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SUMMARY

We have developed a physiologically based mathe-
matical model, with parameters derived from pub-
lished experimental data, to simulate the regulatory
effects of the leptin pathway on murine energy
homeostasis. Model outcomes are consistent with
data reported in the literature and reproduce key
characteristics of the energy regulatory system, in-
cluding compensatory responses that counteract
changes in body weight and the failure of this ability
when the leptin pathway is disrupted. Our model
revealed the possibility of multiple steady states for
body weight. It also provided a unified theoretical
framework for two historically antagonistic hypothe-
ses regarding body weight regulation (‘‘set-point’’
versus ‘‘settling point’’). Finally, our model has iden-
tified potential avenues for future investigations.

INTRODUCTION

Obesity, with its many well-known comorbidities, has become so

prevalent that it is often described as a global epidemic. It is a

notoriously obstinate disease—nonsurgical treatments directed

toward long-term body weight reduction are seldom effective.

Energy homeostasis is regulated by centers in the central nervous

system (CNS), which receive and integrate information conveyed

by signals from peripheral organs (such as fat, gut, and the endo-

crine pancreas) and then send out efferent neural and hormonal

signals to regulate food intake and energy expenditure (Morton

et al., 2006; Spiegelman and Flier, 2001). Acute changes in an

individual’s net energy balance are counteracted by opposing

changes in food intake and/or energy expenditure that minimize

changes in body weight (Leibel et al., 1995; Weigle, 1994). This

system is remarkably robust, so that even though energy intake

and expenditure can both fluctuate substantially over time, total

body weight is maintained within a relatively narrow range.

These observations have led to the ‘‘set-point’’ hypothesis—

the idea that in each individual there is an explicit body weight

set-point, deviations from which are vigorously opposed by com-

pensatory responses until the set-point body weight is restored.

The nature of this set-point is unknown—no physiological factor

representing the set-point has ever been identified. This elusive

set-point is believed to have a major genetic component, but

some have proposed recently that the set-point may be altered

by environmental factors, especially during early development

(Levin, 2006). While the difficulty in reversing obesity is often cited

as support for the set-point hypothesis, the fact that obesity

could develop in the first place is often used to argue against

this hypothesis. Opponents of the set-point hypothesis argue

that there is little active regulation of body weight, and that the ap-

parent stable body weight is primarily a steady-state outcome

determined by environmental factors such as diet and lifestyle

(the ‘‘settling point’’ hypothesis). In essence, proponents of the

set-point hypothesis attribute obesity mostly to intrinsic physio-

logical factors, whereas proponents of the settling point hypoth-

esis believe external environmental factors to be predominant.

The debate over which hypothesis is most consistent with exper-

imental and clinical data has lasted several decades and is still

ongoing (Kennedy, 1953; Levin, 2005; Levitsky, 2005; Wirtshafter

and Davis, 1977).

This controversy underscores the fact that, despite the im-

pressive progress made over the past few decades in unraveling

many of the molecular pathways involved in energy regulation,

we still have a rather murky understanding of how all the pieces

fit together to function as an integrated system. Most previous

mathematical models of metabolic energy regulation have not

explicitly modeled the neuroendocrine feedback system that

maintains energy homeostasis. In order to address this defi-

ciency, we have developed a mathematical model that simulates

the physiological system that regulates energy metabolism. This

model could complement experimental efforts in answering

certain fundamental questions regarding obesity, such as (1)

how different arms of the energy regulatory system interact to

produce a stable body weight, (2) how perturbations such as in-

creased caloric density in food or leptin resistance could affect

overall energy balance, and (3) why there is such wide variation

between different individuals subject to similar metabolic envi-

ronments. We have decided to model the mouse instead of

humans because mice can be subjected to much more rigorous

and invasive experimental investigation, and also because the

availability of transgenic mice allows the roles of specific molec-

ular pathways to be studied more thoroughly than is possible in

human subjects.

One of the best-characterized arms of the energy regulatory

system is the leptin pathway. Leptin is produced by fat cells

and secreted into the blood stream. Circulating leptin has effects

on some peripheral organs, including muscles and liver, but its
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most critical effects are in the CNS (particularly the hypothala-

mus), where a low level of leptin serves as a potent starvation

signal, triggering an array of adaptive neuroendocrine responses

including hunger/food-seeking behavior, efficient metabolism,

and suppressed reproduction (Ahima et al., 1996; Badman and

Flier, 2007). When the leptin pathway is disrupted by mutations

in the gene for leptin or its receptor, the body behaves as if it is

constantly starving, resulting in morbid obesity via overeating

and energy hoarding. Although disruptions in the leptin pathway

produce very dramatic results, they are also quite rare. Instead,

most cases of chronic obesity are characterized by high circulat-

ing leptin levels as well as leptin resistance, such that the

dose response toward leptin is diminished compared to leaner

individuals.

We have developed this physiologically based model to simu-

late the effects of leptin on the energy regulatory system. The

model reproduces key characteristics of this system, such as

the ability to counteract changes in environmental factors to min-

imize variations in body weight and the failure of this ability when

the leptin pathway is disrupted. Variations in specific parameters

in the model are able to simulate the wide variations in susceptibil-

ity to diet-induced obesity among different inbred mouse strains

(West et al., 1992). Our model revealed that multiple body weight

steady states are possible under certain conditions—a potential

mechanism contributing to the well-known obstinacy of obesity,

with important clinical implications. We also used our model to

evaluate the longstanding controversy regarding body weight

regulation and found that a unified model combining aspects of

both leading hypotheses (set-point versus settling point hypothe-

ses) is most consistent with experimental data.

RESULTS

We developed a system of ordinary differential equations to

describe the effects of leptin on various aspects of energy

metabolism (Figure 1 and Experimental Procedures). To evaluate

whether a regulatory system based on a body weight set-point is

consistent with experimental data, we carried out and compared

simulations for two separate systems—with and without control

by an explicit set-point. In adherence to established terminology

in the field, we will refer to these as the ‘‘set-point’’ and ‘‘settling

point’’ models.

Settling Point Model
Baseline Conditions

The equations for the settling point model were solved assuming

fat-free mass of 22 g (Reed et al., 2007), a standard chow diet

(rfood �13.4 kJ/g [Berriel Diaz et al., 2006; Rafael and Herling,

2000]), and an initial fat mass of 2 g. Initial leptin concentrations

were calculated using Equations 1 and 2 (assuming steady state

at time 0 for Equation 1). The model reached steady-state values

of �6.4 g fat mass, 4.6 ng/ml plasma leptin, and average food

intake of 3.6 g/mouse/day. These values are all within the normal

range for male C57/B6 mice (Ahima et al., 1996; Collins et al.,

2004; McClintock and Lifson, 1957; Reed et al., 2007) and

were independent of initial fat mass.

