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SUMMARY

RNAP II is frequently paused near gene promoters in
mammals, and its transition to productive elongation
requires active recruitment of P-TEFb, a cyclin-
dependent kinase for RNAP II and other key tran-
scription elongation factors. A fraction of P-TEFb is
sequestered in an inhibitory complex containing the
7SK noncoding RNA, but it has been unclear how
P-TEFb is switched from the 7SK complex to RNAP
II during transcription activation. We report that
SRSF2 (also known as SC35, an SR-splicing factor)
is part of the 7SK complex assembled at gene pro-
moters and plays a direct role in transcription pause
release. We demonstrate RNA-dependent, coordi-
nated release of SRSF2 and P-TEFb from the 7SK
complex and transcription activation via SRSF2
binding to promoter-associated nascent RNA. These
findings reveal an unanticipated SR protein function,
a role for promoter-proximal nascent RNA in gene
activation, and an analogous mechanism to HIV
Tat/TAR for activating cellular genes.

INTRODUCTION

The expression of protein-coding genes in mammalian genomes

begins with the assembly of the preinitiation complex (PIC) that

brings RNA polymerase II (RNAP II) to gene promoters, which

has been long considered amajor step in regulated gene expres-

sion (Lee and Young, 2000). However, after transcript initiation

and promoter clearance, RNAP II frequently pauses near the

transcription start site (TSS) on numerous genes, and regulated

RNAP II pause release has now been recognized as a critical

step in gene activation (Adelman and Lis, 2012).

Promoter clearance has been linked to phosphorylation on

Ser5 in the heptapeptide repeat of the C-terminal domain

(CTD) of the large subunit of RNAP II. This event is catalyzed
by TFIIH (consisting of CDK7 and cyclin H) and allows the recruit-

ment of the capping enzymes to protect the 50 end of nascent

RNA (Bentley, 2005). RNAP II is frequently paused within

20–40 nt downstream from the TSS, and its release requires

the recruitment of P-TEFb (consisting of CDK9 and cyclin T), a

kinase that is responsible for phosphorylating the negative elon-

gation factor (NELF) and DRB-sensitive-inducing factor (DSIF),

as well as RNAP II CTD at Ser2 and perhaps Ser5 positions

(Czudnochowski et al., 2012). This series of events is correlated

with RNAP II entry into the elongation phase of transcription

(Saunders et al., 2006; Zhou et al., 2012).

A large body of literature indicates that P-TEFb is distributed in

two separate pools in the nucleus (Peterlin and Price, 2006). One

pool contains active P-TEFb associated with paused RNAP II in

the promoter-proximal region, where a series of rearrangements

eventually links the kinase to the superelongation complex (SEC)

to initiate productive elongation (He et al., 2010; Lin et al., 2010;

Sobhian et al., 2010; Takahashi et al., 2011). The other P-TEFb

pool appears to be reversibly sequestered in the 7SK complex,

a multisubunit ribonucleoprotein particle composed of the 7SK

noncoding RNA, P-TEFb, the specific P-TEFb inhibitor protein

HEXIM1, the La-like protein LARP7, and MePCE (Peterlin and

Price, 2006).

Our current view of P-TEFb recruitment arises from studies on

Tat-activated transcription on the HIV-1 promoter (Ott et al.,

2011; Peterlin and Price, 2006). The HIV genome encodes a tran-

scriptional transactivator, Tat, which binds to the transactivation

response (TAR) element at the 50 end of nascent viral RNA to

release paused RNAP II at the HIV-1 promoter. In this process,

Tat binding to TAR enhances P-TEFb recruitment from the nucle-

oplasm or directly from the 7SK complex to transcriptionally

engaged RNAP II (Krueger et al., 2010; Ott et al., 2011). Despite

a refined understanding of these events at a viral promoter, it has

been unclear how P-TEFb is recruited to cellular gene promoters

to activate transcription.

SR proteins are a family of RNA-binding proteins involved in

both constitutive and regulated splicing (Lin and Fu, 2007) as

well as in integrating multiple steps in RNA metabolism in

mammalian cells (Zhong et al., 2009). Here, we show that a
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unique SR protein SRSF2 (originally known as SC35) is associ-

ated with gene promoters as part of the 7SK complex, mediates

the release of P-TEFb from the 7SK complex in an RNA-depen-

dent manner, facilitates the recruitment of P-TEFb and other key

transcription elongation factors to gene promoters, and acti-

vates transcription via promoter-proximal nascent RNA. These

data reveal that SRSF2 functions like HIV Tat as a transcription

activator and also assign an active role of short, promoter-asso-

ciated RNA (Esteller, 2011) in acting like HIV TAR to activate

transcription.

RESULTS

SRSF2 Is Preferentially Recruited to Active Gene
Promoters
Our previous work demonstrated that SRSF2 plays an active

role in transcription elongation in addition to its traditional

function in RNA splicing (Lin et al., 2008). SRSF2 is the only

SR protein retained in the nucleus, likely due to its intimate

association with genomic DNA, consistent with its role in

transcription (Sapra et al., 2009). To understand its mechanism

in transcription, we performed chromatin immunoprecipitation

sequencing (ChIP-seq) analysis of SRSF2 in mouse embryonic

fibroblasts (MEFs) derived from conditional knockout mice (Lin

et al., 2005). In these cells, the endogenous gene is replaced by

an HA-tagged SRSF2 gene expressed from a tet-off promoter,

permitting efficient depletion of the protein with the tet analog

Dox (Figure S1A available online). We previously showed that

HA-SRSF2 is expressed at a comparable level to and provides

all essential functions of the endogenous gene (Lin et al.,

2005). As a control, we performed parallel analyses on another

SR protein (SRSF1) using a similarly constructed MEF

line. Both endogenous SRSF1 and SRSF2 could also be

detected with specific antibodies (Figure S1B), allowing for vali-

dation of anti-HA antibody-generated data when necessary

(see below).

The ChIP-seq analysis unexpectedly revealed an abundance

of sequence tags near gene promoters for both SRSF1 and

SRSF2 (Figures 1A and 1B), which is not observed with total

input DNA from sonicated chromatin or by anti-HA ChIP-seq

from MEFs not expressing any HA-tagged protein (data not

shown). SRSF2 is more frequently associated with gene pro-

moters than SRSF1 (Figure 1A), though the tag densities at their

binding sites are globally concordant (Figure S1C). We validated

the association of both SR proteins on a large panel of gene

promoters by ChIP-qPCR (Figure S1D).

