 60–110 deg2 in 2016, although knowledge of
the waveform can reduce this to as little as 22 deg2. This is the first comprehensive study on sky localization
capabilities for generic transients of the early network of advanced LIGO and Virgo detectors, including the early
LIGO-only two-detector configuration.
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1. INTRODUCTION

Advanced ground-based gravitational-wave detectors, such
as the two advanced Laser Interferometer Gravitational
wave observatories (LIGO; Harry & the LIGO Scientific
Collaboration 2010) and advanced Virgo (Accadia et al. 2012),
will begin collecting data as early as 2015. Although the detec-
tors will not operate at design sensitivity initially, they will
operate with enough sensitivity to possibly detect the first
gravitational-wave transients (Aasi et al. 2013b). This promises
many scientific boons, and accurate waveform reconstruction
and parameter estimation will be key in extracting as much in-
formation as possible from these detections. In particular, accu-
rate measurements of the sources’ positions on the sky can help
determine their populations, their distributions, and possible for-
mation mechanisms (Dominik et al. 2012; Kelley et al. 2010;
Belczynski et al. 2014). Furthermore, accurate sky localization
will help electromagnetic follow-up to gravitational-wave tran-
sients, which may bring gravitational-wave observations into
astrophysical and cosmological context. This has been carefully
studied for some binary systems (Singer et al. 2014), and possi-
ble counterparts have been proposed (Metzger & Berger 2012;
Barnes & Kasen 2013).

Searches for gravitational-wave transients are well motivated
astrophysically. Among them, gravitational waves generated
by compact binary systems are the best understood, with well
studied and modeled waveforms. Therefore, searches targeting
compact binary systems employ matched filtering techniques
(Abadie et al. 2012a). Although significant effort has been in-
vested in analytical and numerical studies of expected wave-
forms from compact binaries (Ajith et al. 2005, 2011; Damour

& Nagar 2008; Hannam et al. 2010; Sturani et al. 2010; Aasi
et al. 2014c; Cannon et al. 2013), some uncertainties still exist,
particularly in binary black hole (BBH) systems with spin or
large eccentricity. Several of the anticipated transient sources
come with only poorly understood or phenomenological grav-
itational waveforms, such as gravitational radiation from core-
collapse supernovae (Ott 2009). These waveforms are typically
extremely difficult to simulate, and in the case of supernovae,
may be subject to stochastic processes that make templated
searches difficult. Other transient gravitational-wave sources
include pulsar glitches, starquakes associated with magnetars,
and cosmic string cusps (Abadie et al. 2012b). In addition, there
is always the possibility of completely unanticipated signals
from currently unknown sources. Generic transient searches
that make only minimal assumptions on the signal’s morphol-
ogy (waveforms, polarizations) are well suited to detect such
sources and, in this way, complement matched-filtering ap-
proaches (Abadie et al. 2012b).

In this study, we focus on short-duration (less than one sec-
ond) gravitational-wave transients, also referred to as bursts,
which are typically un-modeled or poorly modeled. Moreover,
we focus on source localization only, rather than waveform re-
construction, and attempt to quantify the expected uncertainties
produced by analysis of gravitational wave data in the early
advanced detector era. In order to assess the performance of
our algorithms, we use families of ad hoc waveforms as a
proxy for what may accompany astrophysical events (Abadie
et al. 2012b).

We used three ad hoc signal morphologies along with BBH
coalescences to explore a wide range of possible signals de-
tectable by generic burst searches. The ad hoc morphologies
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scan the signal phase-space with templates possessing both
small and large time-frequency areas that span the entire sensi-
tive frequency band of the instruments. Such waveforms should
approximate the localization of signals from possible burst
sources like core-collapse supernovae. Depending on the mech-
anism (Ott 2009), their waveforms may resemble high-Q sine-
Gaussian signals (like in the acoustic mechanism Burrows et al.
2006, 2007; Ott et al. 2006), millisecond-scale Gaussian-like
peaks (as in simulations of the rotating collapse and bounce in
CCSNe Dimmelmeier et al. 2008), or even white-noise bursts
(if turbulent convection takes place Ott 2009). Recent studies
have focused on inferring the explosion mechanism from grav-
itational waveforms (Logue et al. 2012), although they did not
address localization. Furthermore, using a range of morpholo-
gies allows us to characterize localization for generic signals
which may come from unanticipated sources. This work is anal-
ogous to a recent study focusing on binary neutron star (BNS)
coalescences (Singer et al. 2014). Signals from such systems
typically have longer signal durations with well known broad-
band waveforms and are targeted more optimally with matched
filter searches (Abadie et al. 2012a).

Accurately localizing gravitational wave signals can shed
light on the sources’ distribution across the sky and possibly lead
to identification of counterparts throughout the electromagnetic
spectrum. Again, this has been carefully considered for a few
scenarios (Feng et al. 2014; Evans et al. 2012; Aasi et al. 2014a)
but is difficult to address for un-modeled bursts. However, ac-
curate characterization of gravitational wave localization will
naturally inform any electromagnetic follow-up effort. There
exist a host of possible counterparts to generic gravitational
wave bursts. For instance, core-collapse supernovae in the local
universe are expected to produce detectable gravitational radi-
ation (Ott 2009) and will have bright counterparts throughout
the electromagnetic spectrum as well as in low-energy neutri-
nos (Scholberg 2012). Superconducting cosmic string cusps are
expected to produce both gravitational (Aasi et al. 2014b) and
electromagnetic radiation (Vachaspati 2008). BBH systems may
or may not produce electromagnetic counterparts, depending on
the system’s environment. For BBH systems in a clean envi-
ronment, gravitational-wave data may be the only way to study
these systems. Furthermore, coincident electromagnetic obser-
vations for bursts from unknown sources will be invaluable in
determining the associated physical system. Regardless of the
source of gravitational radiation, electromagnetic and neutrino
observations may place the event in an astrophysical context.

Although several algorithms provide source localization esti-
mates, we focus on Coherent WaveBurst (cWB; Klimenko et al.
2005, 2008), a constrained likelihood algorithm (Section 3.1),
and LALInferenceBurst (LIB; Aasi et al. 2013a; LIGO Scien-
tific Collaboration Virgo Collaboration 2014; J. Veitch et al.
2014, in preparation), a Markov chain Monte Carlo (MCMC)
parameter estimation algorithm (Section 3.2). Previous sky lo-
calization studies for un-modeled bursts used an earlier version
of cWB and investigated networks with three or more detectors
(Klimenko et al. 2011; Aasi et al. 2013b; Markowitz et al. 2008;
LIGO Scientific Collaboration et al. 2012). Furthermore, these
studies typically focused on a few sample waveforms with a
few fixed parameter values. This includes characterizing algo-
rithmic performance as a function of injection amplitude, for
example. We focus on ensemble averages computed over a pop-
ulation of events with randomly selected parameters and with
the expected detector configurations for the first two years of the
advanced detector era. In particular, we generate an astrophys-

ical population of generic burst events that extends beyond the
detectors’ sensitivity limits. This characterizes the localization
capabilities for typical events, and models the relative frequency
of “loud” signals versus the more common “quiet” signals. This
population yields estimates that describe a “typical expected
event” from gravitational-wave detectors. We present an analy-
sis of sky localization during the transition from two detectors
(LIGO-Hanford and LIGO-Livingston in 2015) to three detec-
tors (LIGO-Hanford, LIGO-Livingston, and Virgo in 2016) with
expected noise curves made available by the LIGO and Virgo
collaborations (Aasi et al. 2013b).

