Endomorphisms of the shift dynamical system, discrete derivatives, and applications

Maria Monks
Massachusetts Institute of Technology, 290 Massachusetts Avenue, Cambridge, MA 02139, United States

A R T I C L E INFO

Article history:

Received 22 January 2009
Received in revised form 25 March 2009
Accepted 8 April 2009
Available online 2 May 2009

Keywords:

$3 x+1$ conjecture
Symbolic dynamics
Shift map

Abstract

All continuous endomorphisms f_{∞} of the shift dynamical system S on the 2 -adic integers \mathbb{Z}_{2} are induced by some $f: \mathscr{B}_{n} \rightarrow\{0,1\}$, where n is a positive integer, \mathscr{B}_{n} is the set of n-blocks over $\{0,1\}$, and $f_{\infty}(x)=y_{0} y_{1} y_{2} \ldots$ where for all $i \in \mathbb{N}, y_{i}=$ $f\left(x_{i} x_{i+1} \ldots x_{i+n-1}\right)$. Define $D: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ to be the endomorphism of S induced by the map $\{(00,0),(01,1),(10,1),(11,0)\}$ and $V: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ by $V(x)=-1-x$. We prove that D, $V \circ D, S$, and $V \circ S$ are conjugate to S and are the only continuous endomorphisms of S whose parity vector function is solenoidal. We investigate the properties of D as a dynamical system, and use D to construct a conjugacy from the $3 x+1$ function $T: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ to a parity-neutral dynamical system. We also construct a conjugacy R from D to T. We apply these results to establish that, in order to prove the $3 x+1$ conjecture, it suffices to show that for any $m \in \mathbb{Z}^{+}$, there exists some $n \in \mathbb{N}$ such that $R^{-1}(m)$ has binary representation of the form $\overline{x_{0} X_{1} \ldots x_{2^{n}-1}}$ or $x_{0} \overline{x_{1} x_{2} \ldots x_{2}}$.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A discrete dynamical system is a function from a set or metric space to itself [5]. Given two dynamical systems $f: X \rightarrow X$ and $g: Y \rightarrow Y$, a function $h: X \rightarrow Y$ is a morphism from f to g if $h \circ f=g \circ h$. A morphism from a dynamical system to itself is called an endomorphism. A bijective morphism is called a conjugacy, and a bijective endomorphism is called an autoconjugacy. Note that conjugacies on metric spaces are not assumed to be continuous.

Let \mathbb{Z}_{2} be the ring of 2 -adic integers. Each element of \mathbb{Z}_{2} is a formal sum $\sum_{i=0}^{\infty} 2^{i} x_{i}$ where $x_{i} \in\{0,1\}$ for all $i \in \mathbb{N}$. The binary representation of $x=\sum_{i=0}^{\infty} 2^{i} x_{i}$ is the infinite sequence of zeroes and ones $x_{0} x_{1} x_{2} \ldots$. (Throughout this paper x_{i-1} will denote the i th digit of the binary representation of a 2 -adic integer x.) Note that $\mathbb{Z} \subseteq \mathbb{Z}_{2}$. For example, $13=1 \cdot 2^{0}+0 \cdot 2^{1}+1 \cdot 2^{2}+1 \cdot 2^{3}$, so the 2 -adic binary representation of 13 is $1011 \overline{0}$, where the overbar represents repeating digits as in decimal notation. The binary representation of -1 is $\overline{1}$, since $\overline{1}+1=1 \overline{1}+1 \overline{0}=\overline{0}=0$.

By interpreting \mathbb{Z}_{2} as the set of all binary sequences, there is a natural topology on \mathbb{Z}_{2}, namely the product topology induced by the discrete topology on $\{0,1\}$. This topology is also induced by the metric δ on \mathbb{Z}_{2} defined by $\delta(x, y)=2^{-k}$ where k is the smallest natural number such that $x_{k} \neq y_{k}$.

The shift dynamical system, $S: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$, is a well-known map, continuous with respect to the 2-adic topology, defined by $S\left(x_{0} x_{1} x_{2} \ldots\right)=x_{1} x_{2} x_{3} \ldots$. This map can be extended to the shift map σ on binary bi-infinite sequences $\ldots x_{-2} x_{-1} x_{0} x_{1} x_{2} \ldots$ by defining $\sigma(x)=y$ where $y_{i}=x_{i+1}$ for all integers i.

In [3], Hedlund classified all continuous endomorphisms of the shift dynamical system σ on bi-infinite sequence space ($\{0,1\}^{\mathbb{Z}}$ with the product topology). Lind and Marcus [5] also stated this result, referring to the continuous endomorphisms of σ as sliding block codes.

[^0]In Section 2, we will show that the continuous endomorphisms of S on \mathbb{Z}_{2} can be classified as follows. For each $n \in \mathbb{Z}^{+}$, let \mathscr{B}_{n} be the set of all binary sequences (or blocks) of length n. Then every continuous endomorphism of S is induced by a function $f: \mathscr{B}_{n} \rightarrow\{0,1\}$ for some n. The endomorphism induced by such an f is the map $f_{\infty}: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ defined by $f_{\infty}(x)=y_{0} y_{1} y_{2} \ldots$ where $y_{i}=f\left(x_{i} x_{i+1} \ldots x_{i+n-1}\right)$ for all $i \in \mathbb{N}$. These results are analogous to those already obtained for σ on $\{0,1\}^{\mathbb{Z}}$.

These endomorphisms have applications to the famous $3 x+1$ conjecture. This conjecture states that the T-orbit $\left\{T^{i}(x)\right\}_{i=0}^{\infty}$ of any positive integer x contains 1 , where $T: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ is defined by

$$
T(x)= \begin{cases}x / 2 & \text { if } x \text { is even } \\ (3 x+1) / 2 & \text { if } x \text { is odd }\end{cases}
$$

In [4], Lagarias proved that there exists a continuous conjugacy Φ from S to T, whose inverse is also continuous. Since conjugacies preserve dynamics (fixed points, cycles, divergent orbits, etc.), the dynamics of S are the same as those of T. Furthermore, we can combine these results to classify all continuous endomorphisms of T. A map H is a continuous endomorphism of T if and only if $H=\Phi \circ f_{\infty} \circ \Phi^{-1}$ for some continuous endomorphism f_{∞} of S.

Hedlund also showed that exactly two of the continuous endomorphisms of σ are autoconjugacies. It can be shown that this is true for \mathbb{Z}_{2} as well (cf. [3,6]). The two continuous autoconjugacies of S are the bit complement map $V=f_{\infty}$ where f is the map sending the block 0 to 1 and the block 1 to 0 , and the identity map $\ell=\mathbf{1}_{\mathbb{Z}_{2}}$ (induced by the map sending 0 to 0 and 1 to 1). Monks and Yazinski [6] investigated the corresponding autoconjugacies of T, namely $\Omega=\Phi \circ V \circ \Phi^{-1}$ and the identity map, respectively.

Continuing the line of research of Monks and Yazinski, it is natural to investigate the continuous endomorphisms of S which are not autoconjugacies. Note that each of these maps, in addition to being an endomorphism of S, is a dynamical system in its own right. As such, it is natural to ask which of these dynamical systems are conjugate to S (and hence to T).

Let $f: B_{2} \rightarrow\{0,1\}$ be defined by $f(00)=f(11)=0$ and $f(01)=f(10)=1$, and define the discrete derivative $D: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ by $D=f_{\infty}$. In Section 5 , we find that D is in fact conjugate to T. Furthermore, the dynamical systems D, S, and their "duals" (formed by interchanging the symbols 0 and 1) are the only endomorphisms of the shift dynamical system having a certain property (see Section 3 , Theorem 3.3). In Section 4 , we thoroughly investigate the dynamics of $D: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$, and apply these results to the $3 x+1$ conjecture in Section 5 .

2. Continuous endomorphisms of the shift map

We begin by classifying all continuous endomorphisms of the shift dynamical system $S: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$. As in the classification of the continuous endomorphisms of the shift map on bi-infinite sequence space, each such endomorphism is characterized by a "block code" as follows.

Definition 1. Let \mathscr{B}_{n} denote the set of all length-n sequences $x_{0} x_{1} \ldots x_{n-1}$ where each $x_{i} \in\{0,1\}$. For any function $f: \mathscr{B}_{n} \rightarrow\{0,1\}$, we define $f_{\infty}: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ by $f_{\infty}(x)=y$ where $y_{i}=f\left(x_{i} x_{i+1} \ldots x_{i+n-1}\right)$.

Theorem 2.1. A map $F: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ is a continuous endomorphism of the shift map S if and only if there is a positive integer n such that $F=f_{\infty}$ for some $f: \mathscr{B}_{n} \rightarrow\{0,1\}$.
Proof. First note that \mathbb{Z}_{2} is homeomorphic to the (middle thirds) Cantor set. (See [2].) The Cantor set is a closed and bounded subset of \mathbb{R}, so it is compact by the Heine-Borel theorem. Hence, \mathbb{Z}_{2} is a compact metric space.