SRSF1 and SRSF2 Associate with Distinct Sets of DNA
and RNA Sequences
The association of SR proteins with gene promotersmight reflect

early function in interacting with nascent RNA to facilitate cotran-

scriptional RNA processing. To test this possibility, we mapped

their interactions with RNA by UV-crosslinking immunoprecipita-

tion in the same cells using the same anti-HA antibody, followed

by deep RNA sequencing (CLIP-seq, see Pandit et al., 2013).

Strikingly, ChIP-seq and CLIP-seq revealed completely distinct

profiles on DNA and RNA, as illustrated on the hnRNPH1 gene

(Figure 1B). This distinction is also evident from the meta-
856 Cell 153, 855–868, May 9, 2013 ª2013 Elsevier Inc.
analysis, showing that SRSF2 primarily associates with DNA at

gene promoters but with RNA on internal exons in gene bodies

(Figure 1C), where its well-defined role in exon inclusion is

executed. We further note that SRSF2 crosslinks to RNA near

the TSS but with a lower efficiency compared to internal exons

(Figure 1C, note the scale difference in the y axes), indicative

of complex interplay with DNA and RNA in the promoter-prox-

imal regions. SRSF1 exhibited essentially identical patterns in

these analyses (data not shown).

The functional significance of the prevalent association of

SRSF1 and SRSF2 with DNA is evidenced by the positive corre-

lation with levels of gene expression determined by RNA-seq

(Figure 1D), which is consistent with an active role of the SR pro-

teins in transcription. Because of their similar profiles on DNA,

we wondered whether SRSF1 and SRSF2 depend on one

another for association with genomic DNA. Antibodies against

endogenous SR proteins generated ChIP-seq profiles identical

to those with the anti-HA antibody (Figures S1E and S1F), which

permitted analysis of one SR protein after the other is depleted.

We found that depleting either SR protein greatly diminished the

association of the other SR protein with genomic DNA (Fig-

ure 1E). Using the normalized data, the SR ChIP-seq signals at

the TSS aremuch reduced in the absence of the other SR protein

(Figures S1G and S1H). These observations explain many similar

functional requirements later observed for both SR proteins

in vivo (see below).

SR Proteins Are Involved in the Regulation
of Transcription Pause Release
Association of SR proteins with both promoter DNA and RNA

near the TSS suggests a role in promoter-proximal events that

involve nascent RNA. We pursued this idea by monitoring the

impact of SR proteins on RNAP II occupancy and nascent

RNA production. We performed RNAP II ChIP-seq and global

nuclear run-on coupled with deep sequencing (GRO-seq)

(Core et al., 2008) and found that depletion of either SR protein

induced the accumulation of RNAP II and nascent RNA at the

TSS, as illustrated on several genes (Figures 2A, 2B, S2A), which

is also evident from meta-analyses of the genome-wide data

(Figures 2C and S2B). These data suggest that SR proteins facil-

itate the release of RNAP II paused near gene promoters, a crit-

ical regulatory step recently shown to require key transcription

factors and regulators (Byun et al., 2012; Rahl et al., 2010;

Sawarkar et al., 2012).

To quantify induced transcription pausing in response to

SR protein depletion, we calculated the ‘‘traveling ratio’’ (TR)

on individual genes, which is defined by the average RNAP II

density near the promoter (�30 to +300 nt from TSS) divided

by that in the gene body (+300 nt to the end of gene). Depletion

of either SRSF1 or SRSF2 caused RNAP II accumulation at pro-

moters relative to gene bodies (increased TR) based on both

RNAP II ChIP-seq and GRO-seq signals, the latter of which

reflects transcriptionally engaged RNAP II (Figures 2D and

S2C). The TR changes induced by SR protein depletion are high-

ly statistically significant and reminiscent of the effect of blocking

P-TEFb with a small-molecule inhibitor or inhibiting c-Myc (Rahl

et al., 2010). To rule out the possibility that depletion of any RNA-

binding protein capable of interacting with nascent RNA may
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Figure 1. SR Proteins SRSF1 and SRSF2 Interact with DNA on Gene Promoters and RNA on Exonic Regions

(A) Genomic distribution of SR protein ChIP tags (SRSF1 total tags = 10,529,663; SRSF2 total tags = 5,199,318), showing that SRSF1 and SRSF2 have similar

binding patterns with a significant fraction mapped to gene promoters in each case.

(B) SR protein ChIP-seq and CLIP-seq signals on the representative hnRNPH1 gene. y axis indicates normalized tags per million, with the floor set to 0. The

SR CLIP-seq data sets (SRSF1 total tags = 3,694,535; SRSF2 total tags = 4,874,935) on the same MEFs are from the published work (Pandit et al., 2013).

(C) Metagene analysis of SRSF2 ChIP-seq (green) and CLIP-seq (red) data at the TSS (based on 23,158 annotated TSS), compared to SRSF2 signals on internal

exons (based on 149,352 annotated mouse exons). y axis indicates tags per million per gene.

(D) Correlation between SR ChIP-seq signals at the TSS and gene expression analyzed by using all genes with unique and nonoverlapping TSSs. Genes were

divided into three groups based on RNA-seq: high (n = 2,829), medium (n = 2,829), and low (n = 2,828). p value is < 2.2 3 10�16 on all pairwise comparisons

according to two-tailed Kolmogorov-Smirnov test. y axis indicates tag density per million per gene.

(E) Heatmaps of SR-DNA interactions near the TSS in cells depleted of a different SR protein. Raw tag counts from the same amounts of starting cells were used

for comparisons (SRSF1 ChIP-seq tags in WT MEFs = 4,538,963; SRSF1 ChIP-seq tags in SRSF2-depleted MEFs = 551,590; SRSF2 ChIP-seq tags in WT

MEFs = 9,489,245; SRSF1 ChIP-seq tags in SRSF2-depleted MEFs = 551,933).

See also Figure S1.
produce a similar effect, we examined hnRNP A or B and found

no effect on RNAP II TR in response to knockdown of either

protein (Figure 2E).

We next assessed the relationship between TR changes

induced by SR protein depletion and corresponding changes

in gene expression. Based on RNAP II ChIP density or GRO-

seq signals, we divided genes into three bins based on the
magnitude of TR changes in response to SRSF2 depletion and

found that the largest increases in TR are correlated with

reduced gene expression measured by RNA-seq (Figure 2F).