Leptin Deficiency

When the leptin pathway was completely disrupted (accom-

plished in the model by setting the leptin synthesis rate to zero),
the model resulted in a mouse with �73 g body weight at steady

state, and the body weight growth curve was in good agreement

with experimental data (Figure 2A). Food intake in the simulated

leptin knockout (LepKO) mice was higher than wild-type (WT)

mice (Figure 2B), which is one of the key characteristics of LepKO

mice. Energy expenditure in the LepKO mice was lower than WT

mice at early time points when the LepKO mice still had relatively

low body weights, but their energy expenditure increased as

body weight increased, eventually overtaking WT mice (Fig-

ure 2C), which is consistent with experimental observations

(Kaplan and Leveille, 1974; McClintock and Lifson, 1958). When

energy expenditure was normalized against body weight, WT

mice consistently expended more energy per unit body weight

than LepKO mice (Figure 2D). This is a well-documented phe-

nomenon that has been the subject of some debate (Himms-

Hagen, 1997).

Haploinsufficiency in leptin or its receptor also causes obesity,

albeit not as severe as homozygous knockouts (Chung et al.,

1998). In our model, leptin haploinsufficiency can be approxi-

mated by halving the rate of leptin synthesis (disregarding com-

pensatory responses, such as upregulation of leptin receptors,

that could lessen the impact of genetic haploinsufficiency in

leptin). When leptin synthesis rate was decreased by 50%, per-

centage body fat increased by about 36% in our model, which is

similar to experimental results showing a roughly 30% increase

in percentage body fat in C57Bl/6J mice with haploinsufficiency

in leptin or its receptor, after adjusting for age and sex (percent-

age body fat was 35.2% higher in Leprdb/+ and 23.5% higher in

LepOb/+ mice, no significant difference between the two hetero-

zygotes [Chung et al., 1998]).

Compensatory Responses to Changes

in Energy Balance

The effects of dietary alterations were simulated by setting

the metabolizable energy of the diet to ±50% the normal value,

respectively. In both cases, the change in diet caused

Figure 1. Model of Leptin Action

White arrow: flow of energy. Dark arrows: flow of information conveyed by

neuroendocrine signals. Leptin is produced by fat in proportion to fat mass;

it travels to and stimulates the energy regulatory centers in the CNS, which

then send out efferent signals to regulate food intake and energy expenditure.

The equation numbers refer to equations in the rest of this article that will be

used to describe the different components in this system.
Cell Metabolism 9, 52–63, January 7, 2009 ª2009 Elsevier Inc. 53
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a corresponding change to a new steady-state body weight (Fig-

ure 3), and when the dietary energy content returned to normal,

body weight quickly returned to prediet values (data not shown).

This behavior is expected of a steady-state system subjected

to a persistent change in input. The changes in dietary energy

content also led to apparent compensatory responses: a de-

crease in dietary energy content led to increased food intake

and decreased energy expenditure, with the combined effect

of diminishing the decrease in body weight (Figure 3A); whereas

a rise in dietary energy content led to decreased food intake and

increased energy expenditure, lessening the increase in body

weight (Figure 3B). Similar adaptive responses are seen when

energy expenditure is changed (data not shown). These com-

pensatory mechanisms that minimize changes in body weight

are well documented in experimental settings (Leibel et al.,

1995; Weigle, 1994) and are the core foundation of the set-point

hypothesis. In the system depicted in Figure 3, these responses

are not corrective attempts to minimize the difference from an

explicitly defined reference (which would be the case for a

set-point control system); rather they are the products of the

leptin dose-response curves for food intake and energy

expenditure.

Sensitivity Analysis

To test the sensitivity of this model to the model parameters

(k1–k8, Rsyn, GFR, and rfood), each parameter was varied across

its physiological range (see Table S6 for range and justification),

and the steady-state model output was obtained across this

range (Figure S2).

Results from the sensitivity analysis yielded several intriguing

observations. Under normal conditions, body weight is most

prominently affected by the parameters that control food intake

(k4) and caloric density in the diet (rfood). This implies that normal

Figure 2. Metabolic Consequences of Dis-

rupted Leptin Pathway in the Settling Point

Model

(A) Body weight in simulated WT mice (solid line)

compared to LepKO mice (dotted line). Crosses

indicate body weight of LepKO mice of C57Bl6/J

background, as reported by the Jackson Labora-

tory (‘‘Weight gain in B6.V-Lepob/J mice,’’ http://

jaxservices.jax.org/technotes/invivo010906.html).

Circles indicate body weight of WT C57Bl6/J

males (J.T, unpublished data). Simulation out-

comes for both LepKO and WT mice are similar

to experimental results.

(B) Simulated food intake in WT versus LepKO

mice (ob).

(C) Total energy expenditure in WT (solid line)

versus LepKO (dotted line) mice.

(D) Simulated energy expenditure normalized by

body weight in WT (solid line) versus LepKO

(dotted line) mice.

variability in dietary intake has more pro-

nounced effects on body weight than var-

iability in other factors such as leptin

transport rates or energy expenditure.

Note also that despite the lack of an

explicit set-point, body weight is main-

tained within a narrow range, such that even with a diet with

very high caloric density, body weight is still relatively low

(�35 g, versus >50 g in experimental C57Bl/6J mice [Parekh

et al., 1998]). This indicates that change in input (e.g., in dietary

caloric content) alone is not sufficient for the development of

obesity in the model as currently constructed, with parameters

derived using baseline conditions. More severe cases of obesity

can develop only if modifications are made to one or more of the

model parameters.

Simulation of Leptin Resistance

Thus far, we have assumed that the leptin transport and

dose-response functions are static, i.e., blood-to-brain leptin

transport, food intake, and energy expenditure are constants

at any given leptin concentration. However, leptin resistance (de-

creased sensitivity toward leptin) is a hallmark of diet-induced

obesity. Transport of leptin across the blood-brain barrier is re-

duced in the obese (peripheral leptin resistance) (Banks et al.,

1999; Van Heek et al., 1997). There is also evidence that sensitiv-

ity to leptin in CNS regulatory centers is decreased by obesity

(central leptin resistance)—leptin affects food intake and energy

expenditure through STAT3 signaling, and obesity causes hypo-

thalamic STAT3 activation to become less responsive to leptin

(El-Haschimi et al., 2000). Recent reports have also demon-

strated that the neural circuits regulating energy balance are

surprisingly flexible even in adulthood (Bouret et al., 2004; Pinto

et al., 2004). Given the key role of leptin resistance in obesity, an

individual’s susceptibility toward leptin resistance is likely to

affect that person’s propensity to becoming obese.