Unlike many electromagnetic observations, gravitational-
wave source position uncertainties are very large, typically
larger than 100 deg2. Therefore, gravitational-wave searches
produce probability distributions over the sky, rather than single
locations, from which meaningful quantities are derived. These
probability distributions can have very complicated shapes,
including severe fragmentation and spatially separated support.
A thorough understanding of these distributions can inform the
design of follow-up programs as well as the choice of which
events should be pursued.

This paper is organized as follows: Section 2 describes the
simulated noise and gravitational waveforms we use in this
study; Section 3 briefly describes the two algorithms we use;
Section 4 discusses the observed localization capabilities of the
two pipelines over the same set of detected signals; Section 5
describes some systematics associated with these algorithms
and we conclude in Section 6.

2. DATA PREPARATION

2.1. Noise

We use simulated stationary Gaussian noise throughout this
study. Expected noise curves for the two LIGO detectors and
Virgo are shown in Figure 1, which plots the curves for LIGO in
2015, 2016, and at design sensitivity as well as Virgo curves in
2016 and at design sensitivity. The 2015 and 2016 curves were
chosen as the geometric mean of the optimistic and pessimistic
estimates in Aasi et al. (2013b), and the actual improvement
in the noise curves will depend on the commissioning of the
detectors. While these curves may not be realized exactly, they
provide a good estimate for the Gaussian noise expected in the
advanced detector era.

Another important source of noise, particularly for burst
searches, is non-Gaussian in nature. These non-Gaussian ar-
tifacts (“glitches”) form a long tail at high amplitudes, reducing
the sensitivity of searches (LIGO Scientific Collaboration et al.
2014). Because we simulate only Gaussian noise, we do not
have glitches present in our data. However, the presence or ab-
sence of glitches will not affect our study. For a given event,
glitches affect a gravitational-wave observer’s confidence that
this particular event is of astrophysical origin, but will not affect
the pipeline’s ability to localize true astrophysical events.

Furthermore, we do not simulate realistic detector livetimes
because we do not attempt to make a statement about detection
rates. Instead, we use one month of continuous simulated noise
for each of the 2015 and 2016 runs.

2.2. Injections

Several signal morphologies were used in an attempt to sim-
ulate a wide range of possible gravitational-wave transients.
While these are not meant to be examples of actual astrophysical
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Figure 1. Expected amplitude strain noise for advanced detectors in 2015, 2016,
and at design sensitivity. The resonances correspond to suspension “violin”
modes near 500 Hz and “bounce” modes near 15 Hz. The bounce mode is
within the seismic wall for the LIGO curves.

signals (with the exception of compact binary systems), histor-
ically several exemplar waveforms have been used to approx-
imate generic burst events (Aasi et al. 2013b; Klimenko et al.
2011; Markowitz et al. 2008). We focus on generic waveform
morphologies because they allow us to test our ability to localize
very different signals without specializing to a specific source. In
this study we use four signal morphologies: Sine-Gaussian (SG),
Gaussian (G), White-Noise Bursts (WNB), and Binary Black
Hole approximants (BBH) with spins (anti-)aligned with the
orbital angular momentum. The parameter ranges were chosen
as was reasonable given the typical frequencies probed by burst
searches (32–2048 Hz) as well as the expected noise curves.
The parameters were drawn independently, and Table 4 lists the
exact values used.

In particular, we distribute our injections as if they were
astrophysical, i.e., uniform in comoving volume. In addition,
the quietest signals were chosen to be just below the detector’s
maximum sensitivity. This ensures that the signals recovered
were limited by the detector’s sensitivity rather than an artificial
threshold. All populations were distributed uniformly over the
sky and regularly spaced in time.

As mentioned above, we distribute our injections uniformly
in comoving volume. This is done using standard ΛCDM

cosmology (Ωm = 0.3, ΩΛ = 0.7). If we take supernovae
as typical energy scales for un-modeled bursts, an optimistic
upper limit for the energy emitted as gravitational waves is
EGW ∼ 10−4 M�c2 (Ott et al. 2006). If we assume an energy
scale ten times larger is associated with an isotropically radiated
SG with fo = 200 Hz, this yields a horizon distance of ∼3.8
Mpc with advanced LIGO design sensitivity. At this distance, the
difference between volume and comoving-volume is negligible
(∼0.1%). Therefore, we distribute SG, G, and WNB signals
uniformly in volume.

Furthermore, because we do not have an exact energy scale for
generic (un-modeled) transient events, it is difficult to compute
a distance. We expect the signal amplitude to scale inversely
with the luminosity distance, and this can be used to define a
distribution over h2

rss = ∫
dt (h2

+ + h2
×) given a distribution over

distance. A derivation is provided in Appendix C, but we can
model a uniform-in-volume distribution as

p(DL) ∝ D2
L ⇒ p(hrss) ∝ h−4

rss . (1)

BBH systems should be detectable at several Gpc, and the
difference between volume and comoving volume is non-trivial
here (�70%). For the BBH signals, we have a well defined
distance and distribute the signals uniformly in comoving
volume.

2.2.1. Sine-Gaussian Waveforms

SG waveforms have historically been used by the LIGO and
Virgo Collaborations to simulate generic bursts (Abadie et al.
2012b). We define our SG waveforms according to Equations (2)
and (3). fo is the central frequency of the SG; τ is the width in
the time domain. α controls the relative weights between the
two polarizations. This is equivalent to choosing the coordinate
system in the wave-frame relative to the Earth-fixed detector
frame.

h×(t) = sin (α)
hrss√

Q(1 − cos (2φo) e−Q2 )/4fo

√
π

× sin (2πfo(t − to) + φo) e−(t−to)2/τ 2
(2)

h+(t) = cos (α)
hrss√

Q(1 + cos (2φo) e−Q2 )/4fo

√
π

× cos (2πfo(t − to) + φo) e−(t−to)2/τ 2
. (3)

2.2.2. Gaussian Waveforms

We also inject Gaussian envelopes in the time domain (G),
defined by Equations (4) and (5). These can be considered as
limiting cases of SG waveforms in which fo → 0. However,
removing the oscillatory component means the frequency do-
main waveform is a Gaussian centered about f = 0, and the
signal is detected essentially by the Gaussian’s wings. Because
the seismic wall in the noise spectra at low frequencies is very
steep, small changes in Gaussian width can significantly affect
detectability. This and the lower bound on signal duration from
the pipeline’s sampling rate determined the injection popula-
tion’s parameter ranges.

h×(t) = sin (α)
hrss√

τ

(
2

π

)1/4

e−(t−to)2/τ 2
(4)

h+(t) = cos (α)
hrss√

τ

(
2

π

)1/4

e−(t−to)2/τ 2
. (5)
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2.2.3. White-Noise Burst Waveforms

Perhaps one of the most generic waveforms we investigate is
the WNB, defined by Equations (6) and (7).

h×(t) ∝ e−(t−to)2/τ 2
∫

e−2πif t [Θ(f − fmin) − Θ(f − fmax)] df

(6)

h+(t) ∝ e−(t−to)2/τ 2
∫

e−2πif t [Θ(f − fmin) − Θ(f − fmax)] df.