Similar results were also obtained for SRSF1 (Figure S2D). These

data suggest a strong influence (direct or indirect) of SR proteins

on gene transcription in addition to their traditional functions in

RNA processing.
Cell 153, 855–868, May 9, 2013 ª2013 Elsevier Inc. 857
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Figure 2. SR Proteins Are Required for RNAP II Pause Release

(A and B) UCSC genome browser views of RNAP II ChIP-seq (detected by N20) and GRO-seq signals on the representative hnRNPH1 gene before and after

Dox-induced depletion of SRSF1 (A) or SRSF2 (B) in MEFs. y axis indicates normalized tags per million, with the floor set to 0.

(C) Metagene analysis of RNAP II ChIP-seq (top) or GRO-seq (bottom) signals at the TSS (n = 23,037) in response to SRSF2 depletion. SRSF2-bound and

unbound genes were separately compared. The differences are significant (p < 2.2 3 10�16) based on two-tailed KS test. y axis indicates normalized tags per

million per TSS.

(D) Shift of traveling ratio (TR) based on RNAP II ChIP-seq (top) or GRO-seq (bottom) data sets of active genes in response to SRSF2 depletion (n = 5,703,

p < 2.2 3 10�16) according to two-tailed KS test in both cases.

(E) TR differences based on RNAP II ChIP-seq signals in MEFs depleted of hnRNP A (top) or hnRNP B (bottom). The knockdown effects were verified by western

blotting (insets).

(F) TR shifts based on RNAP II ChIP-seq (top) or GRO-seq (bottom) correlated with induced gene expression in response to SRSF2 depletion. Averaged changes

in gene expression (FDR < 0.05) detected by RNA-seq were plotted against three groups of genes evenly divided according to their TR differences from large

to small.

See also Figure S2.
The SR-Promoter Interactions Depend on RNA, but Not
Ongoing Transcription
Early studies indicated that SR proteins interact with the RNAP II

complex (Misteli and Spector, 1999) but in an RNA-dependent

manner (Sapra et al., 2009). To determine whether ongoing tran-

scription is required for such interactions, we performed ChIP

analysis on several gene promoters in response to a-amanitin

treatment, which largely abolished ongoing transcription based

on RT-qPCR analysis of nascent RNA but onlymodestly reduced

RNAP II occupancy near the TSS (Figure 3A). Unexpectedly, we

found little or no effect of a-amanitin treatment on SR ChIP sig-

nals on the hnRNPH1 and TMSB4X promoters, indicating that
858 Cell 153, 855–868, May 9, 2013 ª2013 Elsevier Inc.
ongoing transcription may not be a prerequisite for SR proteins

to associate with genomic DNA (Figure 3A).

To determine whether the association of SR proteins with DNA

is dependent on RNA, we performed ChIP-qPCR analyses on

multiple SR protein target genes in the presence of RNase T1

or RNase A and found that SR ChIP signals on both promoter

and gene body are sensitive to the RNase treatment (Figures

3B and S3A). Some remaining ChIP signals might result from

formaldehyde-mediated crosslinking of the SR proteins to other

DNA-binding proteins. These results suggest that some RNA of

unknown identity may be responsible for linking SR proteins to

genomic DNA near the TSS.
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Figure 3. Noncoding 7SK RNA Mediates SR Protein Binding to Gene Promoters
(A) ChIP-qPCR analysis of SR protein interaction with two gene promoters (HNRNPH1 and TMSB4X) in MEFsmock treated with DMSO or treated with a-amanitin

(left two panels). The effects of a-amanitin on RNAP II occupancy and nascent RNA (produced during nuclear run-on) at the TSS regions of the two genes were

determined by ChIP or RT-qPCR (right two panels).

(B) ChIP-qPCR analysis of SR protein interaction with gene promoters using cell lysate treated with RNase T1 or RNase H plus anti-7SK oligo (7SK AS) (left two

panels). 7SK level was measured by RT-qPCR; U1 snRNA served as a negative control (right).

(C) SR protein CLIP-seq signals on the 7SK RNA. IgG CLIP served as a negative control. y axis indicates normalized tags per million, with the floor set to 0.

(D) ChIP-qPCR analysis of SR protein interaction with gene promoters in response to degradation of the 7SKRNAby an anti-7SK oligo inMEFs. A scrambled oligo

served as a negative control. The far-right panel shows the level of the 7SK RNA measured by RT-qPCR under each treatment condition.

(E) Co-IP/western blotting analysis, showing SR proteins as part of the 7SK complex.

Data are shown in (A), (B), and (D) as mean ± SD. *p < 0.05 and **p < 0.005 based on Student‘s t test. See also Figure S3.
The 7SK Noncoding RNA Mediates SR-Promoter
Interactions
An increasing number of noncoding RNAs have been shown to

mediate protein interactions with genomic DNA (Rinn and Chang,

2012).We searched for abundant cellular RNAs boundbySRpro-

teins in our CLIP-seq data sets, paying particular attention to

thosepreviously implicated in the regulationof transcription. Inter-

estingly, we noted that both SRSF1 and SRSF2 crosslink exten-

sively to the 7SK noncoding RNA (note the scale of the y axis in

Figure 3C), known to regulate transcription elongation by control-
ling the elongation factor P-TEFb (Ott et al., 2011; Peterlin

and Price, 2006). Both SR proteins specifically bound the third

stem loop, adjacent to the regions boundbyother relatively stable

components of the 7SK complex (Krueger et al., 2010).

To test whether the 7SK RNA mediates the association of SR

proteins with genomic DNA, we used RNase H and a 7SK-anti-

sense oligonucleotide to specifically degrade the RNA (Fig-

ure 3B). Similar to RNase T1 treatment, specific degradation of

the 7SK RNA greatly reduced SR protein ChIP signals on gene

promoters, whereas the scrambled control oligonucleotide had
Cell 153, 855–868, May 9, 2013 ª2013 Elsevier Inc. 859



no effect (Figure 3B). We also transfected a DNase-resistant

20-O-methyl anti-7SK oligonucleotide into MEFs to degrade the

7SK RNA in vivo and again observed significant reduction of

SR protein ChIP signals on gene promoters (Figure 3D). These

data strongly suggest that the 7SK RNA plays a major role in

mediating the SR protein-promoter DNA interactions.