In our model, peripheral leptin resistance can be simulated by

changing the parameters that control blood-to-brain transport of

leptin, while central leptin resistance can be simulated by chang-

ing the parameters that govern the leptin dose-response curves
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for food intake and energy expenditure. There is very little quan-

titative experimental data available on how leptin resistance de-

velops or how it relates to existing leptin levels. Therefore, we

have arbitrarily chosen to simulate peripheral leptin resistance

by turning one model parameter (k2) into a function that in-

creases in value at high levels of leptin (Figure 4A). As the value

of k2 increases, the amount of leptin transported into the brain is

reduced (Figure 4B).

The severity of leptin resistance depends on both the thresh-

old at which leptin resistance develops (value of parameter k10

in Figure 4A) and the slope of the leptin-responsive portion of

the curve (k9 in Figure 4A). We chose these values empirically

to simulate mice with different susceptibilities toward leptin re-

sistance (see Experimental Procedures). The threshold plasma

leptin concentration (k10) at which leptin resistance begins to

develop was assumed to be 10 ng/ml (recall that for our model

the baseline steady-state plasma leptin concentration was

4.6 ng/ml). When the slope of the leptin-responsive portion of

the curve was shallow (low value of k9), the model was resistant

Figure 3. Adaptive Changes in Response to

Altered Energy Intake for the Settling Point

Model

(A–B) Normal diet was eaten during weeks 0–4,

while diet energy content was decreased (A) or in-

creased (B) by 50% during weeks 4–12. Plasma

and brain leptin levels, fat mass, and total body

weight decreased during food restriction and

increased during overfeeding, reaching new

steady-state values. In both cases, food intake

and energy expenditure changed in directions

that opposed the change in dietary energy content

so that the change in fat mass was diminished.

to diet-induced obesity, and model out-

puts were consistent with data from

obesity-resistant A/J mice (Figure 4C).

When the value of k9 was high (in effect

increasing the prominence of leptin resis-

tance), the model became susceptible to

diet-induced obesity, and model outputs

were consistent with data from C57Bl/6

mice (Figure 4D).

Another interesting observation came

from this simulation of leptin resistance.

In Figure 4D, the difference between

mice fed low-fat diet for 4 months then

high-fat diet for 4 months (L4H4) and the

mice fed high-fat diet for 8 months (H8)

was due to kinetics—the L4H4 group

had not reached steady state at the last

time point, and if the simulation of the

L4H4 group were continued on the high-

fat diet, eventually their body weight

would reach a similar steady-state value

as the H8 group. However, different com-

binations of k9 and k10 could give rise

to multiple steady states under identical

environmental conditions (Figures 4E

and 4F). Implications of this phenomenon will be discussed

below.

Set-Point Model
Simulation results using the set-point model at baseline (leptin

pathway intact, normal chow diet) as well as with a disrupted

leptin pathway were similar to experimental data and compara-

ble to results from the settling point model (Figure 5A). This

was expected, since we used steady-state results from the

settling point model to define both the set-point and the bias sig-

nals of the set-point model, while data from LepKOs were used

to define the upper and lower bounds for food intake and energy

expenditure.

Response to Dietary Changes

To evaluate the response of the set-point model to changes in

dietary caloric content, we repeated the simulations with varying

dietary caloric contents. When dietary caloric content was either

increased or decreased by 50%, there was a transient change in

body weight and leptin levels, but eventually all these parameters
Cell Metabolism 9, 52–63, January 7, 2009 ª2009 Elsevier Inc. 55
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Figure 4. Simulation of Peripheral Leptin Resistance

(A) Modification of k2 according to the equation for leptin resistance. k2 increases at plasma leptin concentrations larger than the threshold level set by k10. k2,0 =

baseline value of k2. The rate of increase of k2 is determined by k9.

(B) Blood-to-brain transport of leptin is decreased by increasing values of k2. Each curve represents the relationship between plasma and brain leptin concen-

trations at one particular value of k2.

(C and D) Simulation of mice with different susceptibility towards leptin resistance, compared to experimental data from Parekh et al., 1998. Mice were given four

different diet regimens over 8 months: low-fat diet all 8 months (L8), high-fat diet for 4 months then low-fat diet for 4 months (H4L4), low-fat diet for 4 months then

high-fat diet for 4 months (L4H4), or high-fat diet for 8 months (H8). Dietary caloric content is as reported by Parekh et al. Crosses and error bars represent data

reported by Parekh et al., while grey bars represent simulation results. When the value of k9 is small, the simulated animal is consistent with mouse strains such as

A/J that are resistant to diet-induced obesity (C). When the value of k9 is large, the simulated animal is consistent with mouse strains such as C57Bl/6J that are

susceptible to diet-induced obesity (D).

(E) Multiple steady states are possible when model parameters are permissible. The values of k9 and k10 in Equation 10 were set to 7 and 9, respectively, and the

simulation was repeated with low-fat diet for 4 months and high-fat diet for 4 months and then returned to low-fat diet for 8 months. Even though all other external

variables, including the diet, were identical, the steady-state body weights (arrows) were different before and after exposure to the high-fat diet.

(F) Energy intake (solid line) and expenditure (dashed line) are plotted as functions of plasma leptin concentration. Steady state occurs when energy intake equals

expenditure (i.e., when the two curves intersect each other). With model parameters used in (E) and a low-fat diet, there are two possible stable steady states

(black arrows) and a third steady state that is unstable (white arrow). If acute fluctuations (such as a temporary therapeutic intervention or change in diet) in system

inputs lead to leptin levels on the left of the point denoted by the white arrow, the system will eventually settle on the lower steady state (arrow 1). When fluctu-

ations lead to leptin levels on the right of this white arrow, the system will settle on the higher steady state (arrow 2) instead.
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Figure 5. Simulations for Set-Point Model

(A) Body weight in simulated WT mice (solid line) compared to LepKO mice (dotted line). Experimental data for body weights of LepKO mice (crosses) and WT

C57Bl6/J mice (circles) are the same as Figure 2. Simulation outcomes for both LepKO and WT mice are similar to experimental data and comparable to the

settling point model.

(B) Adaptive changes in response to altered energy intake. Normal diet was eaten during weeks 0–4, while diet energy density was 50% above normal during

weeks 4–12 and 50% below normal during weeks 12–20. In both cases, compensatory changes in food intake and energy expenditure combined to return

body weight to the set-point (body weight at which brain leptin concentration = 0.34 ng/g).