Let n be a positive integer, and let $f: \mathscr{B}_{n} \rightarrow\{0,1\}$ be arbitrary. We show f_{∞} is a continuous endomorphism of S.
To show f_{∞} is continuous, we show that the inverse image of every open ball is open. Let $B(x, \epsilon)$ be an arbitrary open ball in the metric space \mathbb{Z}_{2}. Let k be the smallest nonnegative integer such that $2^{-k}<\epsilon$. Then $B(x, \epsilon)$ is the set of all 2-adic integers y such that the first k digits of y are the same as the first k digits of x.

Let $a \in f_{\infty}^{-1}(B(x, \epsilon))$ be arbitrary, and let $b \in B\left(a, 2^{-(k+n-2)}\right)$. Note that the first $k+n-1$ digits of b are $a_{0} \ldots a_{k+n-2}$. Then for any nonnegative integer $m \leq k-1$, we have $\left(f_{\infty}(b)\right)_{m}=f\left(b_{m} b_{m+1} \ldots b_{m+n-1}\right)=f\left(a_{m} a_{m+1} \ldots a_{m+n-1}\right)=x_{m}$. Hence the first k digits of $f_{\infty}(b)$ are the same as those of x, so it follows that $f_{\infty}(b) \in B(x, \epsilon)$. Since b was arbitrary, it follows that any member of $B\left(a, 2^{-(k+n-2)}\right)$ maps to an element of $B(x, \epsilon)$ under f_{∞}. Hence, $B\left(a, 2^{-(k+n-2)}\right) \subset f_{\infty}^{-1}(B(x, \epsilon))$. Since a was arbitrary, it follows that $f_{\infty}^{-1}(B(x, \epsilon))$ is open, as desired.

To show f_{∞} is an endomorphism of S, let $x \in \mathbb{Z}_{2}$ be arbitrary. Then for any positive integer i,

$$
\begin{aligned}
\left(f_{\infty}(S(x))\right)_{i} & =f\left(S(x)_{i} S(x)_{i+1} \ldots S(x)_{i+n-1}\right) \\
& =f\left(x_{i+1} x_{i+2} \ldots x_{i+n}\right) \\
& =\left(f_{\infty}(x)\right)_{i+1} \\
& =\left(S\left(f_{\infty}(x)\right)\right)_{i} .
\end{aligned}
$$

Hence, f_{∞} is a continuous endomorphism of S.
It now remains to show that such maps are the only continuous endomorphisms of S. Let $F: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ be a continuous endomorphism of S. Since \mathbb{Z}_{2} is a compact metric space and F is continuous, it follows by the Heine-Cantor theorem that F
is uniformly continuous. Hence, choosing $\epsilon=1$, there is a positive real number $\delta>0$ such that any two elements x and y of \mathbb{Z}_{2} which are separated by at most δ have the property that the distance between $F(x)$ and $F(y)$ is less than $\epsilon=1$, i.e. they match in the first digit.

Let n be the smallest positive integer such that $2^{-n}<\delta$. Then any two elements x and y having $x_{0} \ldots x_{n-1}=y_{0} \ldots y_{n-1}$ satisfy $(F(x))_{0}=(F(y))_{0}$. We can now define the map $f: \mathcal{B}_{n} \rightarrow\{0,1\}$ by $f\left(a_{0} a_{1} \ldots a_{n-1}\right)=\left(F\left(a_{0} a_{1} \ldots a_{n-1} 000 \ldots\right)\right)_{0}$. We show that $F=f_{\infty}$.

Since F is an endomorphism of S, we have $F \circ S=S \circ F$. We have that $F(x)_{0}=f\left(x_{0} x_{1} \ldots x_{n-1}\right)=f_{\infty}(x)_{0}$ for any x. We use this as the base case to show by induction that $F(x)_{i}=f_{\infty}(x)_{i}$ for any nonnegative integer i and $x \in \mathbb{Z}_{2}$. Let i be a positive integer and assume $F(x)_{i-1}=f_{\infty}(x)_{i-1}$ for any $x \in \mathbb{Z}_{2}$. Then since f_{∞} commutes with S by the above argument, we have

$$
\begin{aligned}
(F(x))_{i} & =(S(F(x)))_{i-1} \\
& =(F(S(x)))_{i-1} \\
& =\left(f_{\infty}(S(x))\right)_{i-1} \\
& =\left(S\left(f_{\infty}(x)\right)\right)_{i-1} \\
& =\left(f_{\infty}(x)\right)_{i} .
\end{aligned}
$$

This completes the induction.

3. Conjugacies to the shift dynamical system

For any $x, y \in \mathbb{Z}_{2}$, we write $x \equiv \bar{n} y$ if x is congruent to $y \bmod 2^{n}$, i.e. if the binary representations of x and y match in the first n digits. We extend this notation to include finite sequences, for example, $\overline{011} \overline{\overline{2}} 100$. Lagarias defined Φ^{-1} by $\Phi^{-1}(x)=a_{0} a_{1} a_{2} \ldots$ where $a_{i} \equiv T^{i}(x)$. We call Φ^{-1} the T-parity vector function and generalize this definition as follows.

Definition 2. Let $F: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$. The F-parity vector function is the map $P_{F}: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ given by $P_{F}(x)=a_{0} a_{1} a_{2} \ldots$ where $a_{i} \in\{0,1\}$ and $a_{i} \equiv F_{1}^{i}(x)$ for all $i \in \mathbb{N}$.

It is easily shown that the parity vector function P_{F} of every dynamical system $F: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ is a morphism from F to S. To see this, let $x \in \mathbb{Z}_{2}$ and let $a=P_{F}(x)$. Then $S\left(P_{f}(x)\right)=a_{1} a_{2} a_{3} \ldots$ by the definition of S. By the definition of $P_{F}, P_{F}(F(x))=b_{0} b_{1} b_{2} \ldots$ where $b_{i} \equiv F^{i}(F(x))$. Thus $b_{i} \equiv F^{i+1}(x) \equiv a_{i+1}$ for all $i \in \mathbb{N}$, so $P_{F}(F(x))=S\left(P_{F}(x)\right)$. Therefore $P_{F} \circ F=S \circ P_{F}$.

Note that F is not assumed to be continuous in the definition above. In the case that F is continuous with respect to the 2-adic topology, the composition of continuous functions F^{i} is also continuous for each i. Thus, if F is continuous then its parity vector function P_{F} is continuous as well.

Since every parity vector function is a morphism, it is natural to ask which of these are bijections and therefore conjugacies. The following theorem classifies all functions that are conjugate to S by their parity vector functions.

Theorem 3.1. Let $F: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$, not necessarily continuous. Then P_{F} is a conjugacy from F to S if and only if $F=P^{-1} \circ S \circ P$ for some parity-preserving bijection $P: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ (and in this situation $P_{F}=P$).
Proof. Assume P_{F} is a conjugacy from F to S. Then $F=P_{F}^{-1} \circ S \circ P_{F}$ by the definition of conjugacy. By definition, P_{F} is parity-preserving, since $P_{F}(x) \underset{1}{\equiv}$.

Now assume that there exists a parity-preserving bijection $P: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ such that $F=P^{-1} \circ S \circ P$. It follows by induction on n that $F^{n}=P^{-1} \circ S^{n} \circ P$ for all $n \in \mathbb{Z}^{+}$.

Let $x \in \mathbb{Z}_{2}$. Then for all $n \in \mathbb{Z}^{+}, F^{n}(x) \equiv P^{-1}\left(S^{n}(P(x))\right) \equiv S^{n}(P(x))$ since P is parity-preserving. Let $a=P(x)$. Then $S^{n}(P(x)) \equiv a_{n}$, so $F^{n}(x) \equiv a_{n}$ for all n, and thus $P(x)=P_{F}(x)$. Since x was arbitrary, $P=P_{F}$. Also, we know P is a conjugacy from F to S, so P_{F} is a conjugacy from F to S as well.

Lagarias [4] showed that $\Phi^{-1}=P_{T}$ is bijective by showing it has a property later named in [1]. Bernstein and Lagarias called a function $h: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ solenoidal if for all $k \in \mathbb{Z}^{+}, x \underset{\bar{k}}{\bar{k}} y \Leftrightarrow h(x) \underset{\bar{k}}{\bar{k}} h(y)$. Such a map induces a permutation of $\mathbb{Z}_{2} / 2^{k} \mathbb{Z}_{2}$ for all $k \in \mathbb{Z}^{+}$.

Bernstein and Lagarias [1] also showed that any solenoidal map $h: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ is an isometry (bijective and continuous with continuous inverse). Since P_{F} is a morphism from F to S, we obtain the following corollary.