The evidence for SR proteins crosslinking to the 7SK RNA, in

conjunction with their colocalization in the cell (Prasanth et al.,

2010), suggests that both SR proteins may be part of the 7SK

complex. To test this hypothesis, we immunoprecipitated

HA-tagged SRSF1 or SRSF2 followed by RT-PCR analysis of

the 7SK RNA and western analysis of previously characterized

components of the 7SK complex, including P-TEFb (CDK9/

CyclinT1), LARP7, and HEXIM1. We found that the anti-HA

immunoprecipitate contained all established components of

the 7SK complex, but not the abundant polycomb-body-associ-

ated Tug1 noncoding RNA (Yang et al., 2011), which served as a

negative control (Figure 3E). The associations were sensitive to

RNase T1 treatment in vitro (Figure S3B) or degradation of the

7SK RNA in vivo (Figure S3C). These results demonstrate that

both SR proteins are part of the 7SK complex under physiolog-

ical conditions despite the fact that these SR proteins were not

detected in highly purified 7SK complex in previous proteomics

studies (Yang et al., 2005; Yik et al., 2003).

The 7SK Complex Is Intimately Associated with Active
Gene Promoters
The observations that SRSF1 and SRSF2 are part of the 7SK

complex and that the 7SK RNA is critical for their association

with gene promoters raise an intriguing possibility that these

factors may represent a previously unknown molecular assem-

bly near the TSS. By cellular fractionation, we found that

�50% of the 7SK complex could be readily extracted under

mild detergent conditions, likely representing the soluble pool

of the 7SK complex in the nucleoplasm, and the remaining half

of the 7SK complex was associated with the chromatin fraction

and releasable with DNase I treatment (Figure 4A).

The ability to detect a significant amount of the 7SK complex

on chromatin is reminiscent of a recent observation that both

CDK9 and HEXMI1 appear to interact with the HIV-1 promoter

even before Tat induction, indicating that the 7SK complex

may be more closely associated with genomic DNA than previ-

ously thought (D’Orso and Frankel, 2010). To extend this obser-

vation, we conducted ChIP-qPCR analysis and detected both

CDK9 and HEXIM1 on multiple endogenous gene promoters

(Figures 4B and S4A). In these experiments, we note that the

standard formaldehyde-based crosslinking protocol is robust

for ChIP-qPCR, but not for genome-wide analyses by ChIP-

seq. Reasoning that this might reflect multiple protein-mediated

associations between the 7SK complex and genomic DNA,

which may not be efficiently preserved by formaldehyde, we

employed a recently described glutaraldehyde-based crosslink-

ing strategy, which appears to be more effective in mapping

noncoding RNA-containing complexes to mammalian genomes,

even though this method is anticipated to cause higher back-

ground due to extensive crosslinking induced by glutaraldehyde

(Chu et al., 2011). Under these conditions, ChIP-seq with

specific antibodies revealed the interactions of both CDK9 and
860 Cell 153, 855–868, May 9, 2013 ª2013 Elsevier Inc.
HEXIM1 with genomic DNA at the promoter-proximal regions,

and the IgG control showed a modest degree of enrichment as

predicted by the relatively high background of the glutaralde-

hyde-based method (Figure 4C).

We note that the ChIP-seq signals of the 7SK complex compo-

nents are broadly associated with gene promoters (the peaks

occupy �1 kb on both sides of gene promoters), similar to the

binding patterns seen on the HIV-1 gene (D’Orso and Frankel,

2010). These data suggest that the 7SK complex functions at

endogenous gene promoters as well as at the HIV promoter.

Consistently, we found that the association of the 7SK complex

with a given endogenous gene promoter is positively correlated

with the degree to which RNAP II pauses at the TSS of that pro-

moter, a relationship that is also true for SRSF1 and SRSF2 (Fig-

ure S4B). Furthermore, P-TEFb (CDK9) and the SR proteins

co-occupy a large set of gene promoters (Figure 4D, left for

SRSF2; data not shown for SRSF1). This relationship likely

reflects function because of extensive overlap between the set

of genes that responded to DRB inhibition of P-TEFb with

increased RNAP II pausing at their TSSs and the set that

responded similarly to depletion of either SR protein (Figure 4D,

right for SRSF2; data not shown for SRSF1). Together, these

results strongly implicate functional cooperation between SR

proteins and the 7SK complex at endogenous promoters.

RNA Triggers SR Protein Release along with P-TEFb
from the 7SK Complex
Having established the presence of at least two SR proteins in

the 7SK complex, we next asked whether such interactions

might be perturbed by the presence of RNA with high-affinity

binding sites for specific SR proteins. We modified a P-TEFb

release assay described previously (Krueger et al., 2010) by

incubating the 7SK complex brought down with anti-HEXIM1

antibody with increasing amounts of RNA-containing SR pro-

tein-binding sites (schematic in Figure 4E). We selected the

sequence GAAGGA, a high-affinity binding site for multiple SR

proteins that has been characterized as an exonic-splicing

enhancer (ESE) (Cavaloc et al., 1999). A pyrimidine-rich

sequence (UUCUCU) incapable of interacting with SR proteins

was tested as a negative control. We found that the added

ESE RNA released both SRSF1 and SRSF2 from the 7SK com-

plex and, strikingly, that SR protein release was accompanied

by progressive release of CDK9, whereas HEXIM1 remained

associated with beads (Figure 4E, blue boxed lanes 6–8).

We also tested a 20-O-methyl oligonucleotide antisense to the

SR protein-binding site in the 7SK RNA for its ability to bump off

SR proteins and found that the specific antisense oligonucleo-

tide, but not a nonspecific control, could compete off both SR

proteins as well as CDK9 from the immunopurified 7SK complex

(Figure 4E, redboxed lanes12–14). The 7SKRNA remained intact

under these conditions (data not shown). Collectively, these data

demonstrate RNA-induced coordinated release of SR proteins

and P-TEFb from the 7SK complex. We envision that nascent

RNA might trigger this process during transcription activation.

SRSF1 and SRSF2 Connect P-TEFb to RNAP II
Previous work showed that SR proteins are associated with

RNAP II, which we further confirmed by reciprocal IP using
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Figure 4. SR Proteins Mediate P-TEFb Release from the 7SK Complex in an RNA-Dependent Manner

(A) Experimental strategy used to fractionate MEFs. Both active and inhibitory components of the 7SK complex are equally distributed between the soluble (S1)

and chromatin-bound fraction (P1 or S2). Histone H3 and a-tubulin served as chromatin-bound and unbound markers.

