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Abstract 

The effect of flow instabilities on capillary trapping mechanisms is a major source of uncertainty in CO2 sequestration in deep 
saline aquifers. Standard macroscopic models of multiphase flow in porous media are unable to explain and quantitatively predict 
the onset and structure of viscous-unstable flows, such as the displacement of brine by the injected CO2. We present the first step 
of a research effort aimed at the experimental characterization and mathematical (continuum) modeling of such flows. Existing 
continuum models of multiphase flow are unable to explain why preferential flow (fingering) occurs during infiltration into 
homogeneous, dry soil. We present a macroscopic model that reproduces the experimentally observed features of fingered flows. 
The proposed model is derived using a phase-field methodology and does not introduce new independent parameters. From a 
linear stability analysis, we predict that finger velocity and finger width both increase with infiltration rate, and the predictions 
are in quantitative agreement with experiments. 
© 2008 Elsevier Ltd. All rights reserved 
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1. Introduction 

One of the major concerns in any sequestration project is the potential leakage of the CO2 into the atmosphere. 
Because the CO2 is less dense than brine, it tends to migrate upwards to the top of the geologic structure. The 
success of a sequestration project depends heavily on the mechanism of capillary trapping, by which the CO2 phase 
is disconnected into an immobile (trapped) fraction. The application of the present paper is, specifically, the 
prediction of capillary trapping in geological CO2 storage projects at the field scale. 

 
We investigate, by means of laboratory experiments, the dependence of capillary trapping on the flow dynamics 

and, in particular, on the instability of the injected CO2 plume. Factors that contribute to flow instability (and, 
thereby, reduced storage efficiency) are viscous fingering, permeability channeling, and gravity override. Here we 
report the results of laboratory experiments of unstable fluid displacements in a transparent glass-bead pack, which 
enables simple visualization techniques to monitor the flow. We perform drainage of a low-viscosity fluid followed 
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by imbibition, at different viscosity ratios, flow rates and tilt angle that span the range of conditions found in 
geologic CO2 storage.  
 

The experimental observations and high-resolution numerical simulations can be summarized as follows: the 
effectiveness of capillary trapping decreases with increasing “disorder” of the injected CO2 plume. We show that the 
residual nonwetting-phase saturation measured from core floods is not representative of the average values attained 
in multidimensional, large-scale flows. We confirm that current field-scale simulation models of CO2 storage 
overestimate the amount that is actually trapped, because they do not capture the subgrid variability (“disorder”) due 
to viscous and gravity instabilities, and permeability channeling. The main result of the paper is a correlation 
between an effective trapping coefficient and storage efficiency. 

 
It is fair to say that current formulations of multiphase flow through porous media are incorrect or, at best, 

incomplete. All models are based on a straightforward extension of Darcy’s law to several flow fluid phases. Such 
models simply cannot capture some of the essential behavior of fluid-fluid displacement in porous media. Examples 
of behavior observed in physical experiments and that current models cannot reproduce are: (1) viscous fingering 
during the injection of a less viscous fluid (water, gas, or solvent) into a more viscous fluid (oil); (2) gravity 
fingering during oil recovery by gravity drainage. In Figure 3 we show a sequence of two displacements performed 
in our lab: first drainage, followed by imbibition. The prediction of the residual oil saturation is heavily dependent 
on the pattern of the initial invasion of the fluid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Injection of the 
nonwetting phase Wetting phase 

Non-wetting phase 

Trapped 
nonwetting 
phase Injection of the 

wetting phase 

Fig. 1 Unstable displacement of a wetting fluid by a less viscous, non-wetting fluid (drainage), followed by imbibition. These 
results illustrate the complexity of instable displacements in multiphase flor in porous media, and the dependence of the residual oil 
saturation on the displacement pattern of the initial drainage displacement. 
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2. A phase-field model of unsaturated flow through porous media 

Existing continuum models of multiphase flow in porous media are unable to explain why preferential flow 
(fingering) occurs during infiltration into homogeneous, dry soil. Fingering patterns have been consistently observed 
in laboratory and field experiments for nearly half a century [1,2]. Fingering leads to smaller residence times of 
contaminants in soil, may play an important role in soil weathering at the time scale of millennia [3], and it may be 
crucial to the impact of water dropout on the operational efficiency of polymer electrolyte fuel cells [4].  