(7)

The flat frequency domain component is randomly drawn
from Gaussian white noise rather than a truly flat curve. All
parameters besides hrss are drawn first, including this randomly
sampled frequency domain waveform, and then the amplitude
is scaled appropriately to obtain the desired hrss. These signals
are meant to simulate an excess of power randomly distributed
within some frequency band and localized in time.

2.2.4. Binary Black Hole Waveforms

We simulate the inspiral of massive binary systems because
they coalesce at relatively low frequencies. This means that the
signal is relatively compact in the frequency domain, and generic
burst searches can more easily detect these signals compared to
lighter systems. We expect burst searches to have sensitivity to
BBH coalescence at cosmological distances.

We use Inspiral-Merger-Ringdown phenomenological ap-
proximants to model BBH coalescence (Ajith et al. 2011;
Hannam et al. 2010). These waveforms are constructed by stitch-
ing analytic post-Newtonian expansions, accurate to 3.5 PN or-
ders, with numerical-relativity results for merger and analytic
quasi-normal modes for ringdown. Typically, the inspiral por-
tion of the waveform is known much more accurately than the
merger and ringdown. However, our BBH signals contain mas-
sive components and their mergers occur within the detector’s
sensitive band.

Importantly, our simulated waveforms also incorporate the
effects of spin-orbit coupling. We focus on spins (anti-)aligned
with the orbital angular momentum, so there is no spin-
precession in these waveforms. There is still uncertainty about
the efficiency of common envelope evolution and the relative
importance of supernova kicks (Belczynski et al. 2014), and
astrophysical BBH systems may or may not have their spins
(anti-)aligned with the orbital angular momentum. However, this
is a reasonable assumption when characterizing our algorithms’
performance.

We use a range of component masses consistent with stellar
mass black holes. We also simulate a wide range of spin
magnitudes for each object.

3. LOCALIZATION PIPELINES

The goal of sky localization of gravitational-wave transients
is to construct a posterior probability distribution over the sky.
We use two pipelines to localize signals: cWB and LIB. Each
pipeline attempts to reconstruct the signal’s sky position in a
different way, which we briefly describe.

3.1. Coherent WaveBurst

cWB is a data analysis algorithm for the detection of transient
gravitational-wave signals (bursts) (Klimenko et al. 2005, 2008).
In cWB, burst events are identified as excess power patterns, ex-
ceeding some threshold, in the time-frequency domain obtained

via a wavelet transformation. Assuming Gaussian noise, cWB
combines data from multiple detectors to compute a constrained
likelihood functional dependent on the source’s sky position. For
networks with two or three detectors, strong degeneracies exist
in the likelihood and cWB applies several ad hoc constraints to
limit the signal space. The constrained likelihood is maximized
over all possible gravitational-wave signals for each point in
the sky, and several statistics are computed at each point. cWB
generates maps by combining these statistics, which are used
to approximate posterior probability distribution over the sky
(Klimenko et al. 2011). Previous studies (Aasi et al. 2013b;
Klimenko et al. 2011) used an earlier version of cWB. We
present results from an updated version of the algorithm, re-
ferred to as the second-generation: cWB-2G (S. Klimenko 2015,
in preparation).

Importantly, this study implements an effective prior on the
source position in Earth-fixed coordinates. This is the first imple-
mentation of such a prior for burst detection algorithms, which
modulate the posterior with the detectors’ antenna patterns to
incorporate the fact that quieter signals are more frequent than
loud signals. It is, therefore, more likely a priori to detect signals
from parts of the sky with large antenna patterns. A derivation
is provided in Appendix C.

cWB uses two network constraints (regulators), which incor-
porate prior knowledge on how the network responds to generic
gravitational-wave signals. The network response to a signal is
constrained by the antenna patterns; this is used in cWB’s anal-
ysis to “regulate” reconstructed signal waveforms and reduce
the algorithm’s sensitivity to non-Gaussian noise artifacts. The
regulators modify the form of the likelihood functional and can
be thought of as non-trivial priors. In cWB-2G, the regulators
are controlled by the parameters δ and γ . δ controls the per-
missible ratios between the contributions to the likelihood from
separate polarizations, and γ acts as the lower bound on the
correlation between the detectors (S. Klimenko 2015, in prepa-
ration). While the regulators are not needed to reject background
in our simulated Gaussian noise, they will be used in an actual
observing run. Appendix B describes the exact parameters used.

With two detectors, our choice of regulator settings force cWB
to reconstruct only a single polarization. Because the Hanford
and Livingston detectors are nearly aligned, they are effectively
sensitive to only a single polarization (Klimenko et al. 2011;
Sutton et al. 2010) and this is a reasonable approximation. The
three-detector regulators are almost, but not quite, turned off. We
discuss the features introduced by the regulators in Section 5.

While false-alarm rates will depend on the Gaussian and
non-Gaussian noise in an observing run, we chose detection
thresholds for cWB that correspond to a false alarm rate of 1 per
year in historical non-Gaussian noise. This threshold may not be
high enough to claim a confident detection, but it is likely that
events satisfying such a criterion will be of significant interest.

cWB is a low-latency pipeline, typically run as on online
search. Posteriors are produced as part of the detection pipeline,
and are available within minutes of recording the data.

3.2. LALInferenceBurst

LIB is a Bayesian MCMC parameter estimation algorithm
designed to recover burst signals and estimate some key signal
parameters, including sky position. LIB is based on nested
sampling and shares most of its libraries with LALInference,
its counterpart for parameter estimation of compact binary
coalesces (CBC; J. Veitch et al. 2015, in preparation). A
detailed description of nested sampling and its application to
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gravitational-wave parameter estimation can be found elsewhere
(Skilling 2004; Veitch & Vecchio 2010).

The main difference between the CBC and Burst version
of LALInference is that, while the CBC version filters the
data using long waveforms that describe the signal emitted by
compact binaries, LIB uses a single SG waveform.4 This implies
that LIB cannot perfectly match some of the simulated signals
considered in this study, such as WNB and BBH. We expect
LIB to perform sub-optimally for these signals, while it should
still be able to recognize that a coherent signal is present, and
produce useful sky localization information. We see that this is
indeed the case.

LIB has a larger computational cost than cWB, and it typically
cannot be run as a blind search algorithm. Instead, LIB is run as
a follow-up to pre-selected times, with typical latencies between
hours and days. It provides flexibility in tuning computational
cost and sensitivity. With the configuration used in this analysis,
50% of the events were processed within two hours. However,
a detection decision can be reached with latencies of a few
minutes. For this study, LIB was run on a subset of triggers
detected by cWB and was not used as a search pipeline (S.
Vitale 2015, in preparation). Beside the approximate time of an
event, LIB does not use any data products produced by cWB.

Because LIB is a template based algorithm, we can put
priors on the (relatively few) parameters that describe the
template. In this work, we put a uniform-in-volume prior on the
template amplitude, p(hrss) ∝ h−4

rss . This is a more direct way
of incorporating the prior knowledge than the effective prior
used with cWB, but the information content is similar. The prior
furthermore assumes that sources are uniformly distributed on
the sky, and modulation with the antenna patterns is achieved
only through the prior on signal amplitude. The prior on other
signal parameters was flat with ranges larger than the injected
ranges. Appendix B describes the exact parameters used.