(B) ChIP-qPCR analysis of CKD9 and HEXIM1 interactions on four gene promoters in glutaraldehyde-crosslinked MEFs. ‘‘Intergenic’’ indicates a region �5 kb

upstream the Vim gene promoter.

(C) Genome-wide analysis of CDK9 (blue) and HEXIM1 (red) interactions near the TSS (n = 23,037) in glutaraldehyde-crosslinked MEFs. Note some background

enrichment with IgG control (green) under this experimental condition. p < 2.23 10�16 is calculated based on two-tailed KS test. y axis indicates normalized tags

per million per gene.

(D) Venn diagrams of genomic interactions between CDK9 and SRSF2 detected by ChIP-seq (left) and the induction of RNAP II pausing on P-TEFb-dependent

versusSRSF2-dependent genes (right), indicating extensive physical and functional relationships (p< 2.2310�16, hypergometric test) between these two factors.

(E) RNA-dependent release of SR proteins and CDK9 from anti-HEXIM1 IPed 7SK complex. (Top) The strategy for the RNA-mediated P-TEFb release assay.

(Bottom) Western blotting analysis of SR proteins and CDK9 released from the 7SK complex with increasing amounts of RNA. Blue and red boxes, respectively,

highlight dosage-dependent P-TEFb release induced by the purine-rich ESE and the 20-O-methyl oligo complementary to the mapped SR-binding site in the

7SK RNA.

Data in (A) and (B) are shown as mean ± SD. See also Figure S4.
anti-HA and anti-RNAP II antibodies (Figures S5A and S5B).

Because of similar effects with both SRSF1 and SRSF2

observed thus far, we focused on SRSF2 in the remaining in vivo

studies until the experiments designed to define the direct role of

specific SR proteins in transcription activation. RNase treatment

or degradation of the 7SK RNA greatly reduced the association

of RNAP II with SRSF2 (Figures 5A and 5B), whereas in vivo

depletion of SRSF2 modestly increased the association of
P-TEFb subunit CDK9 with the 7SK RNA, likely due to the

replacement of SRSF2 by other SR proteins, whichmight slightly

reduce the dynamics of the 7SK complex in the cell (Figure 5C).

Importantly, these data show that the 7SK complex connects

SRSF2 to RNAP II.

Knockdown of SRSF2 caused a dramatic and selective reduc-

tion of RNAP II phosphorylation at the P-TEFb target site Ser2,

but not at Ser5 positions (Figure 5D). Interestingly, degrading
Cell 153, 855–868, May 9, 2013 ª2013 Elsevier Inc. 861
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Figure 5. 7SK RNA Connects SR Proteins to RNAP II, and SR Proteins Are Required for SEC Recruitment to Gene Promoters

(A) Co-IP/western blotting analysis, showing RNA-dependent association of RNAP II with HA-tagged SRSF2.

(B) Reciprocal co-IP/western blotting analysis, demonstrating RNA-dependent association of HA-tagged SRSF2 with IPed RNAP II. Levels of the 7SK RNA were

determined by RT-qPCR under different treatment conditions (bottom).

(C) Ribo-IP analysis, showing slightly increased association of CDK9 with 7SK in SRSF2-depleted MEFs. (Right) Levels of CDK9-associated 7SK quantified by

RT-qPCR.

(D) Western blotting analysis, showing diminished Ser2-phosphorylated RNAP II (Pser2) in SR protein-depleted MEFs. Specific antibodies were used to detect

total RNAP II (N20), Ser2- and Ser5-phosphorylated RNAP II (Pser2 and Pser5), CDK9, AFF4, and HEXIM1 before and after Dox-induced depletion of SRSF1 or

SRSF2. a-tubulin served as loading control.

(legend continued on next page)

862 Cell 153, 855–868, May 9, 2013 ª2013 Elsevier Inc.



the 7SK RNA reversed the reduction of RNAP II Ser2 phosphor-

ylation in MEFs (Figure 5E). This result could be explained if the

increased soluble pool of released P-TEFb in 7SK RNA knock-

down cells compensated for the defects in SRSF2-dependent

delivery of P-TEFb to RNAP II at gene promoters, as suggested

earlier (Yik et al., 2003; Young et al., 2007). As a result of this

compensation, degradation of the 7SK RNA reduced the associ-

ation between SRSF2 and P-TEFb but caused little change in

RNAP II traveling ratio (Figure S5C).

SEC Is Recruited to Gene Promoters
in an SRSF2-Dependent Manner
To further explore themechanism for SRSF2-dependent RNAP II

pause release, we performed ChIP analyses of multiple key tran-

scription factors implicated in transcription elongation before

and after depletion of the SR protein. On the hnRNPH1 gene,

SRSF2 depletion caused the accumulation of total RNAP II

(detected with N20) at the gene promoter but had little effect

on levels of Ser5-phosphorylated RNAP II or HEXIM1 (Figure 5F).

In contrast, the ChIP signals of Ser2-phosphorylated RNAP II

and CDK9 were greatly diminished (Figure 5F). These results

were also evident onmultiple other genes that we examined (Fig-

ure S5D). We next asked whether the impairment might result

from reduced recruitment of Brd4, a chromatin-associated fac-

tor known for its critical role in P-TEFb recruitment to RNAP II

at gene promoters. We found that the Brd4 ChIP signals

changed little or even increased to some extent in SRSF2-

depleted cells (Figures 5F and S5D). Conversely, Brd4 RNAi

significantly reduced the ChIP signals of both SRSF2 and

CDK9, but not HEXIM1, on the majority of their target gene

promoters that we examined (Figure 5G). These data are fully

consistent with the proposed role of Brd4 as a key chromatin

‘‘receptor’’ for P-TEFb.

To understand how various defects that we detected in

SRSF2-depleted cellsmight cause RNAP II to pause at gene pro-

moters, we assessed the recruitment of the superelongation

complex (SEC) to gene promoters. A previous study showed

that various forms of the SEC all contain AFF4, which is essential

for transcription elongation (Lin et al., 2010). By ChIP-qPCR, we

found that SRSF2 depletion dramatically impaired the recruit-

ment of AFF4 to multiple gene promoters with the exception of

SRSF6 (Figures 5F and S5D), consistent with the selective

effects of SEC on different genes (Luo et al., 2012). Collectively,

the data suggest a chain of events that lead to SEC recruitment,

and defects in this chain cause RNAP II pausing in the promoter-

proximal regions.