Corollary 3.2. Let $F: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$. If P_{F} is solenoidal, then F is continuous and P_{F} is a conjugacy from F to S.
Hence, we can prove that a function is conjugate to the shift map by showing that its parity vector function is solenoidal. In particular, it is of interest to determine which continuous endomorphisms of S have a solenoidal parity vector function. In order to classify these, we define a specific endomorphism D as follows.

Definition 3. Let $f: B_{2} \rightarrow\{0,1\}$ be the map $\{(00,0),(01,1),(10,1),(11,0)\}$. We define the discrete derivative $D: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ by $D=f_{\infty}$.

Note that $D(x)$ is obtained by replacing each subsequence $x_{i} x_{i+1}$ of the 2-adic binary representation of x with

$$
x_{i}^{\prime}=\left|x_{i}-x_{i+1}\right|
$$

so D resembles a discrete derivative, explaining our nomenclature. (The natural extension of this map to bi-infinite sequences has been discussed in [5], pp. 4, 16.)

Let $V: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ be the map $V(x)=-1-x$. Note that $V(x)$ is obtained by interchanging the symbols 0 and 1 in the binary representation of x. The "dual" $V \circ D$ of D is induced by $\{(00,1),(01,0),(10,0),(11,1)\}$ and is essentially the same as D if one were to interchange the symbols 0 and 1 . For simplicity of notation we let $\mathcal{P}=P_{D}$.

Theorem 3.3. The functions $D, V \circ D, S$, and $V \circ S$ are the only continuous endomorphisms of S with solenoidal parity vector functions.

Combining this theorem with Corollary 3.2, we obtain the following result.
Corollary 3.4. D is conjugate to S by its parity vector function \mathcal{P}.
Before we present the proof of Theorem 3.3 we first prove two technical lemmas.
Definition 4. For every positive integer $n \geq 2$, define $d: B_{n} \rightarrow B_{n-1}$ by $d\left(x_{0} x_{1} \ldots x_{n-1}\right)=y_{0} y_{1} \ldots y_{n-2}$ where $y_{i}=\left|x_{i}-x_{i+1}\right|$ for $0 \leq i \leq n-2$.

Note that d is essentially D defined on finite sequences.
Lemma 3.5. Let $x \in \mathbb{Z}_{2}, n \in \mathbb{Z}^{+}$, and $y=D^{n}(x)$. For all $i \in \mathbb{N}$, $y_{i}=d^{n}\left(x_{i} x_{i+1} \ldots x_{i+n}\right)$.
Proof. We proceed by induction on n. For the base case, $n=1$, we see that for all $i, y_{i}=\left|x_{i}-x_{i+1}\right|=d\left(x_{i} x_{i+1}\right)$ by the definition of D and d.

Assume the assertion is true for n, and let $i \in \mathbb{N}$. Then $d^{n+1}\left(x_{i} x_{i+1} \ldots x_{i+n+1}\right)=d^{n}\left(d\left(x_{i} x_{i+1} \ldots x_{i+n+1}\right)\right)=$ $d^{n}\left(z_{i} z_{i+1} \ldots z_{i+n}\right)$ where $z_{j}=\left|x_{j}-x_{j+1}\right|$ for all j. Note that $D(x)=z_{0} z_{1} z_{2} \ldots$ by the definition of D. Let $y=D^{n}(D(x))$. By the inductive hypothesis, we have $y_{i}=d^{n}\left(z_{i} z_{i+1} \ldots z_{i+n}\right)$. Thus $D^{n+1}(x)=D^{n}(D(x))=y$ and $d^{n+1}\left(x_{i} x_{i+1} \ldots x_{i+n+1}\right)=$ $d^{n}\left(z_{i} z_{i+1} \ldots z_{i+n}\right)=y_{i}$, so our induction is complete.

Lemma 3.6. Let $n \in \mathbb{Z}^{+}, x_{0} x_{1} \ldots x_{n-1} x_{n} \in B_{n+1}$, and $v=1-x_{n}$. Then $d^{n}\left(x_{0} x_{1} \ldots x_{n-1} x_{n}\right) \neq d^{n}\left(x_{0} x_{1} \ldots x_{n-1} v\right)$.
Proof. Again, we show this by induction on n. The base case, $n=1$, is clearly true since $d(01) \neq d(00)$ and $d(11) \neq d(10)$.
Let $n \in \mathbb{Z}^{+}$and assume the assertion is true for n. Let $x_{0} x_{1} \ldots x_{n} x_{n+1} \in B_{n+2}$ and define $v=1-x_{n+1}$. Let $d\left(x_{0} x_{1} \ldots x_{n} x_{n+1}\right)=y_{0} y_{1} \ldots y_{n-1} y_{n}$. Then $d\left(x_{0} x_{1} \ldots x_{n} v\right)=y_{0} y_{1} \ldots y_{n-1} w$ where $w=d\left(x_{n} v\right)$. We know $w=d\left(x_{n} v\right) \neq$ $d\left(x_{n} x_{n+1}\right)=y_{n}$, and since $w, y_{n} \in\{0,1\}$, we conclude that $w=1-y_{n}$. By the inductive hypothesis, we have

$$
\begin{aligned}
d^{n+1}\left(x_{0} x_{1} \ldots x_{n} x_{n+1}\right) & =d^{n}\left(d\left(x_{0} x_{1} \ldots x_{n} x_{n+1}\right)\right) \\
& =d^{n}\left(y_{0} y_{1} \ldots y_{n-1} y_{n}\right) \\
& \neq d^{n}\left(y_{0} y_{1} \ldots y_{n-1} w\right) \\
& =d^{n}\left(d\left(x_{0} x_{1} \ldots x_{n} v\right)\right) \\
& =d^{n+1}\left(x_{0} x_{1} \ldots x_{n} v\right)
\end{aligned}
$$

and the induction is complete.
We are now ready to prove Theorem 3.3.
Proof. We first show that \mathcal{P} is solenoidal. Let $k \in \mathbb{Z}^{+}$and $x \in \mathbb{Z}_{2}$. For all $i \leq k-1$, we have by Lemma 3.5 that $D^{i}(x) \underset{1}{\equiv d^{i}}\left(x_{0} x_{1} \ldots x_{i}\right)$. Thus the finite sequence $a_{0} \ldots a_{k-1}$ where $a_{i} \equiv D_{1}^{i}(x)$ is entirely determined by the first k digits of x, i.e. $x \underset{k}{\equiv} y \Rightarrow \mathscr{P}(x) \underset{k}{\equiv} \mathcal{P}(y)$.

Let $x, y \in \mathbb{Z}_{2}$ be such that $\mathcal{P}(x) \underset{k}{\equiv \mathcal{P}}(y)$ and let $a_{0} \ldots a_{k-1}$ be the first k digits of $\mathcal{P}(x)$ and $\mathcal{P}(y)$. We will show that $x \equiv y$. Assume to the contrary that $\underset{k}{\neq j} y$. Then $x_{0} x_{1} \ldots x_{k-1} \neq y_{0} y_{1} \ldots y_{k-1}$. Let j be the smallest nonnegative integer such that $x_{j} \neq$ y_{j} (note that $j<k$), so that $y_{0} y_{1} \ldots y_{j-1}=x_{0} x_{1} \ldots x_{j-1}$ and $y_{j}=1-x_{j}$. Then by Lemma 3.5, we have $a_{j} \equiv D_{1}^{j}(x) \equiv d_{1}^{j}\left(x_{0} x_{1} \ldots x_{j}\right)$ and $a_{j} \equiv D^{j}(x) \equiv d^{j}\left(y_{0} y_{1} \ldots y_{j}\right)=d^{j}\left(x_{0} x_{1} \ldots x_{j-1} y_{j}\right)$. But by Lemma 3.6, $d^{j}\left(x_{0} x_{1} \ldots x_{j}\right) \neq d^{j}\left(x_{0} x_{1} \ldots x_{j-1} y_{j}\right)$, so $a_{j} \neq a_{j}$, a contradiction. We conclude that $x \underset{k}{\equiv} y$, and hence \mathcal{P} is solenoidal.

Observe that $V \circ D$ is induced by $\{(00,1),(01,0),(10,0),(11,1)\}$, which is exactly the same map as that which induces D except with 0 and 1 interchanged. With this in mind, we see that since \mathcal{P} is solenoidal, $P_{V \circ D}$ must be solenoidal as well.

For P_{S}, let $x \in \mathbb{Z}_{2}$. By the definition of S, for all $k \in \mathbb{N}, S^{k}(x) \underset{1}{\equiv} x_{k}$. Thus $P_{S}(x)=x_{0} x_{1} x_{2} \ldots=x$ and therefore $P_{S}=\ell$. Since ℓ is clearly solenoidal, P_{S} is as well.