 
Despite the frequent occurrence of gravity fingers in unsaturated media, the explanation, modeling and prediction 

of fingered flows with continuum (macroscopic) mathematical models has remained elusive. Many authors have 
approached the wetting front instability by drawing an analogy with the two-fluid system in a Hele–Shaw cell [5], 
and their analyses have led to kinematic models that reproduce trends observed in the experiments, such as relations 
between finger width and finger tip velocity with the flow rate through the finger [2,6-9]. Simulation of unstable 
gravity flows has also been performed with modified invasion-percolation models at the pore scale [10,11]. 

 
By contrast, conservation laws that model the evolution of water saturation  (that is, the locally-averaged 

fraction of pore space occupied by water) have been, so far, unable to model gravity fingering successfully. The 
traditional model of unsaturated flow, known as Richards equation [12], is a mass balance equation in which the 
water flux is modeled by a straightforward extension of Darcy’s law to unsaturated media. It accounts for gravity, 
capillarity, and the fact that the permeability to water is reduced because the porous medium is only partially 
saturated with water. It is well known that Richards equation leads to monotonic saturation profiles and cannot 
predict or simulate fingering under any conditions [13]. 

 
To remedy this behavior, several extensions to Richards equation have been proposed. These include a 

formulation with dynamic capillary pressure [14,13], designed to account for additional terms that arise from 
averaging of the microscopic multiphase flow equations. A related model [15] contains a hypodiffusive term, 
introduced to mimic the observed hold-back–pile-up effect, which gives rise to a saturation overshoot at the wetting 
front—a distinctive feature of fingered flows. Higher-order terms are required, however, to regularize the 
mathematical problem [16]. Here, we propose a physical mechanism and a subsequent continuum mathematical 
model that explain why gravity fingers occur during infiltration, and predict when and how they will grow. 

 
 

Fig. 2 Numerical simulation of a viscous-unstable displacement using the standard macroscopic theory of flow in porous 
media. Maps of water saturation at breakthrough time. (A) Mobility ratio M= 20, and (B) Mobility ratio M= 50. 
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Consider constant flux infiltration into a porous medium (Fig. 3). It is assumed that the initial water saturation  

is uniform, and that the infiltration rate  is uniformly distributed and constant in time. The  spatial coordinate 
points downwards, in the direction of gravity (acceleration ). The water density and dynamic viscosity are  and . 
The relevant (macroscopic) parameters concerning the porous medium are its intrinsic permeability , and its 
porosity . The permeability of the medium is often expressed as a saturated hydraulic conductivity, , 
which equals the gravity driven flux under full saturation. Hence, the infiltration rate  may be expressed as a flux 
ratio, , with . When this idealized flow scenario is simulated experimentally, the stability 
of the wetting front seems to be controlled by the flux ratio, initial saturation and material nonlinearity [15]. A 
saturation overshoot is observed at the tip of the fingers, which grow as traveling waves, advancing with constant 
velocity [17]. The formation of fingers appears as a winner-takes-all process, by which the fastest growing fingers in 
the initial unstable front channelize most of the infiltrating fluid and inhibit the growth of other incipient fingers 
[2,17]. The initial moisture content plays a critical role in the fingering instability: even relatively low saturations 
lead to a compact, downward moving wetting front [18]. Stable fronts are also observed in dry media when the 
infiltration rate is either very small or approaches the saturated conductivity. In general, larger infiltration rates 
produce faster, thicker fingers [2]. 
 