SRSF2 Mediates ESE-Dependent Transcriptional
Activation
As a family, SR proteins have the capacity to bind diverse RNA

sequences. In particular, SRSF2 seems to recognize highly
(E) Restoration of RNAP II Ser2 phosphorylation in MEFs depleted of both SRSF

(F) Requirement of SRSF2 for efficient recruitment of the superelongation com

phorylated RNAP II and two common components (CDK9 and AFF4) of SEC w

chromatin-bound Brd4 were unaffected.

(G) Brd4 requirement for the recruitment of CDK9 and SRSF2 to gene promoters

Data in (B), (C), (E), (F), and (G) are shown as mean ± SD. *p < 0.05 and **p < 0.0
degenerate ESEs (Daubner et al., 2012), suggesting its ability

to act on diverse sequences in transcribed RNA in mammalian

transcriptome. Because a high-affinity SR protein-binding

sequence is able to release P-TEFb from the 7SK complex,

we hypothesized that RNA elements in nascent promoter-asso-

ciated transcripts may provide critical signals to induce a chain

of events similar to that triggered by Tat through binding to TAR

on the HIV-1 promoter. Using luciferase reporters driven by

several commonly used promoters, each of which carries a

different 50 UTR, we found that SRSF2 actively promoted

gene expression from the HIV-1 promoter in transfected

HEK293T cells (Figure 6A), and this effect was independent

of but synergistic with the activity of Tat on TAR (Figure S6A).

Importantly, we found that SRSF2 could be coimmunoprecipi-

tated with Brd4, and Brd4 RNAi abolished SRSF2-dependent

transcriptional response on the HIV-1 promoter (Figures S6B

and S6C). These data suggest that SRSF2 may act like HIV

Tat but via different cis-acting element(s) in transcription

activation.

In these functional analyses, we returned to compare between

SRSF2 and SRSF1 to determine the specificity and mechanism

in transcriptional activation by different SR proteins. Interest-

ingly, we observed that SRSF1 activated reporters driven by

both the HIV-1 and HSV promoters, but not by the CMV pro-

moter, indicating a degree of specificity in these reporter-based

assays (Figure 6A). In light of the previous finding that the shut-

tling SRSF1, but not nonshuttling SRSF2, was able to activate

translation of ESE-containing luciferase reporters in the cyto-

plasm (Sanford et al., 2004), we asked whether each of the acti-

vation events might result from enhanced transcription (increase

in mRNA) or elevated translation (assessed by increase in lucif-

erase activity without corresponding increase in mRNA). The

results suggested that the effect of SRSF1 on HIV-1 was tran-

scriptional, whereas its impact on HSV was primarily transla-

tional. In contrast, the effect of SRSF2 on HIV-1 was largely

transcriptional (Figure 6A).

We next chose an endogenous gene (hnRNPH1), which

depended on both SRSF1 and SRSF2 for efficient expression

in MEFs to link its 3 kb core promoter and 50 UTR to a luciferase

reporter. We found that the first 100 nt sequences in its 50 UTR
were necessary and sufficient for transcriptional activation (Fig-

ure 6B). Interestingly, this transcription unit responded posi-

tively to SRSF2 overexpression and negatively to SRSF2

downregulation by RNAi, but not to SRSF1 overexpression,

although we detected some effect with SRSF1 RNAi. We further

tested the response of the HSV-based reporter to both of the

SR proteins using a tethering approach by engineering a

tandem repeat of RNA elements that can be recognized by a

specific Pumilio 1 (PUF) RNA-binding motif (RRM) and by

scoring the reporter response to individual SR proteins fused

to the PUF RRM (Wang et al., 2009). We found that tethered
2 and 7SK RNA. (Bottom) Levels of 7SK determined by RT-qPCR.

plex (SEC) to gene promoters. In response to SRSF2 depletion, Ser2-phos-

ere dramatically reduced on HnRNPH1 gene, but the levels of HEXIM1 and

.

05 based on Student‘s t test. See also Figure S5.
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Figure 6. High-Affinity RNA Elements Mediate Transcriptional Activation by SRSF2

(A) Luciferase assay in transfected HEK293T cells, showing activation of the HIV-1 promoter by overexpressed V5-tagged SRSF1 or HA-tagged SRSF2 (inset).

SRSF1 activated the HSV-driven reporter at the translational level (no induction of mRNA), but SRSF2 had no effect on HSV. None of the SR proteins activated the

CMV promoter.

(B) Luciferase assay of reporters constructed from the hnRNPH1 gene in response to SR protein overexpression (left) or RNAi (right). Specific constructs are

illustrated on the right.

(C) Tethered SRSF2 activated transcription from an HSV-based reporter containing a specific PUF binding motif (red box). The SRSF2-PUF fusion protein

activated transcription, whereas SRSF1-PUF fusion protein stimulated translation of the reporter. A plasmid not carrying any SR-coding sequences served as a

negative control.

(D–F) Schematic presentation of HSV-based reporters (D). Dual luciferase assays based on PCMV (internal control) and HSV-ESE reporters in response to SRSF2

overexpression (E) or RNAi (F). (Insets) Protein levels monitored by western blotting.

(G) Comparison of traveling ratio (TR) of transcriptionally engaged RNAP II (based on GRO-seq signals) on two groups of genes with high (blue) or low/no (green)

SRSF2 CLIP-seq signals on their 300 nt TSS-associated RNA. Genes with lower TR are more linked than those with higher TR to SRSF2 binding on RNA near the

TSS. The differences are highly significant (p < 2.2 3 10�16) based on the two-tailed KS test.

Data in (A), (B), (C), (E), and (F) are shown as mean ± SD. *p < 0.05 and **p < 0.005 based on Student‘s t test. See also Figure S6.
SRSF2 activated the reporter at the transcriptional level,

whereas tethered SRSF1 enhanced the translation of the

reporter (Figure 6C). Using this approach, we performed prelim-

inary survey for multiple other SR family members. The data (not
864 Cell 153, 855–868, May 9, 2013 ª2013 Elsevier Inc.
shown) suggest that SRSF2 may be the only SR protein capable

of functioning as a general transcription activator, whereas

other SR proteins may largely affect transcription via indirect

mechanisms (see Discussion).



