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In this paper, we prove the existence of acute triangulations
for general polyhedral surfaces. We also show how to obtain
nonobtuse subtriangulations of triangulated polyhedral surfaces.
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1. Introduction

A triangulation of a two-dimensional surface is a subdivision of the surface into nonoverlapping
triangles performed in such a way that the intersection of any two distinct triangles is either empty
or consists of a vertex or an edge. We are interested in constructing triangulations of a surface
with acute or nonobtuse triangles. The construction arises in connection with discretization of partial
differential equations, finite element mesh generation, and other related areas of computer graphics
and simulations.
The construction of nonobtuse triangulations of polygons has been investigated in numerous

articles, such as those of Baker, Grosse and Rafferty [1], and those of Bern, Mitchell and Ruppert [2].
Later, Maehara [6] and Yuan [7] obtained results on acute triangulations of polygons using a linear
number of triangles. Zamfirescu’s survey [8] gives a good introduction to the topic.
As early as 1960, Burago and Zalgaller [3] proved the existence of acute triangulations of general

two-dimensional polyhedral surfaces. The present paper reproves the same result using completely
different methods and by a very elementary construction. In contrast to the original proof, it provides
a significantly simple proof of the result. Our result is complementary to the results obtained by
Maehara and Yuan, and is motivated by many of the techniques used by them. As a corollary of
our construction, we also obtain a nonobtuse subtriangulation of polygons with holes and surfaces
of polyhedra that have been subdivided into polygonal regions. For the special case of triangulated
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Fig. 1. An invalid triangulation, a nonobtuse triangulation of a square, and an acute triangulation of a triangle.

polygons with no Steiner points1 in the interior, a construction was given by Bern and Eppstein [4],
who proposed this more general result as a conjecture.
In this paper, we have not addressed the issue of the complexity of the number of acute triangles

needed to triangulate a polyhedral surface. It is known that a polygon can be triangulated using a
linear number of triangles, and it would be interesting to see whether such a bound can be achieved
in the case of polyhedral surfaces as well.
Another interesting generalization of this problem is to consider its analog in higher dimensions.

Very little is known about acute tilings of three-dimensional Euclidean space. Very recently it was
discovered that it is possible to tile three-dimensional space using tetrahedra having acute dihedral
angles; see [5]. However, it is still not even known whether a cube can be subdivided into acute
tetrahedra.
In Section 2, we summarize the main results proved in this paper. In Section 3, we present the

preliminary constructions of Steiner points on the edges and the circles. These points are useful in the
construction of the final triangulation. In Section 4, we present the final construction of the nonobtuse
triangulation using a grid imposition.

2. Main results

By a (general) polyhedral surface, we mean a two-dimensional simplicial complex obtained as a
finite union of triangles given with their edge lengths, and a map identifying pairs of edges. There is
an intrinsic metric on the surface. Clearly, when two edges are identified, they have the same edge
length.
An acute (nonobtuse) triangulation of a polygon or polyhedral surface is a subdivision of the

surface into nonoverlapping acute (nonobtuse) triangles such that any two distinct triangles are either
disjoint, or share a common vertex or a common edge. In Fig. 1, we see a few examples illustrating the
notion of a triangulation.
The main result of this paper is a new proof of a special case of the Burago–Zalgaller theorem.

Theorem 2.1. Every two-dimensional polyhedral surface can be triangulated into nonobtuse triangles.

Maehara [6] andYuan [7] showhow to obtain an acute triangulation of a polygon given a nonobtuse
triangulation. In their construction, the number of triangles increases by a constant factor. Combined
with Theorem 2.1, these results give a new and elementary proof of the Burago–Zalgaller theorem.

Theorem 2.2. Every two-dimensional polyhedral surface can be triangulated into acute triangles.

It is clear that every polygon can be triangulated if there are no restrictions on the angles of the
triangles. Also, every obtuse triangle can be subdivided into two nonobtuse triangles by drawing the
altitude from the vertex forming the obtuse angle to the opposite side. The difficulty arises when we
try to fit these triangles together. To obtain a nonobtuse triangulation of a triangle, wemay have to add
vertices in the interior of its edges. These vertices need to match those for any other triangle sharing
the same edge.

1 By Steiner points, we just mean additional points that are not given as part of the input and serve as vertices in the
triangulation. No other special properties are assumed for these points.
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Fig. 2. Picking points in the interior of an edge.

There are several elementary constructions of a nonobtuse triangulation of every (not necessarily
convex) polygon. An interesting related question is the following. Given a polygon that has been
subdivided into polygonal regions, can we obtain a nonobtuse triangulation of all the regions in such
a way that the regions fit together to give a nonobtuse triangulation of the original polygon? In this
paper, we prove that we can.
We employ the ‘‘divide-and-conquer’’ technique to obtain a nonobtuse triangulation of a general

polyhedral surface, by subtriangulating each triangle separately with matching Steiner points on the
common edges. Aswementioned earlier, this construction resolves the Bern–Eppstein conjecture, but
is also of independent interest.
We define a subdivided polyhedral surface to be a two-dimensional polyhedral surface that has been

subdivided into polygonal regions.