Our mathematical model for the water saturation  during infiltration, when expressed in dimensionless 
quantities, takes the form: 

 

  (1) 

where  and  are two dimensionless groups. Our model is similar to that describing the flow of thin films 
[19,20], and to phase-field models of epitaxial growth of surfaces and binary transitions [21,22]. The traditional 
Richards equation can be recovered by neglecting the nonlocal energy term in Eq. (1). We define the saturation-
dependent relative permeability  and the dimensionless capillary pressure . The functional 
forms of these constitutive relations are chosen to fit experimental data from quasi-static experiments. In the 
following, we adopt the van Genuchten–Mualem model [23], 
 
 

Fig. 3 Schematic of vertical infiltration of water into a 
porous medium. Initially, the soil is almost dry (water 
saturation ). A constant and uniformly distributed flux of 

water  ( ) infiltrates into the soil. The flux of 
water is less than the hydraulic conductivity of the soil, , 
so that the flux ratio . 
Macroscopically, a diffuse interface (the wetting front) 
moves downwards. This interface is often unstable and takes 
the form of long and narrow fingers that travel faster than 
the base of the wetting front (see, e.g., Fig. 2 in 
(glass1989b)). Microscopically, a sharp interface between 
water and air exists (see inset), which is locally governed by 
capillary effects. 
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  (2) 

where . This model introduces two intrinsic material parameters:  and . The dimension of  is 
, and  is approximately the capillary rise. The nonlinearity of the material is determined by , which 

depends on how well-sorted the porous medium is. The gravity number  is defined as , where  is an 
arbitrary length scale used to nondimensionalize the equations. The dependence of the capillary rise on the system 
parameters is given by the Leverett scaling , where  is the surface tension 
between the fluids, and  is the contact angle between the air–water interface and the solid surface [24]. 

 
Dimensional analysis leads to the scalings  and , which simply reflect that the solution 

should be independent of the choice of the reference lengthscale . In principle, one might postulate the dependence 
of  on an additional intrinsic property of the system. Since the idea of a nonlocal interface is fundamentally a 
macroscopic construct, it is more rigorous to express  in terms of the already considered basic parameters, and 
thus arrive at the scaling . The coefficient linking  and  must be a constant, and simple 
analysis suggests that its magnitude is of the order of one. Therefore, we propose the relation 

 
  (3) 

 
As a consequence of Eq. (3), the gravity number  sets the intrinsic scale of the problem, and the proposed model 
contains a new term, but not a new independent parameter. The numerical solutions to Eq. (1) capture the 

Fig. 4 Saturation maps from the numerical 
simulations of Eq. (1), for different values of the 
gravity number  , flux ratio , and initial 
saturation . Increasing the gravity number ((A) 
and (B)) changes the scale of the problem but not the 
nonlinear dynamics of the wetting front. Large initial 
saturations (C) lead to a compact invasion, and small 
flux ratios (D) produce thinner, slower fingers in 
sufficiently dry media. The flow dynamics and the 
distinctive saturation overshoot at the tip of the 
fingers, which behave as traveling waves, agree with 
experimental observations. 
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experimentally observed features of preferential flow and wetting front instability (Fig. 4). The most salient 
qualitative discrepancy between the numerical simulations and the experimental visualizations is the absence of 
meandering of the fingers, which is due to small heterogeneities and packing irregularities that always exist in the 
experiments and are not considered in the simulations. Our model permits investigation of the dependence of the 
flow characteristics with the various system parameters, and predicts the existence of a saturation ridge along the 
finger root front, which should be analyzed in future experiments. 

 
The linear stability analysis of Eq. (1) provides further insight into the role of the system parameters on the 

dynamics of the flow. Stability refers here to the growth or decay of planar infinitesimal perturbations to the 
traveling wave solutions to Eq. (1). We distinguish between asymptotic (modal) and transient (non-modal) growth 
behavior, the latter arising from the non-normality of the linearized flow operator [25,20]. For each set of 
parameters, we determine the frequency  of the most unstable mode, as well as its associated asymptotic 
growth factor  and the transient growth behavior. Positive values of  or intense transient growth are 
indicative of an unstable wetting front, and their magnitudes correlate with the severity of fingering. 