(C and D) Set-point system with a set-point that changes in proportion to the error signal, described mathematically by the equation

dðSetPtÞ=dt = aðLepBrain � SetPtÞ, where a = a constant. With this definition of a set-point, the set-point reversibly adapts to existing leptin levels. With this

changeable set-point, body weight in simulated WT mice (solid line) is still similar to experimental data (circles); however, in simulated LepKO mice (dotted

line), the set-point is continuously lowered so that body weight in these simulated mice was much lower than experimental data (crosses) (C). In WT mice

with an adaptable set-point, the system behaves much more similarly to a settling point system than a set-point system (normal diet for weeks 0–10, diet energy

density 50% above normal for weeks 10–40, 50% below normal for weeks 40–70) (D).

Cell Metabolism 9, 52–63, January 7, 2009 ª2009 Elsevier Inc. 57
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returned to the set-point despite the persistent change in dietary

caloric content (Figure 5B). This result highlights one of the fun-

damental differences between the settling point and set-point

models: whereas a persistent change in input would cause a

corresponding shift in steady-state output in the settling point

model, in the set-point model, such a change would eventually

be compensated for, upon which the controlled parameter

would return to the set-point.

This simulation also illustrates an important fact: diet-induced

obesity is incompatible with any set-point regulatory system,

such as our set-point model, that is capable of returning the

system to the set-point. This is because the controlling actions

in such systems are exerted as long as there is a difference

between the measured parameter and the set-point, and so

the system always returns to the set-point eventually, regardless

of variations in extrinsic factors such as dietary caloric content.

In part to circumvent this limitation, proponents of the set-point

theory have suggested that perhaps the set-point is mobile, and

that an increase in the set-point could explain the development

of obesity (Levin, 2005). Since the mechanism by which the

set-point could be altered has never been specified, here we

will briefly discuss two possible alternatives by which the set-

point could change in response to existing leptin concentration.

One suggestion is that perhaps the set-point can be perma-

nently increased (e.g., in obese individuals), but can rarely (if

ever) be decreased (Levin, 2005). The difficulty in lowering the

set-point would then contribute to the difficulty in losing weight

once it is gained. This mode of set-point change could be simu-

lated by a set-point that changes according to the absolute leptin

concentration. Since the leptin concentration is always nonnega-

tive, this set-point can never decrease. However, a set-point that

is permanently increased implies that animals with diet-induced

obesity would retain their obese body weights even after return-

ing to a standard diet. This scenario would be analogous to the

results shown in Figure 5B, but with a higher body weight set-

point, which is contrary to results from animal studies showing

that diet-induced obesity is reversible when dietary caloric con-

tent is returned to normal (Parekh et al., 1998), so a permanently

increased set-point change is not compatible with experimental

data in rodents.

Another possible mechanism by which the set-point could

vary is changing the set-point in response to the error signal.

This would allow the set-point to change reversibly. The first rea-

son this mode of set-point change is unlikely concerns LepKOs.

Because leptin concentration is constantly zero in LepKOs,

a set-point that changes in proportion to the error signal would

eventually result in a set-point of zero, at which point the LepKO

animals would eat and expend energy similar to WT animals

(Figure 5C), which clearly does not happen in experimental ani-

mals. This obstacle could be partially circumvented if there

were some sort of threshold below which the set-point would

not fall. However, even if the LepKO scenario was not a problem,

this mode of set-point change still requires the overriding of the

control mechanisms working to return the system to the original

set-point. In other words, this mode of set-point mobility could

only become effective if the ability to return the system to its orig-

inal set-point was lost, resulting in a system much more akin

to our previous settling point system than to a set-point system

(Figure 5D). This limitation also applies to any other model
58 Cell Metabolism 9, 52–63, January 7, 2009 ª2009 Elsevier Inc.
parameters that change in responses to the error signal (e.g.,

the earlier simulation of leptin resistance by varying k2 in

response to plasma leptin concentration).

For the reasons listed above, even a set-point that is change-

able (in response to leptin levels) cannot adequately account

for diet-induced obesity. Given that our previous simulation,

using a simple steady-state system with no set-point, was able

to reproduce experimental data of diet-induced obesity with

reasonable fidelity, we conclude that body weight regulation in

environments of ample dietary energy availability and the devel-

opment of diet-induced obesity are more consistent with our

settling point model than one governed by set-point controllers.

Combination Model
While our settling point model is sufficient to simulate the devel-

opment of diet-induced obesity, there are divergent experimen-

tal data when dietary caloric content is reduced below normal.

Some animals compensate by increasing the mass of food

consumed and are able to maintain their body weights even at

drastically reduced dietary caloric contents, while others are

unable to compensate at all (Dalton, 1965; Hirsch et al., 1978;

Spiegel, 1973). In general, carnivores (e.g., dogs and cats) and

herbivores (e.g., oppossums and rabbits) are less able to com-

pensate for reduced dietary caloric content, while omnivores

(e.g., mice, rats, and humans) seem to be more effective at sens-

ing and compensating for fluctuations in dietary caloric content,

although there are conflicting reports even in rodent and human

data. It has been suggested that the ability to appropriately

adjust for dietary caloric content may be more important in om-

nivores due to the wide variety of food they consume, whereas

this ability may not be necessary in herbivores and carnivores

since they have relatively constant diets in natural settings

(Hirsch et al., 1978).

The ability to maintain a constant body weight even in the face

of reduced dietary caloric density is more compatible with the

set-point model than the settling point model, since the latter

could never completely compensate for changes in dietary calo-

ric density. To simulate animals that are able to develop diet-

induced obesity, but are also able to maintain body weight in

spite of reduced dietary caloric density, we combined the food

intake and energy expenditure equations from our settling point

model with set-point controllers that are only active when leptin

level falls below a defined threshold (Lepthresh), which allows lep-

tin to function as a safeguard against starvation. At brain leptin

concentrations above the threshold, this combination model still

behaves like the settling point model, where changes in input

(e.g., dietary caloric content) would lead to new steady states.

However, if brain leptin concentration were to fall below the

threshold, the control mechanisms (described by the integral

terms in the equations above) would become active, preventing

leptin concentration (and, by extension, body weight) from falling

below the threshold level (Figure 6) by increasing food consump-

tion and reducing energy expenditure.

DISCUSSION

A number of investigators have used mathematical modeling to

study the regulation of energy metabolism and body weight (Ab-

del-Hamid, 2003; Goldbeter, 2006; Hall, 2006; Kozusko, 2001).
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However, most of these previous models did not directly address

the feedback regulatory mechanisms that regulate food intake

and energy expenditure. This may be because most previous

models were based on human experiments where food intake

was the primary experimental variable and was determined by

the investigator rather than the subject. Thus, the effects of neu-

roendocrine signals (such as leptin) on feeding were overridden,

and therefore such data are not suitable for simulating the regu-

latory system that controls energy homeostasis under normal,

free-feeding conditions.