4. RESULTS

While localizing sources using gravitational-wave data alone
is important, past studies have emphasized directing electro-
magnetic follow-up (LIGO Scientific Collaboration et al. 2012;
Abadie et al. 2012c). Therefore, the metrics used to evaluate lo-
calization at least tacitly assume some electromagnetic follow-
up program. We present results for a few standard measures for
our simulations of the early advanced detector era.

Before we investigate the posterior distributions produced
by cWB and LIB, we should understand typical features of
gravitational-wave localization. The majority of sky localization
comes from time-of-flight measurements between distantly
located detectors. A single detector is sensitive to nearly the
entire sky, so it cannot localize sources well. However, because
gravitational waves travel at the speed of light, the difference in
the times of arrival at spatially separated detectors allow us to
triangulate the source location on the sky. Figure 2 sketches
a skymap generated with two detectors, in which the locus
of source positions consistent with the observed time-of-flight
between detectors is a ring. For three detectors, the locus is
reduced to two points, and so on.5 This triangulation can be
thought of as producing a likelihood in the Bayesian sense.
Modulation around the ring is achieved through knowledge of

4 It is possible to also use Gaussians or other short waveforms, but we do not
consider them in this study.
5 Appendix D shows a few sample posteriors produced by each algorithm
with our data set.

reconstructed

injected

0 0.00125835probability per deg2

(a) sky map

reconstructed

injected
δθ = 85.26 deg

0 0.00125835probability per deg2

(b) δθ

searched area = 99.46 deg2

reconstructed

injected

0 0.00125835probability per deg2

(c) searched area

Figure 2. Mollweide projections demonstrating the two basic statistics used
to quantify sky localization: angular offsets and searched area. (a) The entire
posterior with the injected and reconstructed locations marked. In this example,
the difference between time-of-arrival in the two LIGO detectors (Livingston,
LA and Hanford, WA) was 3 ms. (b) The angular offset is defined as the
smallest angle swept between the injected location and the reconstructed location
(maximum a posteriori), shown here as a geodesic. (c) The searched area is
defined as the area assigned a probability greater than or equal to the probability
assigned to the injected location. In the figure this is the shaded area.

the antenna patterns and an assumption about the distribution of
signal amplitudes. The detector network is simply more sensitive
in some directions than others, which means it can detect more
signals from certain directions. This is included in the effective
prior for cWB and the prior on template amplitude for LIB.
Figure 2(a) demonstrates this with clear hot spots on the ring,
although the entire ring is visible.

Table 1 shows the number of detected events. We injected
roughly 100,000 events for each morphology in each detector
network. The low number of recovered signals reflects the
uniform-in-volume distribution of the signals, which causes
the majority of signals to be very distant and too quiet to be
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Table 1
Sample Sizes of Detected Events by Morphology and Year

Year Algorithm Morphology

G SG WNB BBH

cWB 256 1112 769 2488
2015

LIB 256 1112 769 500

cWB 417 677 853 6394
2016

LIB 416 664 851 498

detectable. Both cWB and LIB were run over the same events.
We use all events detected by cWB for G, SG, and WNB
morphologies in both years. However, due to the large sample
of detected BBH injections, we randomly select 500 events to
process with LIB. This gives us an accurate representation of
LIB’s performance with slightly larger errors.

4.1. Angular Offset

Perhaps the simplest measure of localization is the angle
between the maximum a posteriori and the source’s position
(δθ ). Figure 2(b) shows this for a cartoon posterior, and the line
represents a geodesic connecting the injected and reconstructed
locations. In this example, the angle is large because the
reconstructed location is placed on the wrong side of the ring.

Figure 3 shows the observed distributions of this statistic.
We use cos(δθ ) to highlight grouping around δθ = 0◦, 180◦
corresponding to the true and antipodal positions of the source,
respectively. There is improvement when transitioning from the
two-detector network to the three-detector network, although it
is not drastic. This is because Virgo is less sensitive than the
two LIGO detectors, and many detected events are essentially
detected by only two detectors.

In the 2015 network, both algorithms place signals close
to cos(δθ ) = ±1 and produce a desert in between. This
symmetry is due to the nearly aligned antenna patterns for
the two LIGO detectors, which makes the antipode degenerate
with the correct side of the sky. This symmetry is a generic
feature of the detector’s antenna patterns and also appears
when the morphology is known a priori (Singer et al. 2014).
In the 2016 network, there is some reduction in the mode

near cos(δθ ) = −1. We note that the peak near δθ ∼ 0 is
sharper in 2016 than in 2015, however the median value of δθ
is actually larger in 2016 for cWB (∼33◦ compared to 23◦ for
WNB). This may be due to the regulators (see Section 5). In the
three-detector network, there is a degeneracy in the posteriors
associated with reflections about the plane defined by the three
detectors (Aasi et al. 2013b; Fairhurst 2009). This degeneracy
may be responsible for some of the antipodal population as
well. This can be seen in the LIB distributions, which show the
degeneracy but also show a decrease in the median δθ in the
2016 network, as expected.

We also note that the general features of source localization
by both cWB and LIB do not depend strongly on the signal
morphologies. This is significant, as it suggests that the same
localization algorithm can be used to construct posteriors for
generic bursts without waveform-specific biases.

Typically, we expect cos(δθ ) → 1 in the limit of high
S/N. This holds for the three-detector network, in which the
signal is triangulated to the true location, and degeneracy from
reflections defined by the plane of the detectors is broken by
the antenna patterns. However, this is not the case in the two-
detector network. This is because, even in the limit of high S/N,
the two-detector network cannot break the ring-degeneracy in
the posterior. If the waveform is not known a priori, then it
must be reconstructed. For the two-detector network, different
points along the triangulation ring correspond to different
reconstructed waveforms. However, they all reproduce the data
equally well and the algorithm does not prefer one location on
the ring over another. In fact, only the width of the ring decreases
as S/N increases.

Tables 2 and 3 give cumulative fractions of events with δθ
less than a few exemplar values.