Let $v_{i}=1-x_{i}$ for all $i \in \mathbb{N}$. Note that the "dual" shift map $V \circ S$ is induced by the function $\{(00,1),(01,0),(10,1),(11,0)\}$, so $V \circ S(x)=v_{1} v_{2} v_{3} \ldots$. Similarly, $(V \circ S)^{2}(x)=x_{2} x_{3} x_{4} \ldots$ Continuing this pattern, it follows by induction that

$$
(V \circ S)^{n}(x)= \begin{cases}x_{n} x_{n+1} x_{n+2} \ldots & \text { if } n \text { is even } \\ v_{n} v_{n+1} v_{n+2} \ldots & \text { if } n \text { is odd }\end{cases}
$$

Taking the $V \circ S$-orbit of $x \bmod 2$, we obtain $P_{V \circ S}(x)=x_{0} v_{1} x_{2} v_{3} x_{4} v_{5} \ldots$. This implies that the first k digits of $P_{V \circ S}(x)$ are entirely determined by the first k digits of x and vice versa, and thus $P_{V \circ S}$ is solenoidal.

We now know that the parity vector functions of $D, V \circ D, S$, and $V \circ S$ are solenoidal. To show that these are the only ones, we first eliminate all endomorphisms induced by a map $f: B_{1} \rightarrow\{0,1\}$. Clearly P_{V} and P_{ℓ} are not solenoidal, since $P_{V}(x)$ is either $\overline{10}$ or $\overline{01}$ for all x by the definition of V, and $P_{\ell}(x)$ is either $\overline{1}$ or $\overline{0}$ for all x by the definition of ℓ. The trivial maps induced by $\{(0,0),(1,0)\}$ and $\{(0,1),(1,1)\}$ map everything to $\overline{0}$ and $\overline{1}$ respectively, and thus their parity vector functions are not solenoidal.

We now examine endomorphisms induced by $f: B_{2} \rightarrow\{0,1\}$. There are sixteen such maps, four of which are equivalent to the endomorphisms induced by a map $f: B_{1} \rightarrow\{0,1\}$. For example, if $s=\{(00,0),(01,0),(10,1),(11,1)\}$, then $f_{\infty}=\ell$ since the second digit is irrelevant. Another four are $D, V \circ D, S$, and $V \circ S$. The remaining eight maps are induced by a function which sends three of $00,01,10,11$ to 0 and the other to 1 or vice versa. Consider as an illustrative case $s=\{(00,1),(01,1),(10,1),(11,0)\}$. In this case, f_{∞} never maps an even 2 -adic integer to an even 2 -adic integer, since whether $x_{0} x_{1}$ is 00 or $01, f_{\infty}(x)$ begins with 1 . Thus $P_{f_{\infty}}(x)$ cannot have 00 as its first two digits, and it is not solenoidal. The other seven cases are similar.

Finally, we show by induction that for any $n \geq 1$ and any $f: B_{n} \rightarrow\{0,1\}$, either $f_{\infty} \in\{D, V \circ D, S, V \circ S\}$ or $P_{f_{\infty}}$ is not solenoidal. The base cases $n=1$ and $n=2$ are done above.

Let $n \geq 2$, assume the assertion is true for n, and let $f: B_{n+1} \rightarrow\{0,1\}$. We consider two cases.
Case 1: Suppose that for all $b=b_{0} b_{1} \ldots b_{n}$ and $c=c_{0} c_{1} \ldots c_{n} \in B_{n+1}, s(b)=s(c)$ whenever $b \equiv c$. Then $f_{\infty}=t_{\infty}$ where $t: B_{n} \rightarrow\{0,1\}$ is defined by $t\left(b_{0} b_{1} \ldots b_{n-1}\right)=s\left(b_{0} b_{1} \ldots b_{n-1} 0\right)=s\left(b_{0} b_{1} \ldots b_{n-1} 1\right)$. By the inductive hypothesis, either t_{∞} is a member of $\{D, V \circ D, S, V \circ S\}$ or $P_{t_{\infty}}$ is not solenoidal, and we are done.
Case 2: Suppose that for some $b_{0} b_{1} \ldots b_{n-1} \in B_{n}$, the digits $s\left(b_{0} b_{1} \ldots b_{n-1} 0\right)$ and $s\left(b_{0} b_{1} \ldots b_{n-1} 1\right)$ are distinct. Let $x, y \in \mathbb{Z}_{2}$ be such that $x \underset{n+1}{\equiv} b_{0} b_{1} \ldots b_{n-1} 0$ and $y \underset{n+1}{\equiv} b_{0} b_{1} \ldots b_{n-1}$. Then $f_{\infty}(x) \not \equiv f_{\infty}(y)$, and thus $P_{f_{\infty}}(x) \not \equiv P_{f_{\infty}}(y)$. Also, since $n \geq 2$, we have $x \equiv y$. Hence, $P_{f_{\infty}}$ does not induce a permutation on $\mathbb{Z}_{2} / 2^{2} \mathbb{Z}_{2}$, so $P_{f_{\infty}}$ is not solenoidal.

This completes the induction, and we conclude that $D, V \circ D, S$, and $V \circ S$ are the only endomorphisms of S with solenoidal parity vector functions.

4. Dynamics of D

Let us consider the implications of Theorem 3.3 and Corollary 3.4. The map D, although defined as a specific endomorphism of S, is actually conjugate to S when viewed as a dynamical system on its own. In addition, D is special in that only D, S itself, and their duals $V \circ D$ and $V \circ S$ have solenoidal parity vector functions. This provides incentive to further investigate the dynamical system $D: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$.

To begin our investigation of the dynamics of D, we observe some properties of the function itself.
Lemma 4.1. Let $x \in \mathbb{Z}_{2}$ and $y=D(x)$. Then for any $i \in \mathbb{N}, y_{i}=\left|x_{i}-x_{i+1}\right|, x_{i+1}=\left|x_{i}-y_{i}\right|$, and $x_{i}=\left|x_{i+1}-y_{i}\right|$.
Proof. Let $i \in \mathbb{N}$. There are four cases to consider: $x_{i} x_{i+1}=00,01,10$, or 11 .
Case 1: Suppose $x_{i} x_{i+1}=01$. By the definition of D, $y_{i}=\left|x_{i}-x_{i+1}\right|=1$. Also, $x_{i+1}=1=|0-1|=\left|x_{i}-y_{i}\right|$ and $x_{i}=0=|1-1|=\left|x_{i+1}-y_{i}\right|$.

The remaining three cases are similar.
The symmetry of D revealed by Lemma 4.1 implies a surprising and beautiful symmetry of the function \mathcal{P}, the D-parity vector function.

Theorem 4.2. $\mathcal{P}^{2}=\ell$. Equivalently, $\mathcal{P}=\mathcal{P}^{-1}$.
Proof. Let $x \in \mathbb{Z}_{2}$, and let A be the infinite matrix defined as follows. For all $i, j \in \mathbb{N}, A[i, j]$ is a_{j} where $a=D^{i}(x)$, i.e. the $i+1$ st row of A consists of the digits of $D^{i}(x)$. Note that the leftmost column of A (with $j=0$) consists of the digits of $\mathcal{P}(x)$. By Lemma 4.1, we see that for all $i, j \in \mathbb{N}, A[i, j+1]=|A[i, j]-A[i+1, j]|$. Let $j \in \mathbb{N}$. Define $d_{i}=A[i, j]$ and $e_{i}=A[i, j+1]$ for all i. Then for all $i \in \mathbb{N}, e_{i}=\left|d_{i}-d_{i+1}\right|$, so by the definition of $D, D\left(d_{0} d_{1} d_{2} \ldots\right)=e_{0} e_{1} e_{2} \ldots$.. Thus the 2 -adic integer formed by the entries of the $j+1$ st column in A is D of the 2 -adic integer formed by the j th column for any j. This implies that for all $j \in \mathbb{N}$, the digits of $D^{j}(\mathcal{P}(x))$ are the entries of the $j+1$ st column of A, so $D^{j}(\mathcal{P}(x)) \underset{1}{\equiv} A[0, j]=x_{j}$. By the definition of $\mathcal{P}, \mathcal{P}(\mathscr{P}(x))=x_{0} x_{1} x_{2} \ldots=x$. We conclude that $\mathcal{P}^{2}=\ell$.

Theorem 4.2 shows, remarkably, that the D-parity vector of the D-parity vector of a 2 -adic integer is itself. In other words, \mathcal{P} is an involution.