Here, we have developed a mathematical model that explicitly

simulates the effects of leptin on energy balance, with parame-

ters derived from published experimental data. Our model repro-

duces key characteristics of the energy regulatory system: the

model produces and defends a stable body weight, the effects

of leptin pathway disruption are consistent with experimental

results from LepKO mice, and varying degrees of susceptibility

to leptin resistance (specifically demonstrated for parameter k2)

can result in substantial variations in susceptibility toward diet-

induced obesity.

Our results showed that an explicit set-point is not required for

a stable body weight that is apparently defended against envi-

ronmental perturbations and that a settling point model is more

consistent with experimental data of diet-induced obesity. On the

other hand, our model differs from the prevailing ‘‘settling point’’

concept in that our model includes active regulatory mecha-

nisms (i.e., food intake and energy expenditure both respond

to leptin levels), and that intrinsic factors such as leptin sensitivity

are at least as important as external environmental factors in the

development of diet-induced obesity, as we illustrated in our

sensitivity analysis and simulation of leptin resistance. We further

demonstrated that a hybrid model combining aspects of both

set-point and settling point models can more accurately repre-

sent animals that are susceptible to diet-induced obesity, yet are

still able to compensate for diminished dietary caloric content.

This ‘‘steady-state-plus-threshold’’ model is consistent with

data showing that low levels of leptin elicit potent antistarvation

responses, while high leptin levels are only partially effective at

limiting adiposity (Ahima et al., 1996; Myers et al., 2008). Whether

this threshold value could change in response to leptin levels

remains to be determined experimentally, but if this threshold

value can be raised in response to chronically high leptin levels,

it could contribute to the difficulty in losing weight.

Our model predicts that different degrees of susceptibility to-

ward peripheral leptin resistance could account for differences in

susceptibility toward diet-induced obesity. One way to test this

prediction is by quantifying the change in dose response toward

leptin under conditions of chronic high central leptin levels and

comparing results between mouse strains with different suscep-

tibilities toward diet-induced obesity. Such a study would also be

very beneficial toward formulating a more rigorous mathematical

description of the development of leptin resistance. In addition,

Figure 6. Different Responses to Altered

Energy Intake by the Different Simulation

Models

(A) Settling point model. This model partially com-

pensates for the change in dietary energy, but the

compensation is not complete, leading to a new

steady state for each diet. This model is compati-

ble with diet-induced obesity and animals (such as

cats and dogs) that do not compensate well

against reduced dietary energy density.

(B) Set-point model. This model completely com-

pensates for the change in dietary energy density

so that body weight always returns to the set-point

value. This model is incompatible with diet-

induced obesity, but the response to reduced

dietary energy is consistent with animals (such

as rats) that are able to maintain their body weights

despite reduced dietary energy density.

(C) Steady-state-plus-threshold model. With in-

creased dietary energy density (weeks 5–15), this

model behaves like the settling point model, allow-

ing body weight to reach a new steady state. But

at reduced dietary energy density (weeks 15–30),

the control action becomes active, returning

body weight to the threshold level (in this simula-

tion the threshold brain leptin level was set to

0.32 ng/g, close to the baseline steady-state level,

so as to be consistent with previous data showing

mice given diluted diets maintain their body

weights close to those of mice given standard

chow ad libitum [Dalton, 1965]). This model allows the development of diet-induced obesity, but also protects more vigorously against starvation. The x- and

y-axes are kept constant for graphs (A)–(C) for easy comparison. For (A)–(C), normal diet was eaten during weeks 0–5. Diet energy density was 50% above normal

during weeks 5–15 and 50% below normal during weeks 15–30.

(D) Leptin resistance (as mathematically defined earlier) was included in the steady-state-plus-threshold system. Normal diet was eaten during weeks 0–10. Diet

energy density was 50% above normal during weeks 10–30 and 50% below normal during weeks 30–40. The simulated animal developed diet-induced obesity

when dietary caloric density was increased, but was able to compensate for below-normal dietary caloric density and prevent its body weight from falling below

the threshold level.
Cell Metabolism 9, 52–63, January 7, 2009 ª2009 Elsevier Inc. 59
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the kinetics for the development of leptin resistance are likely to

be quite different than those for energy homeostasis responses.

A mathematical model that incorporates both of these kinetic

profiles would be very helpful in understanding how these

long- and short-term responses toward leptin interact to affect

the overall system. Also of note, in the same simulation (depicted

in Figures 4C and 4D), the two strains of mice had very similar

body weights on a low-fat diet. Thus the propensity for diet-

induced obesity in animals more susceptible to leptin resistance

was not manifested until exposure to a calorie-rich diet.

When leptin resistance was included in the simulation, multiple

stable steady states were possible (given permissible parameter

values) under identical external conditions. Systems with multi-

ple steady states are quite common, and detailed explanations

for these systems can be found in textbooks on chemistry, ther-

modynamics, or reaction engineering (Fogler, 1999). In Figure

4F, the white arrow marks the unstable steady state, which is

also the point of division between the two stable steady states.

When transient changes lead to plasma leptin levels to the left

of this white arrow, the system will eventually settle at the lower

steady state. However, if plasma leptin levels were to rise to the

right of the white arrow, then the system will settle at the higher

steady state. This behavior reveals a potential mechanism con-

tributing to the difficulty in maintaining weight loss—once the

system settles into the higher steady state, attempts to change

the body weight will be opposed by the same mechanisms as

depicted in Figure 3 and will have no long-term effect unless

they are strong enough to force the system back to the left of

the white arrow (note that in Figures 4E, after the animal was

exposed to high-fat diet for 4 months then returned to low-fat

diet, the new steady-state body weight was substantially higher

than the previous steady state on low-fat diet). Identification of

conditions that give rise to multiple steady states could enable

the design of therapeutic interventions to ‘‘push’’ an individual’s

body weight back to a lower, healthy steady state that would

persist even after the interventions are withdrawn, as well as

the development of therapies that could lower the barrier for

transition from the higher to the lower steady state (analogous

to the role of catalysts and enzymes in chemical reactions).

This finding from our model points to the need for more experi-

mental data to validate whether multiple steady states exist in

energy metabolism, and if they do, to determine the specific

conditions giving rise to the different states.

It should also be noted that while the leptin resistance function

we used in this model was fully reversible, it is quite possible that

obesity could bring about changes in an individual’s physiology

that are only partially reversible or even completely nonreversible

(the decision to model leptin resistance as a reversible function

was arbitrary—there is currently not enough experimental data

to definitively describe the development or ‘‘behavior’’ of leptin

resistance). In such cases, the permanently altered model pa-

rameters could give rise to differences in a formerly obese

individual’s metabolic profile that would persist even after the

individual returns to a lower body weight.