 
When the dimensionless groups  and  are considered independent, there is a narrow region in the parameter 

space –  where  (Fig. 5(A)) and  (Fig. 5(B)) decay exponentially. This region of abrupt decay marks 
the effective transition from a compact infiltration front to fingering instability, and follows a straight line (in 
logarithmic scale) of slope . The specific location of the transition (not its slope) is determined by the system 
parameters ,  and . This critical region cannot be crossed when  moves along , and therefore 
changes in the gravity number do not induce regime transition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The stability analysis also reveals that, under the scaling ,  and  are linear functions 

of . The scale-invariant frequencies and growth factors,  (Fig. 5(C)) and  (Fig. 5(D)), are 
indicative of the early dynamics of the perturbed flow and the properties of the emerging fingers. The onset of 

Fig. 5 Results of the linear stability analysis of 
Eq.(1). (A)–(B) Contours of the logarithm of the 
frequency  of the most unstable mode and its 
associated growth factor , as functions of the 
dimensionless groups  and . We 
set ,  and . A 
narrow region of exponential decay, along a straight 
line of slope , marks the effective transition from 
stable to unstable flow. The position of this transition 
region, not its slope, is determined by ,  and . 

Under the proposed scaling , the 
transition region cannot be crossed by modifying  
alone. (C) Exponential decay of the scale-invariant 
frequencies   with the initial 
saturation . For a given , the frequencies 
increase with decreasing  , up to a critical flux 
beyond which  decreases again. 
(D) Exponential decay of the scale�invariant growth 
factor  with the initial saturation . 
Within the unsaturated regime, the growth factors
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preferential flow paths in the unstable wetting front is more intense for larger flux ratios and smaller initial 
saturations. For very dry media the size of the incipient fingers decreases with the flux ratio. In general, however, 
for each value of the initial saturation there is a critical flux ratio beyond which smaller fluxes lead to larger finger 
sizes (Fig. 5(C)). This nontrivial result shows that it is possible to observe both decrease and increase in finger size 
with decreasing , depending on the particular values of  and . The growth factor and frequency of the most 
unstable mode decay exponentially as the initial saturation is increased. This abrupt decay agrees with experimental 
observations, which have suggested the existence of critical values of  for the suppression of the instability [18]. 

 
A linear stability analysis has applicability, strictly speaking, to incipient perturbation growth. The dominant role 

of the fastest growing fingers suggests, however, that the results of a modal analysis may correlate with the 
characteristics of the fully developed fingers. Using dimensional analysis, and assuming that the finger properties 
can be determined from the basic system parameters and the dimensionless groups ,  and , we arrive at 
the following expressions for finger tip velocity  and finger width : 

 

  (4) 

where  and  are experimental constants. For initially dry media, the flux ratio has a relatively modest influence 
on  (Fig. 5(C)), and therefore Eq. (4) predicts that the finger width roughly scales like , which is 
consistent with experimental observations and scaling theories in porous media [26]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To test these predictions, we compare the finger properties given by Eq. (4) with measurements from the 
experiments by Glass et al. [2]. They report experiments of infiltration into homogeneous, initially dry, coarse sands, 
for different flux ratios. Constant infiltration rates are achieved through the use of a two-layer configuration, with a 
tall, coarse-sand layer at the bottom of the chamber, and a thinner, less conductive, fine-sand layer on top. 
Comparison of the experimental and predicted finger characteristics (Fig. 6) suggests the choices  and 

. The results from the linear stability analysis, together with Eq. (4), not only reproduce the observed 
trends in finger velocity (Fig. 6(A)) and finger width (Fig. 6(B)), but also show good quantitative agreement with 
the experimental measurements. 

Fig. 6 Average finger tip velocity (A) and finger width (B) versus flux ratio . The circles are the experimental measurements 
of Glass et al. [2]. The crosses (joined by straight solid lines) are the values predicted by the linear stability analysis, together with 
Eq. (1). We set , , and a gravity number  based on the height of the experimental chamber. 
The constants in Eq. (4) are estimated as  and . The predictions based on the linear stability analysis 
reproduce the observed increase of finger velocity and finger size with the flux ratio. 
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3. Conclusions 

The present study shows that gravity fingering in unsaturated flow can be explained, described and modeled by 
means of continuum balance laws. The success of this simple model to explain infiltration fingers suggests that 
similar continuum models, derived using the framework of phase-field modeling, may improve our ability to predict 
unstable multiphase flow in porous media. 
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