It is well-known that any function $h: X \rightarrow Y$ induces an equivalence relation \approx on X defined by $x \approx y$ if and only if $h(x)=h(y)$. This equivalence relation in turn induces a quotient set Q_{h} of equivalence classes mod \approx. Consider the quotient set Q_{D} induced by D. Due to the symmetry of D shown in Lemma 4.1 , we have the following:

Theorem 4.3. $Q_{D}=\left\{\{x, V(x)\} \mid x \in \mathbb{Z}_{2}\right\}$.
Proof. Let $x, y \in \mathbb{Z}_{2}$ and $v=V(x)$. Assume $y=D(x)$. By Lemma 4.1,

$$
\begin{equation*}
x_{i+1}=\left|x_{i}-y_{i}\right| \tag{4.1}
\end{equation*}
$$

for all $i \geq 0$. If $x_{0}=0$, Eq. (4.1) is a recursion for the sequence $x_{0}, x_{1}, x_{2}, \ldots$ and thus there is exactly one even x such that $D(x)=y$. Similarly, there is exactly one odd x such that $D(x)=y$. Therefore, each class in the quotient set induced by D has two elements, one even and one odd. By the definition of $V, v_{i}=1-x_{i}$ for all i. Thus for all i, $\left|v_{i}-v_{i+1}\right|=\left|\left(1-x_{i}\right)-\left(1-x_{i+1}\right)\right|=\left|x_{i}-x_{i+1}\right|=y_{i}$ and so $D(V(x))=y=D(x)$. We conclude that each equivalence class $\bmod \approx$ consists of two elements, x and $V(x)$.

4.1. Periodic points

It is desirable to classify the fixed points and periodic points of any dynamical system. There are exactly two fixed points of S, namely $\overline{0}$ and $\overline{1}$. Since D is conjugate to S there are exactly two fixed points of D, namely $\overline{0}$ and $\overline{0}$. To classify the remaining periodic points of D, we introduce some new notation.

Definition 5. Let x be a 2-adic integer with an eventually repeating binary representation $x_{0} x_{1} \ldots x_{t-1} \overline{x_{t} x_{t+1} \ldots x_{t+m-1}}$. Then x is in reduced form if and only if $x_{t-1} \neq x_{t+m-1}$ and m is the least integer such that x can be expressed in this form. For any x having reduced form $x_{0} x_{1} \ldots x_{t-1} \overline{x_{t} x_{t+1} \ldots x_{t+m-1}}$, we define the S-period length $\|x\|=m$ and the S-preperiod length $\underline{x}=t$.

Note that x is cyclic for S if and only if $\underline{x}=0$.
Definition 6. An eventually repeating 2-adic integer that has reduced form

$$
x_{0} x_{1} \ldots x_{t-1} \overline{x_{t} x_{t+1} \ldots x_{t+m-1}}
$$

is half-flipped if and only if m is even and for all $i \geq t, x_{i}=1-x_{i+m / 2}$.
For instance, the 2-adic integers $\overline{1100}$ and $010 \overline{110100}$ are half-flipped.
In order to avoid confusion between 2 -adic integers which are periodic (or eventually periodic) points of D and those having repeating (or eventually repeating) binary representation, we will refer to the former as D-periodic (or eventually D-periodic) and the latter as repeating or eventually repeating. Note that x has an eventually periodic S-orbit if and only if x is eventually repeating. It is much less obvious which 2-adic integers have an eventually periodic D-orbit, so we prove several lemmas about D-orbits to answer this question.

Lemma 4.4. Let x be an eventually repeating 2-adic integer. Then

$$
\|D(x)\|= \begin{cases}\|x\| & \text { if } x \text { is not half-flipped } \\ \frac{1}{2}\|x\| & \text { if } x \text { is half-flipped. }\end{cases}
$$

Proof. Let $m=\|x\|$ and $t=\underline{x}$, with $x=x_{0} x_{1} \ldots x_{t-1} \overline{x_{t} x_{t+1} \ldots x_{t+m-1}}$ in reduced form. Let $x^{\prime}=S^{t}(x)=\overline{x_{t} x_{t+1} \ldots x_{t+m-1}}$, so that for all $i \in \mathbb{N}, x_{i}^{\prime}=x_{m+i}^{\prime}$, i.e. $\left\|x^{\prime}\right\|=\|x\|=m$. Note that since D is an endomorphism of $S, S^{t}(D(x))=D\left(S^{t}(x)\right)=D\left(x^{\prime}\right)$, so $\|D(x)\|=\left\|S^{t}(D(x))\right\|=\left\|D\left(x^{\prime}\right)\right\|$. We proceed to find $\left\|D\left(x^{\prime}\right)\right\|$.

Let $y=D\left(x^{\prime}\right)$ and $n=\left\|D\left(x^{\prime}\right)\right\|$. For all $i \in \mathbb{N}, y_{m+i}=\left|x_{m+i}^{\prime}-x_{i+m+1}^{\prime}\right|=\left|x_{i}^{\prime}-x_{i+1}^{\prime}\right|=y_{i}$. Thus n divides m.
If x^{\prime} is half-flipped, then for all $i, x_{i}^{\prime}=1-x_{i+m / 2}$, and $y_{i+m / 2}=\left|x_{i+m / 2}^{\prime}-x_{i+m / 2+1}^{\prime}\right|=\left|1-x_{i}^{\prime}-\left(1-x_{i+1}^{\prime}\right)\right|=\left|x_{i}^{\prime}-x_{i+1}^{\prime}\right|=y_{i}$. Therefore

$$
\begin{equation*}
x^{\prime} \text { is half-flipped } \Rightarrow n \leq \frac{m}{2} \tag{4.2}
\end{equation*}
$$

Consider the case $x_{0}^{\prime}=0$. We have two cases: either $x_{n-1}^{\prime}=y_{n-1}$ or $x_{n-1}^{\prime} \neq y_{n-1}$.
Case 1: Suppose $x_{n-1}^{\prime}=y_{n-1}$. Then by Lemma 4.1, $x_{n}^{\prime}=\left|x_{n-1}^{\prime}-y_{n-1}\right|=0=x_{0}^{\prime}$. This being our base case, we show by induction that for all $i \in \mathbb{N}, x_{n+i}^{\prime}=x_{i}^{\prime}$. Let $j \in \mathbb{N}$ and assume $x_{n+j}^{\prime}=x_{j}^{\prime}$. Then $x_{n+j+1}^{\prime}=\left|x_{n+j}^{\prime}-y_{n+j}\right|=\left|x_{j}^{\prime}-y_{j}\right|=x_{j+1}^{\prime}$,
completing the induction. We now have $m \mid n$ and $n \mid m$, so $n=m$. Thus $\|D(x)\|=\|x\|$. It follows from (4.2) that x is not half-flipped, and the theorem holds in this case.
Case 2: Suppose $x_{n-1}^{\prime} \neq y_{n-1}$. Then by Lemma 4.1, $x_{n}^{\prime}=\left|x_{n-1}^{\prime}-y_{n-1}\right|=1=1-x_{0}^{\prime}$. This being our base case, we show by induction that for all $i \in \mathbb{N}, x_{n+i}^{\prime}=1-x_{i}^{\prime}$. Let $j \in \mathbb{N}$ and assume $x_{n+j}^{\prime}=1-x_{j}^{\prime}$. Then $x_{n+j+1}^{\prime}=\left|x_{n+j}^{\prime}-y_{n+j}\right|=\left|1-x_{j}^{\prime}-y_{j}\right| \neq$ $\left|x_{j}-y_{j}\right|=x_{j+1}^{\prime}$, and therefore $x_{n+j+1}^{\prime}=1-x_{j+1}^{\prime}$, completing the induction. This implies that $m \neq n$, and since $n \mid m$, we conclude that $n \leq \frac{1}{2} m$. Also, for all $i \in \mathbb{N}, x_{2 n+i}^{\prime}=1-x_{n+i}^{\prime}=1-\left(1-x_{i}^{\prime}\right)=x_{i}^{\prime}$. Therefore $m \leq 2 n$. Since $n \leq \frac{1}{2} m$ and $\frac{1}{2} m \leq n$, we have $n=\frac{1}{2} m$. Thus $\left\|D\left(x^{\prime}\right)\right\|=\frac{1}{2}\|x\|$. Finally, making the substitution $n=\frac{1}{2} m$ we have that for all $i \in \mathbb{N}, x_{m / 2+i}^{\prime}=1-x_{i}^{\prime}$, so x is half-flipped as well.