The validity of outcomes from any mathematical model is criti-

cally dependent on the validity of the model’s underlying assump-

tions. The major assumptions made to formulate our current

model have been listed in the Supplemental Data. The following

are some future avenues of investigation identified by our model
60 Cell Metabolism 9, 52–63, January 7, 2009 ª2009 Elsevier Inc.
that would enable the relaxation of some of the model assump-

tions, paving the way for more comprehensive models:

(1) More quantitative experimental data on the development

of leptin resistance are required to formulate models of

leptin resistance based on molecular mechanisms (an

ad hoc equation was used in our model due to lack of

data). Given the central role of leptin resistance in obesity,

such data would also likely yield beneficial insights

regarding the treatment of obese patients.

(2) Data on how changes in energy balance (including

changes in quantity and mode of energy intake/output,

e.g., starvation versus physical activity) lead to changes

in fat and fat-free mass over a wide range of experimental

conditions (especially during prolonged starvation or

muscle-building exercise) would allow the modeling of

how energy intake and expenditure affect either the total

mass or metabolic profile of fat-free mass.

(3) Although leptin is a principal determinant of energy me-

tabolism, it is not the only important signal. Other regula-

tors, such as insulin and short-term satiety signals, as well

as interactions with the reward circuits (Fetissov et al.,

2002; Stice et al., 2008) have not been explicitly modeled

in our simulations. Inclusion of these signals would give

a much more comprehensive model. Because of the

domineering effects of leptin, experiments must be

cautiously designed to isolate the effects of other signals

from leptin’s confounding effects.

(4) The current model only addresses intermediate time

scales (days and weeks). Events that occur outside these

time intervals were not explicitly modeled due to the

paucity of experimental data. More data in these areas

would enable the formulation of more powerful models:

a model that is accurate to shorter time scales would

allow for the evaluation of important factors such as

meal patterns, intestinal motility, and diurnal variation in

hormone and physical activity levels; whereas inclusion

of long-term effects would enable the assessment of

changes to the metabolic system caused by chronic

obesity and aging.

Our present model was constructed for mice. Studies in mice

have been crucial in forming our understanding of human obe-

sity—most of the key molecular pathways regulating energy

metabolism were originally identified and characterized in mice,

and the varying degrees of susceptibility toward diet-induced

obesity among different mouse strains is a valuable tool for study-

ing polygenic obesity (which is the norm in humans). However,

there are also fundamental differences between human and

mouse metabolism. For example, thermogenesis in brown fat

represents a significant source of energy expenditure in mice,

whereas human adults have very little brown fat. Therefore, the

same caution that is taken when results from animal experiments

are applied to our understanding of human diseases must be

taken also with lessons drawn from mathematical models (such

as ours) that are based on animal data. Currently, the difficulty

in obtaining reliable, long-term metabolic data for humans in their

natural settings presents a major hindrance against developing

a similar model for humans. Ethical concerns have also
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appropriately excluded human data that require invasive collec-

tion techniques. Until technological advances make such data

available, the best option may be to develop more sophisticated

and accurate models based on experimental animals and judi-

ciously apply new understandings gained from these models to

the human disease. In the meantime, our current model can serve

as a unified theoretical framework to interpret existing data

regarding body weight regulation and to identify experiments

that need to be done to resolve outstanding controversies.

EXPERIMENTAL PROCEDURES

Values for each parameter used in this model are listed in Table1. Detailed der-

ivations of model equations and justification for parameter values are available

in Supplemental Data.

Leptin Production and Transport

We assumed that leptin is produced and secreted by fat cells at a rate roughly

linear to total fat tissue mass and cleared by the kidney by glomerular filtration.

This relationship is described as

d
�
Lepplasma 3 BloodVolume

�
dt

= FM 3 Rsyn �GFR 3 RenClearance 3 Lepplasma;

(1)

where Lepplasma is the plasma concentration of leptin, FM is fat tissue mass,

Rsyn is the leptin synthesis rate, BloodVolume is the total blood volume,

RenClearance is the rate of leptin removal by the kidneys, and GFR is the

glomerular filtration rate.

Plasma leptin enters the brain both by saturable specific receptors and by

nonspecific linear diffusion (Banks et al., 2000; Schwartz et al., 1996). This

relationship is represented as an equation taken from Banks et al., 2000:

LepBrain = k1

Lepplasma

k2 + Lepplasma

+ k3

�
Lepplasma

�
; (2)

where LepBrain represents whole brain leptin concentration. For the rest of the

model, whole brain leptin concentration is assumed to represent the level of

leptin exposed to the energy regulatory centers of the brain.

Settling Point Model

The leptin pathway is arguably the most powerful regulator of food intake.

Hyperphagia (overeating) is a predominant result of disruptions in the leptin

Table 1. Values of Model Parameters

Parameter Value Units

k1 1.42 ng/g

k2 15.6 ng/ml

k3 0.00272 ml/g

k4 5.6 g/day

k5 0.55 ng/g

k6 244.32 cal/g body weight/day

k7 1 N/A

k8 0.22 ng/g

Rsyn 51.84 ng/g fat tissue/day

GFR 284.4 ml/day

RenClearance 0.25 N/A

rfood 3.2 (chow diet) kcal/g

a1 �0.24 g2/ng/day

a2 �288 g2/ng/day2

a3 7.2 cal/ng/day

a4 86.4 kcal/ng/day2
pathway. Low leptin levels are a potent initiator of neuroendocrine starvation

responses, while administration of exogenous leptin (especially when admin-

istered to the brain) reduces food intake (Flynn et al., 1998; Mistry et al.,

1997). We used a modified form of the classic Michaelis-Menten equation to

represent this relationship, with the maximum (at zero leptin concentration)

scaled by food intake in leptin knockout animals (Figure S1A):

FoodIntake = k4

�
1� LepBrain

k5 + LepBrain

�
: (3)

Energy intake (Ein) equals food intake multiplied by its metabolizable energy

content (rfood):

Ein = rfoodFoodIntake

= rfoodk4

�
1� LepBrain

k5 + LepBrain

�
: (4)

The relationship between energy expenditure and body weight/leptin levels

is less clear, with seemingly contradictory reports in the literature (Table S3).