4.2. Searched Area

Another measure of source localization is the searched area.
We define this as the area on the sky assigned a probability
greater than or equal to the probability assigned to the injected
location (LIGO Scientific Collaboration et al. 2012). If a follow-
up algorithm sorts through an list of pixels ordered by prob-
ability, this approximates the amount of area imaged before
finding the injection. Importantly, the searched area does not

Table 2
Tabular Summary of cWB Localization

Year 2015 2016
Network HL HLV

Morphology BBH SG G WNB BBH SG G WNB

5 deg2 3.1 3.4 3.1 6.2 6.7 9.3 12.0 17.2
20 deg2 11.5 12.7 10.9 17.8 18.9 22.2 28.8 32.5
100 deg2 35.3 37.2 37.1 51.8 47.3 52.3 54.9 61.3

Fraction (in %) with searched area less than
200 deg2 51.6 52.2 49.2 69.7 62.3 66.9 69.1 75.8
500 deg2 75.9 69.2 73.8 86.5 82.2 85.8 84.9 91.2

1000 deg2 89.2 82.2 87.1 95.6 93.1 94.8 95.0 98.0

1◦ 1.3 1.4 0.8 2.7 3.6 2.8 9.8 10.0
5◦ 12.9 8.5 11.7 13.0 22.6 13.0 29.3 19.0

15◦ 37.2 27.1 33.2 34.1 37.6 26.4 45.8 32.6
Fraction (in %) with δθ less than

45◦ 73.1 61.4 66.0 70.9 61.3 57.3 67.9 59.2
60◦ 79.5 68.4 71.1 74.9 66.7 62.2 71.7 64.7
90◦ 83.1 74.0 75.8 77.9 71.4 67.1 74.3 70.0

Median searched area 184.6 deg2 181.6 deg2 209.9 deg2 93.0 deg2 112.5 deg2 91.7 deg2 71.3 deg2 61.3 deg2

median δθ 23.◦1 31.◦6 25.◦7 23.◦9 27.◦5 36.◦7 18.◦6 33.◦9

Note. Statistical error is on the order of a few percent.
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Figure 3. Normalized histograms of cos(δθ ), where δθ is the angle between the injected location and the maximum of the posterior. (a, c) 2015 detector network.
(b, d) 2016 detector network. (a, b) cWB. (c, d) LIB.

account for spatially separated support in the posterior distribu-
tion. Figure 2(c) demonstrates this statistic as the shaded area.
We can estimate the fraction of events for which electromag-
netic counterparts will be observed within a given area with a
cumulative distribution over the searched area.6

6 Another possible observing plan would be to set confidence regions, say
50%, rather than a fixed area. We could then determine the fraction of events
with 50% confidence regions containing less than a given area. We avoid this
statement here because the posteriors produced by cWB and sometimes LIB
are poorly calibrated (see Section 5).

Figure 4 shows cumulative distributions of observed searched
areas for all morphologies considered. Importantly, we see that
the searched area improves when moving from the two-detector
network in 2015 to the three-detector network in 2016, even
though the Virgo noise curve is nearly twice as high as the LIGO
curves in 2016. This can be attributed to a more informative
likelihood, and is true for both algorithms.

We also see that LIB performs much worse than cWB for
WNB signals. This is due to template mis-match within LIB,
which attempts to model all signals with a single SG template.
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Table 3
Tabular Summary of LIB Localization

Year 2015 2016
Network HL HLV

Morphology BBH SG G WNB BBH SG G WNB

5 deg2 1.8 4.0 2.3 4.7 8.6 25.5 18.5 10.4
20 deg2 9.4 14.3 7.0 14.2 23.1 47.4 43.0 23.9

100 deg2 31.8 39.0 34.8 35.2 53.8 75.8 73.6 46.8
Fraction (in %) with searched area less than

200 deg2 46.8 52.9 49.2 51.2 65.7 84.6 84.4 59.2
500 deg2 70.2 71.7 72.7 65.1 82.9 92.6 93.3 69.8
1000 deg2 88.2 82.6 89.1 74.9 93.0 94.9 97.4 76.0

1◦ 1.0 2.1 1.2 2.1 6.2 11.4 12.0 5.5
5◦ 8.6 8.8 11.7 9.5 34.5 31.9 51.4 17.2

15◦ 32.2 25.8 30.1 28.6 54.6 53.8 66.8 31.3
Fraction (in %) with δθ less than

45◦ 66.8 63.7 63.7 61.9 77.1 78.3 83.7 63.6
60◦ 72.8 71.0 68.8 67.2 81.3 81.8 85.8 70.1
90◦ 77.4 75.9 74.2 70.4 83.7 84.6 86.5 76.2

Median searched area 238.5 deg2 171.0 deg2 208.4 deg2 180.9 deg2 82.5 deg2 22.2 deg2 31.3 deg2 121.3 deg2

median δθ 26.◦6 29.◦4 27.◦1 30.◦4 11.◦1 13.◦3 4.◦9 27.◦5

Note. Statistical error is on the order of a few percent.

In fact, LIB assigns a few WNB signal searched areas equal
to the entire sky. This is because the random WNB waveform
matches so poorly with the SG template that LIB does not detect
the signal.

In 2015, both algorithms perform nearly identically for both
SG and G waveforms. This reflects the fact that we cannot
construct posteriors for burst signals more accurately than a
timing ring modulated by the antenna patterns. LIB outperforms
cWB for the smallest searched areas and for SG signals, as
expected given the waveform basis used in LIB. However, the
fact that both algorithms agree over a wide range of searched
areas suggests there is only minimal improvement possible with
knowledge of the actual signal morphology.

In 2016, LIB localizes G and SG signals better than cWB.
This is because LIB uses SG templates to recover signals,
while cWB does not. Therefore, knowledge of the correct
signal morphology can significantly improve localization in
three-detector networks. However the performance between the
algorithms is more comparable for BBH signals.

We also note that WNB are localized consistently better than
SG, G, or BBH with cWB. This should not be surprising. A
simple Fisher matrix computation like those in Fairhurst (2009,
2011) shows that, for SG signals, the expected errors in time-
of-flight between detectors should scale as

σ 2
t ∼ 1

ρ2

(
f 2

o + τ−2
)−1

. (8)

τ−1 is related to the signal’s bandwidth, and therefore we
expect high frequency, high bandwidth signals to have the
smallest timing errors. From our injections, WNB signals will
typically have higher frequencies than G and larger bandwidths
than SG. This means they will have smaller timing errors and
narrower triangulation rings.

Tables 2 and 3 give cumulative fractions of events with
searched area less than a few exemplar values. Unlike cos(δθ ),
we see a strong decrease in the searched area in the limit
of high S/N in both 2015 and 2016. This is expected from
simple triangulation, and corresponds to a narrowing of the
triangulation ring in the two-detector case rather than the
removal of the ring.

4.3. Extent of the Posterior’s Support

While the searched area and δθ are good indicators of the
localization, they do not describe the entire posterior. For
example, both the searched area and δθ may be small, suggesting
a compact posterior distribution. However, the little area that is
included may be scattered across the sky, with a small δθ merely
fortuitous. This could correspond to a very narrow ring in the
two-detector case, with the reconstructed location placed next
to the injected location by chance.

To diagnose the prevalence of such cases, we plot the
maximum angular distances from the injection’s source to
any point in the searched area (δθinj) in Figure 5. If an
electromagnetic follow-up is carried out systematically over this
area, this estimates the separation between points in the region
searched before imaging the source. In particular, we should be
able to determine whether the posterior has support at antipodal
points in the sky, which are difficult to observe with a single
telescope.

Figure 5 shows that there is support near the antipode for
a large fraction of events in 2015. This indicates that we will
find support all along the degenerate ring modulated by the
antenna patterns, which happens to be on the other side of the
sky a significant fraction of the time. The lobe near δθinj ∼ 0◦
corresponds to small searched areas, in which the injection was
found quickly before the searched area included points from the
antipodal antenna pattern maximum.

The three-detector network shows similar structure. We again
see a population of events with small searched areas, with
δθinj ∼ 0◦. Somewhat surprisingly, we see a large lobe near
δθinj ∼ 180◦. This is likely due to a combination of Virgo’s
higher noise curve and the reflection degeneracy visible in
the δθ distribution as well (Section 4.1). With fewer than four
detectors, these antipodal degeneracies may be unavoidable for
un-modeled signals.