Hence the theorem holds for $x_{0}^{\prime}=0$. The proof for the case $x_{0}^{\prime}=1$ is analogous.
Lemma 4.5. Let x be an eventually repeating 2-adic integer. Then for all $k \in \mathbb{N}, \underline{D^{k}(x)}=\underline{x}$.
Proof. Let $y=D(x), m=\|x\|$, and $t=\underline{x}$, so that

$$
x=x_{0} x_{1} \ldots x_{t-1} \overline{x_{t} x_{t+1} \ldots x_{t+m-1}}
$$

in reduced form. Then $D(x)=y_{0} y_{1} \ldots y_{t-1} \overline{y_{t} y_{t+1} \ldots y_{t+m-1}}$, but not necessarily in reduced form. We consider two cases: either x is half-flipped or x is not half-flipped.
Case 1: Suppose x is not half-flipped. By Lemma 4.4, $\|D(x)\|=m$. Also, by the definition of $t, x_{t-1} \neq x_{t+m-1}$. Thus

$$
y_{t-1}=\left|x_{t-1}-x_{t}\right| \neq\left|x_{t+m-1}-x_{t+m}\right|=y_{t+m-1}
$$

so $y_{0} y_{1} \ldots y_{t-1} \overline{y_{t} y_{t+1} \ldots y_{t+m-1}}$ is in reduced form. We conclude that $\underline{D(x)}=t=\underline{x}$.
Case 2: Suppose x is half-flipped. By Lemma 4.4, $\|D(x)\|=\frac{1}{2} m$. It follows that $D(x)=y_{0} y_{1} \ldots y_{t-1} \overline{y_{t} y_{t+1} \ldots y_{t+m / 2-1}}$. By the definition of half-flipped and $t, x_{t+m / 2-1}=1-x_{t+m-1}=x_{t-1}$ and $x_{t+m / 2}=1-x_{t}$. Therefore

$$
\begin{aligned}
y_{t-1} & =\left|x_{t-1}-x_{t}\right| \\
& =\left|x_{t+m / 2-1}-\left(1-x_{t+m / 2}\right)\right| \\
& \neq\left|x_{t+m / 2-1}-x_{t+m / 2}\right| \\
& =y_{t+m / 2-1}
\end{aligned}
$$

so $y_{0} y_{1} \ldots y_{t-1} \overline{y_{t} y_{t+1} \ldots y_{t+m / 2-1}}$ is in reduced form. We conclude that $\underline{D(x)}=t=\underline{x}$.
Therefore, $\underline{D(x)}=\underline{x}$ for all $x \in \mathbb{Z}_{2}$. It follows by induction that for all $\overline{k \in \mathbb{N}}, \underline{D^{k}(x)}=\underline{x}$.
We are now ready to classify all 2-adic integers which are eventually D-periodic.
Theorem 4.6. Let $x \in \mathbb{Z}_{2}$. Then x is eventually D-periodic if and only if it is eventually S-periodic, i.e. its 2-adic binary representation is eventually repeating.

Proof. Assume that the 2-adic binary representation of x is eventually repeating (so that x is eventually S-periodic), with $x=x_{0} x_{1} \ldots x_{t-1} \overline{x_{t} x_{t+1} \ldots x_{t+m-1}}$ where $t=\underline{x}$ and $m=\|x\|$. Let a be the greatest odd divisor of m, with $m=a \cdot 2^{b}$. Lemma 4.4 implies that for any $k, n \in \mathbb{N}$ with $k<n,\left\|D^{k}(x)\right\|=a \cdot 2^{b^{\prime}}$ and $\left\|D^{n}(x)\right\|=a \cdot 2^{b^{\prime \prime}}$ for some $b^{\prime}, b^{\prime \prime} \in \mathbb{N}$ with $b \geq b^{\prime} \geq b^{\prime \prime}$. Hence the sequence $\left\{\log _{2}\left(\frac{1}{a}\left\|D^{k}(x)\right\|\right)\right\}_{k=0}^{\infty}$ is a non-increasing sequence of nonnegative integers, and thus is eventually constant. Let β be the minimum value of $\log _{2}\left(\frac{1}{a}\left\|D^{k}(x)\right\|\right)$ over all k, so that there exists an $N \in \mathbb{N}$ such that for all $n \geq N,\left\|D^{n}(x)\right\|=a \cdot 2^{\beta}$. Define $c=a \cdot 2^{\beta}$. For all $n \geq N$, there are at most 2^{c} possibilities for the repeating digits of $D^{n}(x)$, and by Lemma 4.5, there are at most $2^{\underline{x}}$ possibilities for the first \underline{x} digits of $D^{n}(x)$. Thus there are at most $2^{c} \cdot 2^{\underline{x}}=2^{c+\underline{x}}$
 equal, and thus the D-orbit of x is eventually periodic. So if x is eventually repeating then x is eventually D-periodic.

Now assume that the 2-adic representation of x is not eventually repeating, and assume to the contrary that x is eventually D-periodic. Then $\mathcal{P}(x)$ is eventually repeating. So the D-orbit of $\mathcal{P}(x)$ is eventually periodic, and thus $\mathcal{P}(\mathcal{P}(x))$ is eventually repeating as well. But Theorem 4.2 implies $\mathcal{P}(\mathcal{P}(x))=x$, and x is not eventually repeating by assumption. This contradiction completes the proof.

Note that Theorem 4.6 is not a consequence of D being conjugate to S, for $D=\mathcal{P} S \mathscr{P}^{-1}=\mathcal{P} S \mathscr{P}$ implies that x is eventually periodic for D if and only if $\mathcal{P}(x)$ is eventually periodic for S.

In the proof of Theorem 4.6, we found that the S-period length of elements in the D-orbit of x is either divided by 2 or remains constant with each iteration, until the orbit becomes periodic and the S-period length $\|x\|$ stabilizes. However, the value of $\|x\|$ at which it stabilizes may be even. For example, $x=\overline{100111}$ has the periodic D-orbit $\overline{100111}, \overline{101000}, \overline{111001}, \overline{001010}, \overline{011110}, \overline{100010}, \ldots$.

4.2. Eventually fixed points

We now classify those 2 -adic integers whose D-orbit contains a fixed point (0 or 1).
Lemma 4.7. Let $n \in \mathbb{N}$ and $a=a_{0} a_{1} a_{2} \ldots a_{2^{n}-1} \in B_{2^{n}}$. Then
$d^{2^{n}-1}(a)=\left(\sum_{i=0}^{2^{n}-1} a_{i}\right) \bmod 2$
i.e. $d^{2^{n}-1}(a)= \begin{cases}0 & \text { if a contains an even number of } 1 \text { 's among its digits } \\ 1 & \text { otherwise }\end{cases}$

Proof. We proceed by induction on n. The base case, $n=0$, is trivial since $d^{2^{0}-1}(1)=d^{0}(1)=1$ and $d^{2^{0}-1}(0)=d^{0}(0)=0$.
Let $n \in \mathbb{N}$ and assume the assertion is true for n. Let $a_{0} a_{1} a_{2} \ldots a_{2^{n+1}-1} \in B_{2^{n+1}}$, and let $b=a_{0} a_{1} a_{2} \ldots a_{2^{n}-1}$ and $c=a_{2^{n}} a_{2^{n}+1} \ldots a_{2^{n+1}-1}$ be the first and second halves of a. We now consider two cases.
Case 1: Suppose $\sum_{i=0}^{2^{n+1}-1} a_{i} \equiv 0$, i.e. a has an even number of 1 's among its digits. We have

$$
\left(\sum_{i=0}^{2^{n}-1} a_{i}\right)+\left(\sum_{i=2^{n}}^{2^{n+1}-1} a_{i}\right)=\sum_{i=0}^{2^{n+1}-1} a_{i} \equiv 0
$$

and therefore $\sum_{i=0}^{2^{n}-1} a_{i} \equiv \sum_{i=2^{n}}^{2^{n+1}-1} a_{i}$. By the inductive hypothesis, $d^{2^{n}-1}(b)=d^{2^{n}-1}(c)$. Let $z_{0} z_{1} \ldots z_{2^{n}}$ be the digits of $d^{2^{n}-1}(a)$. Note that $z_{0}=d^{2^{n}-1}(b)$ and $z_{2^{n}}=d^{2^{n}-1}(c)$, so $z_{0}=z_{2^{n}}$. Now, consider all subsequences of $z_{0} z_{1} \ldots z_{2^{n}}$ of length 2. Such a subsequence $z_{i} z_{i+1}$ is a switch if $z_{i} \neq z_{i+1}$. Clearly, the first and last digit will match if and only if there are an even number of switches, so in this case there are an even number of switches in $z_{0} z_{1} \ldots z_{2^{n}}$. Since each 1 in $d\left(z_{0} z_{1} \ldots z_{2^{n}}\right)$ corresponds to a switch in $z_{0} z_{1} \ldots z_{2^{n}}$, there are an even number of 1 's among the digits of $d\left(z_{0} z_{1} \ldots z_{2^{n}}\right)$. By the definition of $d, d\left(z_{0} z_{1} \ldots z_{2^{n}}\right) \in B_{2^{n}}$. Using the inductive hypothesis a second time, we have

$$
d^{2^{n+1}-1}(a)=d^{2^{n}-1}\left(d\left(d^{2^{n}-1}(a)\right)\right)=d^{2^{n}-1}\left(d\left(z_{0} z_{1} \ldots z_{2^{n}}\right)\right)=0
$$

and the induction is complete.
Case 2: Suppose $\sum_{i=0}^{2^{n+1}-1} a_{i} \equiv 1$. By an argument similar to that of Case 1 , we have $d^{2^{n+1}-1}(a)=1$ and the induction is complete.
Theorem 4.8. Let $n \in \mathbb{N}$ and $a=a_{0} a_{1} a_{2} \ldots a_{2^{n}} \in B_{2^{n}+1}$. Then $d^{2^{n}}(a)=d\left(a_{0} a_{2^{n}}\right)$.
Proof. Suppose $d(a)$ has an even number of 1's among its digits. As in the proof of Lemma 4.7, we know there are an even number of switches in a, so $a_{0}=a_{2^{n}}$. But by Lemma 4.7, $d^{2^{n}-1}(d(a))=0=d\left(a_{0} a_{2^{n}}\right)$. Similarly, if $d(a)$ has an odd number of 1 's among its digits then $a_{0} \neq a_{2^{n}}$, and $d^{2^{n}-1}(d(a))=1=d\left(a_{0} a_{2^{n}}\right)$. Thus in all cases $d^{2^{n}}(a)=d\left(a_{0} a_{2^{n}}\right)$.