Most studies showed that exogenous leptin is most effective at low leptin

levels, but at normal, well-fed leptin levels, additional leptin has little effect

on energy expenditure. Again, we used a modified Michaelis-Menten equation

to describe energy expenditure (Eout) as follows:

Eout = k6BM

�
1 + k7

LepBrain

k8 + LepBrain

�
; (5)

where BM is the total body weight. When leptin level equals zero, this equation

becomes Eout = k6BM and describes the linear relationship between body

mass and energy expenditure in leptin knockout animals (McClintock and

Lifson, 1957). The other terms model the additional effect of leptin as a satura-

ble function, so that the energy expenditure-related effects of leptin are most

prominent when leptin levels are low but become roughly constant at higher

levels of leptin (Figure S1B).

Overall energy balance is given by

dEðtÞ
dt

= Ein � Eout

= rfoodk4

�
1� LepBrain

k5 + LepBrain

�
� k6BM

�
1 + k7

LepBrain

k8 + LepBrain

�
; (6)

where E(t) denotes the amount of energy stored as fat at time t.

Body weight is the sum of fat mass (FM) and fat-free mass (FFM):

BM = FM + FFM

=
EðtÞ
rfat

+ FFM; (7)

where rfat is the energy density of fat. This equation assumes FFM is relatively

constant.

Leptin Resistance

In our model, peripheral leptin resistance can be simulated by changing the

parameters that control blood-to-brain transport of leptin (k1, k2, and k3), while

central leptin resistance can be simulated by changing the parameters that

govern the leptin dose-response curves for food intake and energy expendi-

ture (k4, k5, k7, and k8). Because of the lack of experimental data, we have

arbitrarily chosen to simulate peripheral leptin resistance by increasing k2 at

high leptin concentrations according to the following ad hoc equation:

k2 = k2;0 + k9

�
Lepplasma � k10

�
3 heaviside

�
Lepplasma � k10

�
Where k2,0 is the original k2 used in Equation 2, k10 is the level of plasma

leptin at which peripheral leptin resistance begins to develop, and k9 is a

dimensionless factor that scales the increment in k2 with increasing plasma

leptin. The last term is the Heaviside function that causes k2 to be constantly

equal to k2,0 at plasma leptin levels below k10. This equation simulates leptin

resistance by increasing k2 linearly when plasma leptin levels exceed k10 and

assuming that this mode of leptin resistance is fully reversible (Figures 4A

and 4B).
Cell Metabolism 9, 52–63, January 7, 2009 ª2009 Elsevier Inc. 61
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Set-Point Model

We used proportional-integral controllers to simulate the set-point hypothesis

(Supplemental Data). We assumed that whole brain leptin level is the con-

trolled signal. For the set-point model, food intake and energy expenditure

are defined as:

FoodIntakeðtÞ= a1ðLepBrainðtÞ � SetPtÞ+ a2

Z t

o

ðLepBrainðtÞ � SetPtÞdt + c1 (8)

and

EOutðtÞ= BM 3

�
a3ðLepBrainðtÞ � SetPtÞ+ a4

Z t

o

ðLepBrainðtÞ � SetPtÞdt + c2

�
;

(9)

where SetPt is the brain leptin set-point. The control action in this model is

driven by the difference between brain leptin concentration and the set-point

(known as the error signal). For consistency and ease of comparison, we used

the steady-state brain leptin level obtained in the settling point model as the

set-point. c1 and c2 are the amount of food intake and energy expenditure

when LepBrain equals to the set-point (also known as ‘‘bias signals’’); again,

these were set to be the same as the steady-state values of the settling point

model (Supplemental Data).

Other than the food intake and energy expenditure equations, all other

equations were kept the same as the settling point model.

Combination Model

In Equations 8 and 9, the integral terms are responsible for the ability to com-

pletely eliminate even small errors. Thus, in animals that are able to completely

compensate for reductions in dietary caloric content, food intake and energy

expenditure may be more accurately described by combining aspects of

both the set-point and settling point models, as follows:

FoodIntake = k4

�
1� LepBrain

k5 + LepBrain

�
+ a2

Z t

o

ðLepthresh � LepBrainðtÞÞdt

3 HeavisideðLepthresh � LepBrainðtÞÞ

and

Eout = BM 3

�
k6

�
1 + k7

LepBrain

k8 + LepBrain

�
+ a4

Z t

o

ðLepthresh � LepBrainðtÞÞdt

3 HeavisideðLepthresh � LepBrainðtÞÞ
�
; ð10Þ

where Lepthresh is the threshold leptin level below which the integral control

actions become active. Again, both food intake and energy output are bounded

by maximum and minimum values, as described during the derivation of

Equations 8 and 9. The integral and Heaviside terms in these equations allow

leptin to function as a safeguard against starvation. The magnitude of the para-

meters a2 and a4 would determine the strength of this starvation prevention

control action. Large values for a2 and a4 would confer robust compensatory

abilities to counteract decreases in dietary caloric density, while low (or even

zero) values for a2 and a4 would lead to weak compensatory abilities.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, Supple-

mental References, six tables, and two figures and can be found online at

http://www.cell.com/cellmetabolism/supplemental/S1550-4131(08)00357-4.

ACKNOWLEDGMENTS

The authors would like to thank H. Kim, B. Seed (Department of Genetics, Mas-

sachusetts General Hospital), T. Stylianopoulos, M. Dupin, G. Cheng, and G.D.

Duda for valuable advice. This study is supported in part by NIH grants to

R.K.J. and D.F. (CA80124, CA85140, CA96915, and CA115767).

Received: July 28, 2008

Revised: October 14, 2008

Accepted: November 3, 2008

Published: January 6, 2008
62 Cell Metabolism 9, 52–63, January 7, 2009 ª2009 Elsevier Inc.
REFERENCES

Abdel-Hamid, T.K. (2003). Exercise and diet in obesity treatment: an integra-

tive system dynamics perspective. Med. Sci. Sports Exerc. 35, 400–413.

Ahima, R.S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier,

E., and Flier, J.S. (1996). Role of leptin in the neuroendocrine response to

fasting. Nature 382, 250–252.

Badman, M.K., and Flier, J.S. (2007). The adipocyte as an active participant in

energy balance and metabolism. Gastroenterology 132, 2103–2115.

Banks, W.A., DiPalma, C.R., and Farrell, C.L. (1999). Impaired transport of

leptin across the blood-brain barrier in obesity. Peptides 20, 1341–1345.

Banks, W.A., Clever, C.M., and Farrell, C.L. (2000). Partial saturation and

regional variation in the blood-to-brain transport of leptin in normal weight

mice. Am. J. Physiol. Endocrinol. Metab. 278, E1158–E1165.

Berriel Diaz, M., Eiden, S., Daniel, C., Steinbruck, A., and Schmidt, I. (2006).

Effects of periodic intake of a high-caloric diet on body mass and leptin resis-

tance. Physiol. Behav. 88, 191–200.