4.4. Fragmentation

Furthermore, the largest angle between points in the searched
area does not tell us about the posterior’s shape. Support could
be placed along a large ring or randomly scattered in distant
parts of the sky. We call this the fragmentation of the posterior
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Figure 4. Cumulative histograms of searched areas for (a, c) 2015 HL and (b, d) 2016 HLV; (a, b) cWB and (c, d) LIB. Shaded regions correspond to 68% confidence
intervals.

and attempt to measure it by counting the number of disjointed
regions within a specified area. For example, if the posterior is
split between a blob and its antipode, there are two. This is the
case for the searched area in Figure 2(c).

Figure 6 shows histograms of the number of simply connected
regions within the searched area. There is a lot of morphology
dependence, but a few trends are clear. G and BBH signals
typically have fewer simply connected regions than SG and
WNB signals. For SG signals, this is because of their strong
central frequency and relatively narrow bandwidth.

The oscillatory waveforms imprinted in the data from each
detector still match relatively well if they are offset by a small
number of cycles, which corresponds to a time-of-flight error
between detectors. This causes periodic features in the posterior
with typical angular scales of Δθ ∝ 1/fo.7 We therefore expect
to see parallel rings in two-detector posteriors, and a nearly
regular lattice in the three-detector posteriors.

7 The features are not exactly periodic because the signal may vary
significantly over time scales comparable to 1/fo and the antenna patterns may
favor only part of the sky.
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Figure 5. Normalized histograms of the largest angle between the source’s true location and any point within the searched area. (a, c) 2015 network. (b, d) 2016
network. (a, b) cWB. (c, d) LIB.

We also note that the WNB signals appear to have fragmenta-
tion somewhere between G and SG signals. This is because the
WNB signals have wide ranges for their bandwidths relative to
their central frequencies. When the bandwidth is comparable to
the central frequency, there are no fringe peaks (like a G signal)
and when it is narrow compared to the central frequency there
are fringe peaks (like a SG signal). BBH signals act similar to G
signals because they have relatively broad bandwidths and are
concentrated at low frequencies.

4.5. Direct Comparison of Posteriors

While all the previous statistics allow us to investigate
the relative performance of cWB and LIB through ensemble
averages, they do not tell us how the sky maps produced
by these two methods compare on an event-by-event basis.
Comparing localization directly for each event will be important
if all algorithms are used to provide alerts and posteriors to the
astronomical community.
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Figure 6. Fractions of events binned by the number of disjointed regions in the searched area. (a, c) 2015 HL and (b, c) 2016 HLV. (a, b) cWB. (c, d) LIB. SG signals
typically have more modes because they support fringe peaks.

We first investigate the angular separations between the
maxima a posteriori (MAP). There is remarkable agreement
in the 2015 data, with the median δθMAP consistently around 8◦.
In the 2016 data set there is significantly more disagreement,
with the median δθMAP as high as 84◦ for some morphologies.

In addition to the angular separation of the MAP, we examined
the intersection and union of sets of pixels selected by each
algorithm. We compute the ratio of intersection to union (i/u)
for pixels selected by the two algorithms. Specifically, we
compute i/u using 50% and 90% frequentist confidence regions.
If i/u is near unity, the maps are very similar and if i/u is
close to zero, the maps either select nearly disjointed regions
or one map includes much more area than the other. In 2015,
the median i/u is near 0.5 for both confidence levels. However,
there is significantly less overlap in the three-detector network,
with i/u between 0.2 and 0.3 even for the 90% confidence
region.

We also compute the total size of the spatial support in each
posterior for each algorithm. In both the two-detector and three-
detector networks, LIB typically assigns non-zero probabilities
to many more pixels than cWB. We note that cWB typically
assigns a lower confidence to the same region surrounding
the maximum a posteriori than LIB. Combining this with the
knowledge that cWB typically includes smaller spatial support
in its posterior, we come to the conclusion that LIB posteriors
typically are strongly peaked with long tails and broad spatial

support. cWB posteriors are less peaked, with more uniform
probabilities and smaller spatial support.

Additional studies are underway to understand the statistics
and systematics of sky maps provided by these methods, not
only on injected signals, but also on Gaussian and non-Gaussian
noise artifacts.

4.6. Summation

Tables 2 and 3 present a synopsis of the searched areas and
angular offsets for each morphology and detector configuration.
A few example posteriors are plotted in Appendix D.

We should note that, because the sources of un-modeled burst
signals may be unknown, they may not be distributed uniformly
in volume. If one takes an agnostic view, they may use only the
maximum likelihood estimate without our effective prior. For
our injection set, this corresponds to an increase in the median
searched areas because the algorithm no longer searches the
ring according to the antenna patterns. We tested this using
cWB and saw that the median searched areas were at least 25%
larger (2015 G) without the effective prior, and as much as 59%
larger (2015 SG).

Furthermore, we expect BBH signals to be circularly po-
larized. Incorporating this information into the search should
improve the localization. We tested this with cWB and observed
no change in the 2015 data set. This is because the two-detector
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regulator values force the algorithm to reconstruct signals with
a single polarization, and knowledge that the signal is circularly
polarized adds nothing. However, in the three-detector network,
we see that the median searched area improves by nearly a fac-
tor of 3, from 112.5 deg2 to 38.0 deg2. With the polarization
constraint, this is comparable to the localization observed with
lighter systems using matched filtering techniques (Singer et al.
2014). However, Singer et al. (2014) focus on different sources
than our BBH injection set and a direct comparison between our
results requires careful consideration.

Customizing gravitational-wave searches to specific source
models may improve our ability to localize them in the sky in a
significant way.

5. SYSTEMATICS

We have investigated several sources of potential systematics
in cWB’s and LIB’s reconstructed sky positions. These can be
roughly classified as “calibration” and “accuracy” biases.

5.1. Posterior Calibration

We first study systematics associated with the probability
assigned by the localization algorithms on a pixel-by-pixel
basis. This can be considered a “calibration” problem with
the posterior distributions over the sky. On average, we expect
the confidence region containing N% cumulative probability to
contain N% of the detected injections.

For cWB we find the calibration of the posterior distributions
to depend strongly on the choice of regulators, in addition to its
dependence on the intrinsic parameters of the simulated events.
The dependence on the regulators seems to dominate these sys-
tematics. We have seen variation in frequentist confidence levels
as large as 50% in both directions, i.e., undercovering and over-
covering. For the specific choice of regulators (Appendix B),
cWB generally underestimates the actual confidence at low con-
fidence levels and overestimates the actual confidence at very
high confidence levels. cWB’s 50% confidence regions con-
tain between 65%–85% of the detected signals in 2015 and
between 65%–75% of detected signals in 2016, depending on
morphology. Because the choice of regulators will depend on
the character of real data, systematics and the regulators’ impact
on localization and detection efficacy need to be re-evaluated
when advanced LIGO and Virgo come online. This may include
recalibration to account for observed systematics.