Theorem 2.3. Every subdivided polyhedral surface can be subtriangulated into nonobtuse triangles
respecting the boundaries of the polygonal regions.

Theorem 2.3 follows from the proof of Theorem 2.2. Unfortunately, our methods do not allow us
to obtain acute subtriangulations of subdivided polyhedral surfaces.

3. Preliminary constructions

Let P be a polyhedral surface. Let V = {v1, . . . , vn} be the set of its vertices, E = {e1, . . . , em} the
set of its edges, and F = {F1, . . . , Fk} the set of its faces.
We need to obtain a triangulation of P satisfying the required conditions. In order to do so, in

addition to the vertices V of P , we might have to add to the interiors of the faces and edges of P
additional vertices that, together with V , comprise the vertices of the triangles in our triangulation.
We call these additional points the Steiner points.
We first give a procedure for choosing vertices in the interiors of all the edges in E . In our final

triangulation, these vertices are the Steiner points on E . We then show how to triangulate any
polygonal face F ∈ F using nonobtuse triangles. The procedure ensures that the Steiner points on
the boundary of F are precisely those vertices that are chosen initially in the interiors of the edges in
E that bound F .
For any two faces F1 and F2with a common edge, the Steiner points along that edge are the same for

both of those faces. Hence, once we obtain such a triangulation, all the triangulated faces fit together
to give a triangulation of the entire polyhedron.
We show how to add Steiner points to the face boundaries. Since P is finite, without loss of

generality wemay assume that the polygon is scaled such that the distance between any two vertices
is at least 10. (A smaller number would have sufficed.) Let θ be such that, for each face F ∈ P , every
angle determined by two adjacent edges in F is at least θ . Pick t such that 0 < t < sin(θ/2).
Let xy be any edge ofP .We pick a finite number of points, say s1, . . . , sr in that order, in the interior

of xy such that `(xs1) = `(sry) = 1 and

t < `(sisi+1) < t
√
2 for 1 ≤ i ≤ r − 1.

Wepick such points in the interior of each edge in P . Fig. 2 illustrates this picking of points. This choice
of points will be useful later on in the proof of Proposition 4.2.
Let F be any given face in P . We show how to obtain a nonobtuse triangulation of F where the

vertices on the boundary are precisely the original vertices of P in F along with the points added in
the interior of each boundary edge. All the rest of the Steiner points are in the interior of F .
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We construct circles padding the boundary of F in the following manner. Wemay assume that F is
a convex polygon. Let VF be the set of its original vertices, and SF the set of its Steiner points added in
the interiors or its boundary edges. For each v ∈ VF , we construct a circle of radius 1 with v as center,
and for each s ∈ SF , we construct a circle of radius t with s as center.
By choice of SF and t , these circles cover the entire boundary of F . Moreover, any two adjacent

circles intersect at an angle greater than π
2 . Let K be a point of intersection of two adjacent circles. The

angle between the two circles is defined as the smallest nonnegative angle through which one of the
circles has to be rotated about K so that it becomes externally tangent to the other circle at the point K .
We now show how to add nodes to the circle boundaries that will be Steiner points in our

triangulation of the face F . Consider the inner boundary B of the region covered by the circles. By
this we mean: look at the complement (in F ) of the disks that are bounded by the circles that we
constructed. Then B is the boundary of the resulting region. We identify all the points of intersection
of adjacent circles on B as nodes. If the arc of a circle between any two consecutive nodes subtends an
angle greater than π

2 at the center of the circle, add a node to the mid-point of the arc which divides
the arc into smaller arcs, each subtending a nonobtuse angle at the center. We set up a coordinate
system and identify the X and Y directions. For each circle, if the lines through the center in the X and
Y directions intersect the inner boundary of the region covered by circles, then we add these points of
intersections as nodes as well. We do so to ensure that later on, in Proposition 4.3, certain boundary
cases do not arise, thus simplifying the analysis.

4. Nonobtuse triangulation

In this section, we show how to impose a grid, and then use it to obtain the desired nonobtuse
triangulation.
Given a set H of lines in the horizontal direction and a set V of lines in the vertical direction, we

say they form a rectangular grid. The lines are called the lattice lines, and the points of intersection of
the lines are called the lattice points. The rectangles defined by two consecutive horizontal lines and
two consecutive vertical lines are called the lattice cells. The aspect ratio of the grid is defined to be the
supremum, taken over all lattice cells, of the ratio of the length of the cell to its breadth.