Theorem 4.8 gives us an easy method for computing large iterations of D without computing each individual iteration. For example, if we wish to compute $D^{8}\left(x_{0} x_{1} x_{2} \ldots\right)$, we merely compute $d\left(x_{0} x_{8}\right), d\left(x_{1} x_{9}\right)$, etc., which yields the digits of $D^{8}\left(x_{0} x_{1} x_{2} \ldots\right)$ in one step rather than eight. This technique is also of use in the proof of the following theorem, which classifies the 2-adic integers whose D-orbit is eventually fixed.

Theorem 4.9. The D-orbit of x is eventually fixed if and only if the reduced form of x is either $\overline{x_{0} x_{1} \ldots x_{2^{n}-1}}$ (in which case it eventually maps to 0) or $x_{0} \overline{x_{1} x_{2} \ldots x_{2^{n}}}$ (which eventually maps to 1) for some $n \in \mathbb{N}$.
Proof. We first show that the D-orbit of x contains 0 if and only if the reduced form of x is $\overline{x_{0} x_{1} \ldots x_{2^{n}-1}}$ for some $n \in \mathbb{N}$. Assume the D-orbit of x eventually contains 0 . Since $\|0\|=1$, we know by Lemma 4.4 that $\|x\|=1 \cdot 2^{n}$ for some $n \in \mathbb{N}$.

Now, assume to the contrary that $\underline{x} \neq 0$. Then by Lemma 4.5 , for all $k \in \mathbb{N}, D^{k}(x)=\underline{x}>0$. However, $\underline{0}=0$, so the D-orbit of x cannot eventually contain 0 . We conclude that our assumption was false and $\underline{x}=0$. Thus the reduced form of x is $\overline{x_{0} x_{1} \ldots x_{2^{n}-1}}$ for some $n \in \mathbb{N}$.

Assume $x=\overline{x_{0} x_{1} \ldots x_{2^{n}-1}}$ in reduced form. Let $y=D^{2^{n}}(x)$. By Theorem 4.8 and Lemma 3.5, we have for all $i \in \mathbb{N}$, $y_{i}=d\left(x_{i} x_{i+2^{n}}\right)$. Since $x_{i}=x_{i+2^{n}}, y_{i}=0$ for all i and thus $D^{2^{n}}(x)=\overline{0}=0$.

We now show that the D-orbit of x contains 1 if and only if the reduced form of x is $x_{0} \overline{x_{1} x_{2} \ldots x_{2^{n}}}$ for some $n \in \mathbb{N}$. Since D is an endomorphism of S, we have $S\left(D^{j}(x)\right)=D^{j}(S(x))$ for all $j \in \mathbb{N}$. Assume $D^{k}(x)=1$ for some $k \in \mathbb{N}$. Then $D^{k}(S(x))=S\left(D^{k}(x)\right)=S(1)=0$. By the above argument, $S(x)=\overline{x_{1} x_{2} \ldots x_{2^{n}}}$ in reduced form for some $n \in \mathbb{N}$. By the definition of S, x either has reduced form $\overline{x_{0} x_{1} x_{2} \ldots x_{2^{n}-1}}$ or $x_{0} \overline{x_{1} x_{2} \ldots x_{2^{n}}}$. By Lemma $4.5, \underline{x}=\underline{D^{k}(x)}=\underline{1}=1$, so $x=x_{0} \overline{x_{1} x_{2} \ldots x_{2^{n}}}$ in reduced form.

Assume $x=x_{0} \overline{x_{1} x_{2} \ldots x^{n}}$ in reduced form. By the above argument, $D^{2^{n}}(S(x))=D^{2^{n}}\left(\overline{x_{1} x_{2} \ldots x_{2^{n}}}\right)=0$. Therefore $S\left(D^{2^{n}}(x)\right)=0$ as well, so $D^{2^{n}}(x)$ is either 0 or 1 by the definition of S. By Lemma $4.5, \underline{D^{2^{n}}(x)}=\underline{x}=1$, so $D^{2^{n}}(x)=1$.

4.3. The D-Orbit of an Integer

Any nonnegative integer is eventually repeating (ending in $\overline{0}$), so all nonnegative integers are eventually D-periodic by Theorem 4.6. Surprisingly, they all are purely periodic points of D with minimum period 2^{n} for some $n \in \mathbb{N}$, as we now show.

Theorem 4.10. Let x be a nonnegative integer. Then x is a purely periodic point of D with minimum period 2^{n} being the smallest power of 2 that is at least as large as the S-preperiod length of x, i.e. $2^{n} \geq \underline{x}$.
Proof. Let $t=\underline{x}$. By Lemma 4.5, for any $i \in \mathbb{N}, D^{i}(x)=t$ as well. Thus for all $i \in \mathbb{N}, 2^{t-1} \leq D^{i}(x)<2^{t}$ by the definition of 2-adic integer.

Let $x_{0} x_{1} x_{2} \ldots x_{t-1} \overline{0}$ be the 2-adic expansion of x, and $y_{0} y_{1} \ldots y_{t-1} \overline{0}$ the 2 -adic expansion of $D^{2^{n}}(x)$. Then by Theorem 4.8, we have that for all $i \in \mathbb{N}, y_{i}=d^{2^{n}}\left(x_{i} x_{i+1} \ldots x_{i+2^{n}}\right)=d\left(x_{i} x_{i+2^{n}}\right)=d\left(x_{i} 0\right)=x_{i}$. Thus $D^{2^{n}}(x)=x$, and x is D-periodic with minimum period dividing 2^{n}. Note that if x is 0 or $1,2^{n}=1$, so 2^{n} must be the minimum period of x in both of these cases.

Assume that $x>1$ and the minimum D-period of x is less than 2^{n}. Since it divides 2^{n} it must be 2^{k} for some $k \leq n-1$. Also, since n is the smallest natural number such that $2^{n} \geq t$, we have $2^{n-1}<t$, and thus $2^{k}<t$ as well. Let $z_{0} z_{1} \ldots z_{t-1} \overline{0}$ be the 2-adic expansion of $D^{2^{k}}(x)$. Since $t-2^{k}-1 \geq 0$, we have $z_{t-2^{k}-1}=d^{2^{k}}\left(x_{t-2^{k}-1} x_{t-2^{k}} \ldots x_{t-1}\right)=d\left(x_{t-2^{k}-1} x_{t-1}\right)=$ $d\left(x_{t-2^{k}-1} 1\right) \neq x_{t-2^{k}-1}$. Therefore $D^{2^{k}}(x) \neq x$, and x is not D-periodic with minimum period 2^{k}. We conclude that the assumption was incorrect and thus 2^{n} is the minimum period of x.

Negative integers have a 2 -adic expansion ending in $\overline{1}$. This is because for any $x \in \mathbb{Z}_{2},-1-x=V(x)$ by binary arithmetic, so $-x=V(x)+1$. Therefore, if x is a positive integer, $-x$ is one more than $V(x)$, which ends in $\overline{1}$. Notice that D of a negative integer is a positive integer, so by Theorem 4.10, the D-orbit of a negative integer enters a cycle of positive integers after one iteration.

These facts are consistent with the duality of \mathcal{P} seen in Theorem 4.2. Given a 2-adic integer x whose reduced form is $\overline{x_{0} x_{1} \ldots x_{2^{n}-1}}$ or $x_{0} \overline{x_{1} x_{2} \ldots x_{2^{n}}}$, we have by Theorem 4.9 that $\mathcal{P}(x)$ is an integer. Also, given a 2-adic integer x which is also an integer, we have by Theorem 4.10 that $\mathcal{P}(x)$ has reduced form $\overline{x_{0} x_{1} \ldots x_{2^{n}-1}}$ or $x_{0} \overline{x_{1} x_{2} \ldots x_{2^{n}}}$.

5. Applications to the $3 x+1$ conjecture

Recall that the $3 x+1$ conjecture states that the T-orbit of any positive integer contains 1 , or equivalently, eventually enters the $\overline{1,2}$ cycle.

Corollary 3.4 states that \mathcal{P} is a conjugacy from D to S. Also, as stated in the introduction, Φ is a conjugacy from S to T. Since the composition of conjugacies is a conjugacy, this implies that D, the endomorphism of S resembling a discrete derivative, is conjugate to T, the famous $3 x+1$ function.