LIB also shows calibration issues. Its 50% confidence regions
contain between 45%–55% of the detected signals in 2015
and between 35%–45% of detected signals in 2016, depending
on morphology. LIB’s systematic overestimation of the actual
confidence observed in the 2016 data is due to differences in the
population of detected events and the population expected by
LIB’s priors. We have verified that when detected events sample
LIB’s uniform-in-volume prior, LIB’s posteriors are properly
calibrated. Selection effects in events detected by cWB may
result in such deviations from the assumed prior.

Such calibration issues are not particular to burst searches,
and are observed with localization pipelines targeting BNS
coalescences (Sidery et al. 2014). Although these systematics
warrant further investigation, they do not imply that these
algorithms cannot be used to direct electromagnetic follow-up
of gravitational wave events. Any observing plan consists of a
set of fields sorted by an ordinal function of their probability to
contain signal. The observing strategy will not depend on the
actual function, as long as it preserves ordering.

5.2. Bias in Reconstructed Positions

We also compared the distribution of injected positions for
detected events against their estimated positions. We expect
these distributions to match over an ensemble average, implying
the algorithms typically localize signals to the same regions of
the sky from which they are detected. The injected positions
of detected events always follow the antenna patterns of our
network of detectors. We therefore expect the reconstructed
positions to similarly follow the antenna patterns.

Both algorithms behave essentially as expected in the two-
detector case (2015). However, we observe a bias in cWB’s
estimated positions in the three-detector network (2016). As
with the calibration of the posteriors (Section 5.1), the size
and direction of this bias depends strongly on the choice of
regulators. The estimated sky positions may be clumped into
regions with different shapes than the injected distributions and
may not coincide with the maxima of the antenna patterns.
For the regulators used in this study, this offset corresponds to
between 20◦ and 40◦. This bias is also imprinted on the entire
posterior and not just the maxima. We also note that, when
applying a circular polarization constraint in cWB, the median
searched area improves and the bias is removed. We do not
observe any such bias with LIB, which may partially account
for the increased disagreement with cWB in the 2016 data.

6. CONCLUSIONS

We present a study of gravitational-wave source localization
capabilities for un-modeled signals during the early advanced
LIGO and Virgo detector era. In particular, we focus on the
transition from two operational detectors in 2015 to three
operational detectors in 2016, and quantify the improvement in
localization associated therewith. In performing this study we
used two different localization algorithms: cWB, a low-latency
maximum likelihood algorithm, and LIB, a MCMC parameter
estimation algorithm. We used four signal morphologies to
explore a wide range of possible signals detectable by generic
burst searches.

We find that, while there is some variation with waveform
morphologies, 50% of injected signals would be imaged after
observing 100–200 deg2 with two detectors in 2015. We find
that cWB can reduce this to within 60–110 deg2 in 2016 with
low latency, and LIB may reduce the median searched area to as
little as 22 deg2 when the signal matches the template. Tables 2
and 3 summarize our findings. While the searched areas may
be small, we should remember that the posterior may be spread
across large portions of the sky, including antipodal points.

Importantly, we also introduce an effective prior on the source
position due to anisotropic antenna patterns and knowledge
of signal amplitude distributions. With this prior, we find
cWB performs comparably to the full MCMC LIB algorithm
in the two-detector configuration (2015) with significantly
lower latency. This is true even for signal morphologies that
correspond to LIB’s templates. However, LIB significantly
improves upon rapid localizations provided by cWB with three
detectors (2016) for most of the considered morphologies.

Furthermore, we find that cWB systematically localizes WNB
signals more accurately than LIB. This is because cWB makes
no assumption on the signal morphology while LIB assumes
a single SG template. cWB localizes WNB signals better
than SG or G signals because of differences in the signal
morphologies. We expect high-frequency or large bandwidth
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Table 4
Injection Population Parameters

Minimum Maximum Distribution

fo 40 Hz 1500 Hz
Q = √

2πτfo 3 30
SG

dn ∝ constant
cos (α) 0 1

φo 0 2π

2015 3.0000 · 10−23 Hz−1/2 1 · 10−15 Hz−1/2
hrss dn ∝ D2

LdDL ∝ h−4
rss dhrss2016 2.0625 · 10−23, Hz−1/2 1 · 10−15 Hz−1/2

τ 1 ms 10 ms
G dn ∝ constant

cos(α) 0 1

2015 4.0000 · 10−23 Hz−1/2 1 · 10−15 Hz−1/2
hrss dn ∝ h−4

rss dhrss2016 2.7500 · 10−23 Hz−1/2 1 · 10−15 Hz−1/2

τ 5 ms 100 ms
fo ∼ (fmax + fmin)/2 40 Hz 1500 Hz dn ∝ constant

WNB σf ∼ (fmax − fmin)/2 10 Hz 500 Hz

2015 4.0000 · 10−23 Hz−1/2 1 · 10−15 Hz−1/2
hrss dn ∝ h−4

rss dhrss2016 2.7500 · 10−23 Hz−1/2 1 · 10−15 Hz−1/2

M1 15 M� 25 M�
M2 15 M� 25 M�

BBH dn ∝ constantS1 0.0 0.9
S2 0.0 0.9

2015 10−4 0.2218
z dn ∝ dVcomov

dz
dz

2016 10−4 0.33

signals to be the better localized than low-frequency or narrow
bandwidth signals.

We also studied the posteriors produced by cWB and LIB on
and event-by-event basis. We found that the two algorithms
agree on the maximum a posteriori points to a remarkable
degree in 2015, typically to within 8◦. We find that the selected
pixels agree to over 50% in the two-detector network, but
agree significantly less in the three-detector network. Several
considerations lead us to the heuristic conclusion that LIB
posteriors are typically sharply peaked with long tails and large
spatial support. cWB posteriors are typically less peaked, more
uniform with smaller spatial support.

Finally, we investigate and quantify some systematics with
both methods. Both cWB and LIB show calibration issues with
their posteriors, in that the Bayesian confidence regions do not
correspond to their frequentist counterparts. cWB’s regulators
introduce biases in the reconstructed positions in the 2016 data
set, and in a small fraction of events modulate the posterior so
strongly that the source’s location is outside of the posterior’s
support.

We expect templated searches targeting known signal mor-
phologies to localize signals more accurately than generic un-
modeled searches. When compared to an analogous study fo-
cusing on BNS coalescences (Singer et al. 2014), we see that
the localization of BNS signals is indeed more accurate than
generic bursts. However, the generic burst searches produce
median searched areas that are only a factor of 2–3 larger than
BNS median searched areas. In fact, the median searched ar-
eas may be comparable if the actual burst waveform is known
reasonably well in the three-detector network, such as LIB re-
covering SG injections. For circularly polarized signals, cWB
can achieve comparable results if it assumes the signal is circu-
larly polarized. While this study and Singer et al. (2014) both
use populations distributed uniformly in volume, we investi-
gate very different signal morphologies. Furthermore, Singer

et al. (2014) estimates the detector duty cycles in 2016 and
occasionally detects events with only two detectors instead of
all three. This could cause our estimates to seem more similar
than they really are. However, we also use a lower false-alarm
rate threshold than Singer et al. (2014), which will increase our
error estimates systematically because we will include quieter
events. Any direct comparison between these studies should
include careful consideration of such differences.