Lemma 4.1. Given a set of n points {(xi, yi) | 1 ≤ i ≤ n} in R2, and given ε > 0, we can impose a
rectangular grid of aspect ratio at most 1+ ε such that the n points are lattice points of the grid.

Proof. We’ll prove the lemma by giving a construction of such a grid. First draw lines in the x and
y directions through each of the n points to form some rectangular grid G. Our final grid will be a
refinement of G. Let s be the smallest distance between any two consecutive parallel lines of G. Letm
be natural number such that 1/m < ε. Choose δ > 0 such that δ < s/(m+ 1).
Claim:We can get a refinement G′ of G, by adding additional lines in the X and Y directions, such that
if d is the distance between some two consecutive parallel lines, then δ < d < δ(1+ 1

m ).
Proof of Claim: Consider any two consecutive parallel lines with distance s′ ≥ s between them. Then
s′
δ
−

s′

δ(1+ 1m )
=
s′
δ
(1− m

m+1 ) >
s
δ
( 1
m+1 ) > 1. Hence there exists an integer k that lies strictly between

s′
δ

and s′

δ(1+ 1m )
. Therefore, if k− 1 equally spaced lines are added between the two originally given lines,

then the distance between any two consecutive ones is between δ and δ(1+ 1
m ), as was needed. We

repeat this procedure for every pair of consecutive parallel lines in the grid G. This proves the claim.
By the choice of d, this new grid G′ clearly has aspect ratio less than 1 + ε, and by construction it

passes through the given n points. �

Applying Lemma 4.1 to the set of current nodes of F , we can impose a rectangular grid G of aspect
ratio at most 1.2 such that each node is a lattice point. We add each point of intersection of the grid
lines with the inner boundary B as a node.
LetQ be the polygonwhose boundary edges are the straight line segments joining any two adjacent

nodes. Let R be the region of the face excluding the interior ofQ .We next showhow to get a nonobtuse
triangulation of R and of Q .
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Fig. 3. The shaded region in the interior is Q . The figure illustrates the covering of the face boundary with circles.

Proposition 4.2. The region R can be triangulated with nonobtuse triangles without adding any Steiner
points in addition to those constructed originally on the edges of the face boundary and those constructed
on the boundary B of the circles.

Proof. By our choice of θ and the points si that are picked in the interiors of the edges of P (in
Section 3), we ensure that adjacent circles intersect at an angle greater than π2 . Hence the angle formed
between segments joining centers of adjacent circles to their commonpoint of intersection is less than
π
2 . Also, for any two adjacent nodes, the arc between them subtends a nonobtuse angle at the center
of the corresponding circle. Hence, when we add segments between the centers of the circles and
the nodes on the circumferences of the respective circles, we get a triangulation of R by nonobtuse
isosceles triangles without adding any additional Steiner points; see Fig. 3. �

We say that Q ′ is a refinement of Q if in addition to the nodes of Q , we pick additional nodes on B,
and consider the polygon formed by connecting any two adjacent nodes. Let R′ be the region of the
face F excluding the interior of Q ′. Then just like R, also R′ can be triangulated by nonobtuse triangles.
Therefore, it remains to triangulate Q or a refinement of Q .

Proposition 4.3. By adding points to the boundary B the region Q can be refined to a region Q ′, such that
Q ′ can be triangulated with nonobtuse triangles. The vertices of this triangulation are the lattice points of
the imposed grid G and points on the boundary B that were added to obtain the refinement.

Proof. We introduce all the lattice points lying in the interior of Q as Steiner points. Every grid cell
lying wholly in the interior of Q is a rectangle. The rectangles can be divided into two right angled
triangles by a diagonal. At the boundary of Q , the grid cells intersect the boundary of Q to form right
triangles, trapezoids, and pentagons.
Fig. 4 shows all the configurations in which the arc of a circle can intersect a grid cell.
The grid can be chosen fine enough that no two nonintersecting circles intersect the same grid cell.

By construction, any two intersecting circles thatmake up the boundary B intersect at an angle greater
than π

2 . Also, there is a grid line passing through all the points of intersections of the circles that lie on
B. Together, these conditions imply that no grid cell is intersected by the arc of more than one circle.
The points of intersection of the diameters in the X and Y directions with the boundaries of the

circles were added as Steiner points; hence, clearly Cases 1, 3 and 6 of Fig. 4 cannot arise. For Cases 2,
4, 5, 7 and 8, the natural nonobtuse triangulations of the intersection of the grid cell with the boundary
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Fig. 4. Boundary cases.