Single-Stranded ESE Near TSS Is Required
for Transcriptional Activation
The ESEs cloned after the TSS may simply function as down-

stream enhancers to activate transcription, and increased

reporter expression may also indirectly result from enhanced

RNA stability or transport. To address these possibilities, we

engineered the HSV-based reporter, which does not seem to

contain any SRSF2-responsive element (see Figure 6A). This

reporter also carries a splicing unit in front of the luciferase-

coding sequences (construct 1, Figure 6D), which permitted us

to determine positional requirements for engineered ESEs to

activate transcription. We selected a well-characterized

SRSF2-responsive ESE from the second exon of the b-globin

gene (Schaal and Maniatis, 1999) and prepared a series of con-

structs to test the response to SRSF2 overexpression (Figure 6E,

insert) or knockdown (Figure 6F, insert).

We first examined the reporters containing one or two copies

of SRSF2 ESE inserted in the 50 UTR (constructs 2 to 4), finding

that SRSF2 overexpression activated (whereas SRSF2 RNAi

diminished) transcription in an ESE-dependent manner and

that the reporter containing two ESEs showed stronger

responses to SRSF2 overexpression or knockdown than did

the reporter containing a single ESE. In contrast, reporters con-

taining two copies of a control antisense ESE (cESE) (construct

5), mutant ESE (construct 7), or SRSF1 ESE (construct 8) all failed

to respond to SRSF2 overexpression or knockdown. Impor-

tantly, when one ESE and one cESE were cloned adjacent with

one another in the reporter (which has a potential to form a

hairpin, construct 6), we detected no response, suggesting

that the ESE must be exposed as single-stranded RNA to

function in SRSF2-mediated transcription activation. This exper-

imental strategy, which has been used to demonstrate Tat bind-

ing to TAR in nascent viral transcripts to activate transcription

(Berkhout et al., 1990), suggests that SRSF2 activates transcrip-

tion via the promoter-proximal nascent RNA.

We next moved the SRSF2 ESE from the promoter-proximal

region to 60 nt downstream from the TSS or to the second

exon (constructs 9 and 10) in the reporter. We found that the

ESE no longer mediated the response to SRSF2 overexpression

or knockdown (Figures 6E and 6F). This position-sensitive effect

argues against RNA stability, transport, or splicing-related

mechanisms because the ESE in either exon 1 or 2 is expected

to have similar effects on those pathways. Together, these

data suggest that SRSF2-binding motifs near the 50 end of

nascent RNA may act as critical signals for transcription activa-

tion, a mechanism that is highly reminiscent of the Tat-TAR inter-

action during the activation of the HIV-1 promoter.

Finally, to relate the ESE effect from reporter-based studies to

global activation of gene expression, we determined how

SRSF2-RNA interactions near the TSS might be correlated to

the traveling ratio of transcriptionally engaged RNAP II measured

by nascent RNA production. Because CLIP-seq signals are

generally lower near the TSS than on internal exons among

�8,700 genes that showed sufficient GRO-seq signals on both

TSS and gene body, we selected the top 1,000 genes with signif-

icant CLIP-seq signals in the first 300 nt and compared themwith

the bottom 1,000 genes that had little or no detectable CLIP-seq

signals in the same region. We found that transcriptionally
engaged RNAP II (measured by associated GRO-seq signals)

on genes with little SRSF2 CLIP-seq signals near their TSS

tend to be much more paused than those with high SRSF2

CLIP-seq signals, especially among 60% of genes in both

groups with high (>5) traveling ratios (Figure 6G). These findings

suggest that transcriptionally engaged RNAP II near the TSS of

genes with higher SRSF2 CLIP-seq signals is more efficient in

entering the gene body, therefore providing global evidence

that SRSF2 interacts with promoter-associated RNAs to

enhance transcription elongation.

DISCUSSION

An Unexpected Role of SRSF2 in the Regulation
of Transcription Pause Release
Transcriptional pause release has been increasingly realized as a

major step in regulated gene expression (Adelman and Lis,

2012). As depicted in Figure 7 (upper-right), HIV Tat has the abil-

ity to extract P-TEFb from the 7SK complex (Krueger et al.,

2010). This process is likely mediated by the protein-protein

interaction between Tat and the cyclin T subunit of P-TEFb.

The released P-TEFb is recruited to paused RNAP II via Tat bind-

ing to TAR on nascent RNA, which is assisted by chromatin-

bound Brd4 (Peterlin and Price, 2006). These events eventually

trigger the transition of transcriptionally engaged RNAP II on

the HIV-1 promoter from the pausing to the elongating state.

At this point, the field is still debating whether the released

P-TEFb first joins its nucleoplasmic pool before being recruited

to paused RNAP II or whether these two steps might be more

locally coupled at gene promoters (indicated by the two dashed

arrows in the model).

We see many parallels between the actions of Tat and SRSF2

in the regulation of transcription pause release (Figure 7, lower-

right). We provide evidence that the SR protein is part of the

7SK complex (Figure 3E) and that high-affinity RNA for the SR

protein can induce P-TEFb release from the complex (Figure 4E).

SRSF2 can also be coimmunoprecipitated with both P-TEFb and

Brd4 (Figures S3B and S6B). Importantly, like the HIV Tat/TAR

system, SRSF2 appears to use chromatin-bound Brd4 to

enhance the recruitment of P-TEFb to paused RNAP II (Figures

5F and 5G), and the SRSF2 ESE on nascent promoter-proximal

RNA is sufficient for SRSF2-mediated activation of gene expres-

sion (Figure 6). However, two critical questions await future

studies. One is whether an ESE on nascent promoter-associated

RNA is directly responsible for inducing SRSF2 release from the

7SK complex, and the other is how the released P-TEFbmight be

recruited to paused RNAP II near the TSS (indicated by the two

dashed arrows in the bottom panel of the model).