Importantly, we find that telescope networks attempting
to follow up BNS events from advanced gravitational wave
detectors by searching large error areas can search comparably
sized areas for burst events. Given the nature of such generic
events, electromagnetic observations will be instrumental in
placing gravitational wave observations in an astrophysical
context.

The authors would like to thank J. Veitch and A. Vecchio
for comments and suggestions about LIB, W. Farr for his
script to convert MCMC posterior samples into a pixelated
posterior as well as R. Vaulin and R. Lynch for many useful
discussions throughout the course of this research. The authors
also acknowledge L. Price for helpful comments when preparing
this manuscript and L. Singer for creating the 2015 Gaussian
noise data. LIGO was constructed by the California Institute
of Technology and Massachusetts Institute of Technology with
funding from the NSF and operates under cooperative agreement
PHY-0757058. This work was also supported from NSF awards
PHY-1205512 and PHY-0855313 to the University of Florida.

APPENDIX A

INJECTION PARAMETER RANGES

Table 4 lists the injection parameter ranges and distributions
used. Definitions of the waveform morphologies are provided
in Section 2.
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(a) cWB 2015 WNB

(c) LIB 2015 WNB

(b) cWB 2016 WNB

(d) LIB 2016 WNB

Figure 7. Sample WNB posteriors. (a, c) 2015. (b, d) 2016. (a, b) cWB. (c, d) LIB. An “x” marks the injected location. These are mollweide “geo” projections. The
2015 injection had S/Ns of 8.81, 11.72, and 14.66 for LHO, LLO, and the entire network, respectively. The 2016 injection had S/Ns of 13.02, 10.66, 1.65, and 16.91
for LHO, LLO, Virgo, and the entire network, respectively.

Table 5
Coherent WaveBurst Search Parameters

Year/Network SVN Revision No. cWB Version flow fhigh ρ netCC δ γ

2015/HL −1040 0.5
3481M 2G 32 Hz 2048 Hz 8.00 0.70

2016/HLV 0.05 0.5

Table 6
LALInferenceBurst Prior Ranges

log (hrss) fo Q α φ

Minimum −53.0 1 Hz 2 0 0
Maximum −46.5 1300 Hz 35 2π 2π

Distribution p(hrss) ∝ h−4
rss p(fo) ∝ constant p(Q) ∝ constant p(α) ∝ constant p(φ) ∝ constant

APPENDIX B

ALGORITHMIC PARAMETERS

We used version 3481M of the cWB repository, searching for
signals with frequencies between 32 and 2048 Hz. Our detection
thresholds were set to ρ = 8.0, netcc = 0.7. While false-alarm
rates will depend on the noise in our detectors, these detections
correspond to a false-alarm-rate of 1 yr−1 in historical non-
Gaussian noise. Table 5 lists the regulator values used in this
study, which we varied depending on the detector network. We
note that the regulators in 2015 force cWB to reconstruct a
single polarization, while the regulators in 2016 are almost, but
not quite, turned off. The consequences of δ 
= 0 in 2016 are
discussed in Section 5.

We ran LIB with three parallel chains with 500 live points
each, and estimated noise power spectral densities from the data

separately for each event using 96 s near the trigger time. Table 6
list the prior ranges used for LIB’s SG template.

APPENDIX C

DERIVATION OF EFFECTIVE PRIORS

We can write down an astrophysically motivated prior, such
as a uniform co-moving volume distribution. However, for burst
signals, we do not immediately have a good estimate for the
distance (D) or the energy scale (E). We can relate this to the
observed data (h) through

E

D2
∝

∫
df f 2(|h+|2 + |h×|2). (C1)

14
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(a) cWB 2015 BBH

(c) LIB 2015 BBH

(b) cWB 2016 BBH

(d) LIB 2016 BBH

Figure 8. Sample BBH posteriors. (a, c) 2015. (b, d) 2016. (a, b) cWB. (c, d) LIB. An “x” marks the injected location. These are mollweide “geo” projections. The
2015 injection had S/Ns of 11.37, 12.72, and 17.06 for LHO, LLO, and the entire network, respectively. The 2016 injection had S/Ns of 14.06, 13.40, 1.85, and 19.51
for LHO, LLO, Virgo, and the entire network, respectively.

To obtain a prior on h, we should marginalize over all possible
D and E.

p(h,E,D)dh dE dD = p(h|E,D)dh · p(E)dE · p(D)dD

(C2)

∝ δ

(
h − λ

√
E

D2

)
dh · p(E)dE · D2dD (C3)

where h2 = ∫
df f 2(|h+|2 + |h×|2) and λ is a proportionality

constant. Marginalization yields

p(h) ∝
∫

dE p(E)
∫

dD D2δ

(
h − λ

√
E

D2

)
(C4)

∝
∫

dE p(E)
∫

dD D2δ

(
D − λ

√
E

h2

)
λ
√

E

h2
(C5)

∝ h−4λ3
∫

dE p(E)E3/2 (C6)

∝ h−4. (C7)

Because we do not know the actual waveform a priori, we
must marginalize over the waveform to compute the posterior.
With a small number of detectors, the likelihood is not strongly

peaked around the maximum likelihood estimate and we can
approximate ∫

dh p(h) ∼ h−3
ML (C8)

where hML is the maximum likelihood reconstructed signal. This
can be approximated by hML ∼ (F 2

+ + F 2
×)−1/2, where F+,× are

the antenna patterns for the entire network in the dominant
polarization frame (Klimenko et al. 2011; Sutton et al. 2010).
We then expect the effective prior on (θ, φ) to be something like

peff(θ, φ) = (
F 2

+ + F 2
×
)3/2

. (C9)

We observe that this prior improves source localization,
although there is only a weak dependence on the actual exponent
used. For most signals, any positive power of the antenna
patterns tends to order the pixels in the correct way to reduce
the searched area. However, the posterior’s calibration depends
strongly on this exponent. cWB’s regulators skew its calibration
and the two effects are difficult to separate.

APPENDIX D

SAMPLE POSTERIORS

Figure 7 demonstrates posterior distributions produced by
both cWB and LIB for WNB injections. In the two-detector
examples, we can clearly see fringe peaks characteristic of high-
frequency, low-bandwidth signals. The two-detector injection
has a central frequency of ∼560 Hz, which corresponds to an
angular scale of ∼10◦. The three-detector injection has a central
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frequency of ∼350 Hz, which corresponds to ∼16◦ between the
two LIGO detectors and ∼6◦ between the LIGO’s and Virgo. We
also see that LIB and cWB agree, but LIB’s posterior is “fuzzy,”
which we expect due to template mismatch. The three-detector
network shows similar fringe structures, although now we can
see the main triangulation ring from the two LIGO detectors
modulated by information from Virgo. In the LIB posterior,
we can even see the regular lattice imprinted on neighboring
triangulation rings. We note that the three-detector posteriors are
less similar than the two-detector posteriors, which we discuss
in detail in Sections 4.5 and 5.

Figure 8 is analogous to Figure 7, except it shows data
from BBH injections. For BBH injections, which have wide
bandwidths relative to their central frequencies, we do not expect
fringe peaks. The modulation in the three-detector network
along the single triangulation ring is caused by Virgo. The
cWB posteriors clearly demonstrate the increase in the number
of disjoint regions when progressing from the two-detector
network to the three-detector network.
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