Fig. 5. Triangulating the pentagon.

of Q are shown in Fig. 4. The only case that needs to be resolved is 9, in which the intersection of the
grid cell with the boundary results in a pentagon; see Fig. 5. This case is handled in Lemma 4.4. �

Lemma 4.4. Suppose a grid cell intersects the boundary of Q to form a pentagon as in Fig. 4, Case 9. Then it
is possible either to triangulate the pentagonwith nonobtuse triangles or to refine the pentagonal region by
adding one more Steiner point to the arc of B contained in the pentagon and then triangulate the resulting
region with nonobtuse triangles.

Proof. Let ABCD be the grid cell, and EF be the part of the boundary ofQ that is intersected by ABCD. As
in Fig. 5, we have arc EF intersecting the grid cell ABCD. We need to obtain a nonobtuse triangulation
of the pentagonal region ABEFD or a region bounded after taking a refinement of the arc EF by adding
points in its interior. However, we cannot add points in the interiors of the segments BE, AB,DA, FD.
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The triangles 4ABE and 4ADF are right and hence nonobtuse. If 4AEF is nonobtuse, then we are
done. Consider the case when4AEF is obtuse. Without loss of generality, let 6 AEF be greater than π

2 .
At F , we construct a ray perpendicular to DC . Since the points of intersection of the diameters in the
X and Y directions with the boundaries of the circles were added as Steiner points, we note that the
constructed ray at F lies in the exterior of the arc EF .
Let L be a (moving) point on the arc EF , and let Q be the intersection of the line through L parallel

to DC and the line through F parallel to DA. Let T be the intersection of the lines AL and QE. We assert
that when Lmoves along the arc FE from F to E, then, at some stage, the angle 6 ATE becomes the right
angle. If L = F , then Q = T = F and 6 ATE = 6 AFE < π

2 . When L → E, then AL → AE, and QL
becomes parallel to DC . In this case, the angle α between AL and QE is clearly obtuse. Hence, at some
intermediate point, α must equal π2 . Fix L,Q , T at this stage.
We introduce the vertex L on the arc to get a refinement of the arc. We now show how to obtain

a nonobtuse triangulation of the hexagonal region ABELFDwithout introducing any Steiner points on
its boundary. It is clear that4ABE,4ATE,4ETL,4ATQ ,4TQL,4QLF , and4DQF are all right triangles,
and hence nonobtuse. Hence it remains to show that4AQD is nonobtuse. By assumption, 6 AEF > π

2 .
So, 6 BAE > 6 FEC . Hence, |BE|

|AB| >
|FC |
|EC | . Hence,

|FC | <
|BE| · |EC |
|AB|

≤
( 12 (|BE| + |EC |))

2

|AB|
=
|BC |2

4|AB|
.

Now, by Lemma 4.1, we may assume that the aspect ratio of the rectangular grid is 1.2. Then, 11.2 ≤
|BC |
|AB| ≤ 1.2, and we can conclude that |FC | <

1.2|BC |
4 = 0.3|BC | = 0.3|AD|. Since 1

1.2 <
|DF |+|FC |
|AD| <

|FD|
|AD| + 0.3, we have |FD| > 0.533|AD|. Thus the entire ray FQ lies outside the circle with diameter
AD, and hence so does Q . Therefore 6 AQD < π/2. But 6 ADQ and 6 DAQ are less than π/2. Therefore
4AQD is nonobtuse. The proof of Lemma 4.4 is now complete. �

Together with triangulations of the other boundary cases as shown in Fig. 4, Lemma 4.4 completes
the proof of the existence of a nonobtuse triangulation of the faces of P with common Steiner points
on the edges separating two adjacent faces. Hence, we get a nonobtuse triangulation of P , and thus
have proved Theorem 2.1.
As an immediate corollary of our proof of Theorem 2.1, we obtain the following result, which

doesn’t seem to have been proved previously.

Theorem 4.5. Every polyhedral surface that has been divided into polygonal regions can be
subtriangulated into nonobtuse triangles respecting the boundaries of the polygonal regions.

Proof. We can view the polygonal regions as the ‘‘faces’’ of the polyhedron, and then apply
Theorem 2.1. Thus we obtain a nonobtuse triangulation of the individual faces with the same set
of Steiner points on the common edge between any two adjacent faces. Hence the faces can be put
together to give a nonobtuse triangulation of the entire surface. �

Once we obtain a nonobtuse triangulation of a polyhedral surface, we can also employ the
techniques of Maehara [6] to extend it to give an acute triangulation of the surface and obtain
Theorem 2.2. We skip the details here; they are found in Maehara [6]. Once we have a nonobtuse
triangulation of the polyhedral surface, Maehara’s method of proof very naturally extends to the case
of a polyhedral surface. However, in the construction of an acute triangulation, the triangles might lie
across edges separating two faces, and hence, might get folded and no longer be planar. Therefore, we
only get an acute triangulation using geodesic acute triangles. It is not yet knownwhether one can get
an acute subtriangulation of a polygon that has been subdivided into polygonal regions.
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