Theorem 5.1. The map $R=\Phi \circ \mathcal{P}$ is a conjugacy from D to T.
Thus T and D have the same dynamics, and hence to solve the $3 x+1$ conjecture it suffices to have an understanding of the dynamics of D and the correspondence R between the orbits of D and those of T.

Having studied the dynamics of D in Section 4, we turn our attention to understanding the correspondence R. Since $\overline{1,2}$ and $\overline{2,1}$ are the unique 2 -cycles of the dynamical system $T: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ and $\overline{3,2}$ and $\overline{2,3}$ are 2-cycles of $D: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$, these 2 -cycles of D must be unique. Thus, since R preserves parity, $R(3)=1$ and $R(2)=2$. Similarly, $R(0)=0$ and $R(1)=-1$ since they are fixed points of corresponding parity of the two dynamical systems.

By an argument similar to the proof of Theorem 4.9, the D-orbit of a 2-adic integer x eventually enters the $\overline{3,2}$ cycle (or, equivalently, the $\overline{2,3}$ cycle) if and only if x has reduced form $x_{0} x_{1} \overline{x_{2} x_{3} \ldots x_{2^{n}+1}}$ for some $n \in \mathbb{N}$. However, since an element x in the dynamical system $T: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ eventually enters the $\overline{1,2}$ cycle if and only if the D-orbit of $R^{-1}(x)$ eventually enters the $\overline{3,2}$ cycle, we have the following equivalence theorem.

Theorem 5.2. The following statements are equivalent:
(1) The $3 x+1$ conjecture is true.
(2) For all positive integers $m, R^{-1}(m)$ has reduced form $x_{0} x_{1} \overline{x_{2} x_{3} \ldots x_{2^{n}+1}}$ for some $n \in \mathbb{N}$.

Thus it suffices to determine R^{-1} on positive integers in order to solve the $3 x+1$ conjecture. In particular, it would suffice to find a tractable formula for $R^{-1}(m)$ for positive integers m.

There is yet another way that D can be of use in solving the $3 x+1$ conjecture, and that is in its role as an endomorphism of the shift map.

Recall that Monks and Yazinski [6] defined $\Omega=\Phi \circ V \circ \Phi^{-1}$, and showed that Ω is the unique nontrivial continuous autoconjugacy of T and that $\Omega^{2}=\ell$. They also defined an equivalence relation \sim on \mathbb{Z}_{2} by $x \sim y \Leftrightarrow(x=y$ or $x=\Omega(y))$. This induces a set of equivalence classes $\mathbb{Z}_{2} / \sim=\left\{\{x, \Omega(x)\} \mid x \in \mathbb{Z}_{2}\right\}$, and note that each equivalence class in \mathbb{Z}_{2} / \sim consists of two elements of opposite parity. This enables one to define a parity-neutral map Ψ as follows.

Definition 7. The parity-neutral $3 x+1 \operatorname{map} \Psi: \mathbb{Z}_{2} / \sim \rightarrow \mathbb{Z}_{2} / \sim$ is the map given by $\Psi(\{x, \Omega(x)\})=\{T(x), \Omega(T(x))\}$.

Monks and Yazinski also showed that the $3 x+1$ conjecture is equivalent to the claim that the Ψ-orbit of any $X \in \mathbb{Z}_{2} / \sim$ contains $\{1,2\}$.

Making use of the endomorphism D, the following theorem improves upon this result.
Theorem 5.3. The dynamical system $T: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ is conjugate to $\Psi: \mathbb{Z}_{2} / \sim \rightarrow \mathbb{Z}_{2} / \sim$.
Proof. Define $H=\Phi \circ D \circ \Phi^{-1}$. Since D is an endomorphism of S and Φ is a conjugacy from S to T, H is an endomorphism of T. Recall that H induces the quotient set Q_{H} discussed in Section 4. We now show that $Q_{H}=\mathbb{Z}_{2} / \sim$. By Theorem 4.3, $D \circ V=D$, so

$$
\begin{aligned}
H \circ \Omega & =\left(\Phi \circ D \circ \Phi^{-1}\right) \circ\left(\Phi \circ V \circ \Phi^{-1}\right) \\
& =\Phi \circ D \circ V \circ \Phi^{-1} \\
& =\Phi \circ D \circ \Phi^{-1} \\
& =H
\end{aligned}
$$

Thus for all $x \in \mathbb{Z}_{2}, H(x)=H(\Omega(x))$, so $\{x, \Omega(x)\}$ is a subset of the equivalence class of x in Q_{H}.
To see that these are the only elements in the equivalence class of x, let $y \in \mathbb{Z}_{2}$ and assume $y \neq x$ and $H(y)=H(x)$. Then $\Phi\left(D\left(\Phi^{-1}(x)\right)\right)=\Phi\left(D\left(\Phi^{-1}(y)\right)\right)$, and since Φ and Φ^{-1} are bijections, $\Phi^{-1}(x) \neq \Phi^{-1}(y)$ and $D\left(\Phi^{-1}(x)\right)=D\left(\Phi^{-1}(y)\right)$. Therefore $\Phi^{-1}(x)=V\left(\Phi^{-1}(y)\right)$ by Theorem 4.3. Thus $x=\Phi \circ V \circ \Phi^{-1}(y)=\Omega(y)$. Therefore, $Q_{H}=\mathbb{Z}_{2} / \sim$.

Now define $G: \mathbb{Z}_{2} / \sim \rightarrow \mathbb{Z}_{2}$ by $G(\{x, \Omega(x)\})=H(x)=H(\Omega(x))$. By the definition of Q_{H}, G is injective. Also, since D is surjective and Φ and Φ^{-1} are bijective, H is surjective as well, and therefore G is surjective. Thus G is a bijection. Finally, for any $x \in \mathbb{Z}_{2}$,

$$
\begin{aligned}
G(\Psi(\{x, \Omega(x)\})) & =G(\{T(x), T(\Omega(x))\}) \\
& =G(\{T(x), \Omega(T(x))\}) \\
& =H(T(x)) \\
& =T(H(x)) \\
& =T(G(\{x, \Omega(x)\}))
\end{aligned}
$$

and therefore $G \circ \Psi=T \circ G . O$ So G is a conjugacy from Ψ to T.
This theorem is fascinating, for it proves that the parity-neutral function Ψ is conjugate to, and thus has the same dynamical structure as, the function T defined piecewise on even and odd 2-adic integers.

6. Conclusion

We have discovered an interesting finite subset of the set of all continuous endomorphisms of S in that $D, V \circ D, S$, and $V \circ S$ are the only such maps whose parity vector functions are solenoidal. In addition, each of these four maps are conjugate to S when viewed as dynamical systems on \mathbb{Z}_{2}, and we have seen that the "discrete derivative" D has fascinating dynamics. In particular, we have proven that x is eventually D-periodic if and only if it is eventually repeating, and have classified all eventually fixed points (Theorem 4.9) and the D-orbits of integers (Theorem 4.10) as well. We have observed that D exhibits remarkable symmetry in that $Q_{D}=\left\{\{x, V(x)\} \mid x \in \mathbb{Z}_{2}\right\}$ and that \mathcal{P} is an involution. Given that D has such rich structure, it would be of interest to study the dynamics of other continuous endomorphisms of S and their applications as an area of future research.

We have also seen that the map D has applications to other branches of mathematics. Using Lagarias's result that S is conjugate to T, we have demonstrated that D is conjugate to T via R, and thus that to prove the $3 x+1$ conjecture, it suffices to show that for all positive integers $m, R^{-1}(m)$ has reduced form $x_{0} x_{1} \overline{x_{2} x_{3} \ldots x_{2^{n}+1}}$ for some $n \in \mathbb{N}$. Using D, we have also constructed a conjugacy G between T and the parity-neutral function Ψ. Hence, our results open the door to future research on the conjugacies R and G, motivated by the possibility of making progress on the $3 x+1$ conjecture.

Acknowledgements

The author would like to thank Ken Monks for sharing his knowledge pertaining to the $3 x+1$ conjecture, and for his help and feedback throughout the course of this research. The author also thanks the reviewer for the many helpful suggestions and comments.

References

[1] D. Bernstein, J. Lagarias, The $3 x+1$ conjugacy map, Canad. J. Math. 48 (1996) 1154-1169.
[2] F.Q. Gouva, p-adic Numbers : An Introduction, 2nd edition, Springer-Verlag, New York, 1997.
[3] G. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969) 320-375.
[4] J.C. Lagarias, The $3 x+1$ problem and its generalizations, Amer. Math. Monthly 92 (1985) 3-23.
[5] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, Cambridge, 1995.
[6] K. Monks, J. Yazinski, The autoconjugacy of the $3 x+1$ function, Discrete Math. 275 (2004) 219-236.

[^0]: E-mail address: monks@mit.edu.
 0012-365X/\$ - see front matter © 2009 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2009.04.006