The 7SK Complex as Part of Megadalton Promoter
Complexes
It does not seem to be an efficient mechanism for released

P-TEFb to first diffuse around in the nucleoplasm before being

attracted to gene promoters for transcription activation. Frankel

and colleagues first detected a close association of the 7SK

complex with the HIV-1 promoter before Tat induction (D’Orso

and Frankel, 2010). We now provide genome-wide evidence

for this spatial arrangement by showing preferential association
Cell 153, 855–868, May 9, 2013 ª2013 Elsevier Inc. 865



Figure 7. A Working Model for SR Protein-Dependent Transcriptional Activation

SR proteins and the 7SK RNA complex are intimately associated with genomic DNA near the promoter-proximal region (left). This proximity may allow more

efficient local switches during gene activation. During Tat-dependent activation of the HIV-1 promoter (upper-right), Tat binding to TAR induces relocation of

P-TEFb (CDK9:cyclin T) from the 7SK complex to paused RNAP II. This process may be facilitated by direct protein-protein interactions between Tat and cyclin

T and between Brd4 and CDK9. It is currently unclear whether released P-TEFb is directly recruited to RNAP II or indirectly via the nucleoplasmic pool, as

indicated by the dashed arrows. During transcription pause release on cellular genes (lower-right), SR proteins are also associated with gene promoters as part of

the 7SK complex. We speculate that, by taking advantage of local assembly, an SRSF2-binding site (ESE) emerging from RNAP II may induce the SR protein to

switch from the 7SK RNA to nascent RNA, thereby triggering the coordinated release of P-TEFb from the 7SK complex. Again, the released P-TEFb may go

through two separate routes before being recruited to paused RNAP II at the TSS, as indicated by the dashed arrows. In both the Tat/TAR and SR/ESE systems,

chromatin-bound Brd4 may enhance the association of released P-TEFb with RNAP II at the TSS. Recruited P-TEFb will phosphorylate RNAP II and some key

factors, such as NELF and DSIF, resulting in transcription pause release.
of both the inhibitory (HEXIM1) and active (CDK9) components of

the 7SK complex with active gene promoters. Such intimate

association suggests an intriguing possibility that P-TEFb may

undergo a local switch from the 7SK complex to gene promoters

in both Tat- and SRSF2-dependent gene activation.

Most constitutively active genes may use such a local switch

mechanism for basal level transcription. However, some highly

induced genes may attract additional P-TEFb from the nucleo-

plasmic pool because a large amount of extra P-TEFb was

clearly recruited to the HIV-1 promoter during Tat-mediated

gene induction (D’Orso and Frankel, 2010) and to the Hsp70

gene promoter in response to heat shock (Zobeck et al., 2010).

Interestingly, it appears that SR proteins are also recruited to

some highly induced genes in both Drosophila (Champlin et al.,

1991) and mammalian cells (Sapra et al., 2009). These observa-

tions suggest that SR proteins may be additionally recruited

either independently or together with P-TEFb to some rapidly
866 Cell 153, 855–868, May 9, 2013 ª2013 Elsevier Inc.
induced genes for both transcriptional activation and cotran-

scriptional RNA processing.

Promoter-Associated Transcripts as Signals
for Transcriptional Elongation
Various genome-wide studies have revealed short transcripts

associated with the TSS, but their functional significance has

remained undefined (Esteller, 2011). The study of Tat-dependent

gene expression demonstrates the importance of the promoter-

proximal TAR element in transcription activation, but it has been

unclear whether this is a widely usedmechanism for activation of

cellular genes inmammalian cells. We now provide evidence that

SRSF2 is able to activate transcription via a promoter-proximal

ESE. Because of its broad RNA-binding specificity, by recog-

nizing a highly degenerate SSNG motif (S = G or C, N = any

nucleotides) (Daubner et al., 2012), this SR protein appears to

be particularly suitable for such a role in activating a large array



of cellular genes via binding to diverse sequences in the pro-

moter-proximal nascent RNA.

Implications on Dynamic Nuclear Structures Involved
in Regulated Gene Expression
Our findings have interesting implications in the organization of

mammalian genomes in the nucleus. The 7SK complex colocal-

izes with SR proteins in nuclear speckles, a specific nuclear

domain enriched with the splicing machinery. As suggested

earlier and emphasized more recently, nuclear speckles are

likely the consequence of clustered gene expression events

(Dundr and Misteli, 2010; Singer and Green, 1997), which may

permit efficient coupling between transcription and cotranscrip-

tional RNA processing (Han et al., 2011). Our current discovery

has gone one step further by showing that SRSF2 can directly

activate transcription, whereas SRSF1 and perhaps other

SR family members may largely affect transcription indirectly

via their contribution to the structural integrity of the speckled

nuclear domain, which has been recently shown to be critical

for efficient gene expression (Tripathi et al., 2012). However, it

would be premature to rule out the possibility that other SR

proteins may affect transcription via RNA elements away from

TSS, as we clearly detected SRSF1-dependent activation of a

HIV-based reporter. Importantly, our findings emphasize that

transcription and cotranscriptional RNA splicing are not simply

temporally linked; rather, their efficient coupling likely results

from highly integrated machineries to permit coregulation of

gene expression at both transcriptional and posttranscriptional

levels in mammalian cells.

EXPERIMENTAL PROCEDURES

Cell Culture, Protein/RNA Analyses, and Reporter-Based Assays

We treated SRSF1-MEFs with Dox for 4 days and SRSF2-MEFs with Dox for

2 days to deplete respective SR protein to �90% because different SR

proteins are depleted at different rates. Cell fractionation was performed as

described (Cernilogar et al., 2011). RNA and protein analysis by RT-qPCR

and western blotting were according to standard procedures, as detailed in

the Extended Experimental Procedures, and transient transactivation assays

were carried out in HEK293T cells after SR protein overexpression or RNAi.

P-TEFb Release Assay from the IPed 7SK Complex

The P-TEFb release assay was modified from a published protocol (Krueger

et al., 2010). Anti-HEXIM1 was used to IP the 7SK complex followed by incu-

bation with increasing amounts of RNA oligonucleotide at 37�C for 15 min on a

thermal mix. After washing, the content that remained on beads was analyzed

by SDS-PAGE.

Genome-wide Analyses

ChIP-qPCR and ChIP-seq were performed as described (Wang et al., 2011).

RNA-seq was performed by using the MAPS protocol to profile gene expres-

sion based on tags detected at the 30 end of individual transcripts (Fox-Walsh

et al., 2011). The global nuclear run-on assay (GRO-seq) was according to a

published protocol (Wang et al., 2011). Statistical analysis of data is detailed

in the Extended Experimental Procedures.
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The ChIP-seq, RNA-seq, and GRO-seq data on SRSF1- and SRSF2-MEFs are

available at the Gene Expression Omnibus under the accession number

GSE45517. The CLIP-seq data for SRSF1 and SRSF2 are available under

GSE44583 and GSE44591.
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