Bouret, S.G., Draper, S.J., and Simerly, R.B. (2004). Trophic action of leptin on

hypothalamic neurons that regulate feeding. Science 304, 108–110.

Chung, W.K., Belfi, K., Chua, M., Wiley, J., Mackintosh, R., Nicolson, M.,

Boozer, C.N., and Leibel, R.L. (1998). Heterozygosity for Lep(ob) or Lep(rdb)

affects body composition and leptin homeostasis in adult mice. Am. J. Physiol.

274, R985–R990.

Collins, S., Martin, T.L., Surwit, R.S., and Robidoux, J. (2004). Genetic vulner-

ability to diet-induced obesity in the C57BL/6J mouse: physiological and

molecular characteristics. Physiol. Behav. 81, 243–248.

Dalton, D.C. (1965). Dilution of the diet and feed intake in the mouse. Nature

205, 807.

El-Haschimi, K., Pierroz, D.D., Hileman, S.M., Bjorbaek, C., and Flier, J.S.

(2000). Two defects contribute to hypothalamic leptin resistance in mice

with diet-induced obesity. J. Clin. Invest. 105, 1827–1832.

Fetissov, S.O., Meguid, M.M., Sato, T., and Zhang, L.H. (2002). Expression of

dopaminergic receptors in the hypothalamus of lean and obese Zucker rats

and food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R905–

R910.

Flynn, M.C., Scott, T.R., Pritchard, T.C., and Plata-Salaman, C.R. (1998).

Mode of action of OB protein (leptin) on feeding. Am. J. Physiol. 275, R174–

R179.

Fogler, H.S. (1999). Elements of Chemical Reaction Engineering, Third Edition

(Upper Saddle River, New Jersey: Prentice Hall).

Goldbeter, A. (2006). A model for the dynamics of human weight cycling. J.

Biosci. 31, 129–136.

Hall, K.D. (2006). Computational model of in vivo human energy metabolism

during semistarvation and refeeding. Am. J. Physiol. Endocrinol. Metab. 291,

E23–E37.

Himms-Hagen, J. (1997). On raising energy expenditure in ob/ob mice.

Science 276, 1132–1133.

Hirsch, E., Dubose, C., and Jacobs, H.L. (1978). Dietary control of food intake

in cats. Physiol. Behav. 20, 287–295.

Kaplan, M.L., and Leveille, G.A. (1974). Core temperature, O2 consumption,

and early detection of ob-ob genotype in mice. Am. J. Physiol. 227, 912–915.

Kennedy, G.C. (1953). The role of depot fat in the hypothalamic control of food

intake in the rat. Proc. R. Soc. Lond. B. Biol. Sci. 140, 578–596.

Kozusko, F.P. (2001). Body weight setpoint, metabolic adaption and human

starvation. Bull. Math. Biol. 63, 393–403.

Leibel, R.L., Rosenbaum, M., and Hirsch, J. (1995). Changes in energy expen-

diture resulting from altered body weight. N. Engl. J. Med. 332, 621–628.

Levin, B.E. (2005). Factors promoting and ameliorating the development of

obesity. Physiol. Behav. 86, 633–639.

Levin, B.E. (2006). Metabolic imprinting: critical impact of the perinatal environ-

ment on the regulation of energy homeostasis. Philos. Trans. R. Soc. Lond.

B Biol. Sci. 361, 1107–1121.

http://www.cell.com/cellmetabolism/supplemental/S1550-4131(08)00357-4


Cell Metabolism

Mathematical Model of Metabolic Regulation by Leptin
Levitsky, D.A. (2005). The non-regulation of food intake in humans: hope for

reversing the epidemic of obesity. Physiol. Behav. 86, 623–632.

McClintock, R., and Lifson, N. (1957). CO2 output and energy balance of

hereditary obese mice. Am. J. Physiol. 189, 463–469.

McClintock, R., and Lifson, N. (1958). Measurement of basal and total metab-

olism in hereditarily obese-hyperglycemic mice. Am. J. Physiol. 193, 495–498.

Mistry, A.M., Swick, A.G., and Romsos, D.R. (1997). Leptin rapidly lowers food

intake and elevates metabolic rates in lean and ob/ob mice. J. Nutr. 127, 2065–

2072.

Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S., and Schwartz, M.W.

(2006). Central nervous system control of food intake and body weight. Nature

443, 289–295.

Myers, M.G., Cowley, M.A., and Munzberg, H. (2008). Mechanisms of leptin

action and leptin resistance. Annu. Rev. Physiol. 70, 537–556.

Parekh, P.I., Petro, A.E., Tiller, J.M., Feinglos, M.N., and Surwit, R.S. (1998).

Reversal of diet-induced obesity and diabetes in C57BL/6J mice. Metabolism

47, 1089–1096.

Pinto, S., Roseberry, A.G., Liu, H., Diano, S., Shanabrough, M., Cai, X., Fried-

man, J.M., and Horvath, T.L. (2004). Rapid rewiring of arcuate nucleus feeding

circuits by leptin. Science 304, 110–115.

Rafael, J., and Herling, A.W. (2000). Leptin effect in ob/ob mice under thermo-

neutral conditions depends not necessarily on central satiation. Am. J. Physiol.

Regul. Integr. Comp. Physiol. 278, R790–R795.
Reed, D.R., Bachmanov, A.A., and Tordoff, M.G. (2007). Forty mouse strain

survey of body composition. Physiol. Behav. 91, 593–600.

Schwartz, M.W., Peskind, E., Raskind, M., Boyko, E.J., and Porte, D., Jr.

(1996). Cerebrospinal fluid leptin levels: relationship to plasma levels and to

adiposity in humans. Nat. Med. 2, 589–593.

Spiegel, T.A. (1973). Caloric regulation of food intake in man. J. Comp. Physiol.

Psychol. 84, 24–37.

Spiegelman, B.M., and Flier, J.S. (2001). Obesity and the regulation of energy

balance. Cell 104, 531–543.

Stice, E., Spoor, S., Bohon, C., and Small, D.M. (2008). Relation between

obesity and blunted striatal response to food is moderated by TaqIA A1 allele.

Science 322, 449–452.

Van Heek, M., Compton, D.S., France, C.F., Tedesco, R.P., Fawzi, A.B.,

Graziano, M.P., Sybertz, E.J., Strader, C.D., and Davis, H.R., Jr. (1997).

Diet-induced obese mice develop peripheral, but not central, resistance to

leptin. J. Clin. Invest. 99, 385–390.

Weigle, D.S. (1994). Appetite and the regulation of body composition. FASEB

J. 8, 302–310.

West, D.B., Boozer, C.N., Moody, D.L., and Atkinson, R.L. (1992). Dietary

obesity in nine inbred mouse strains. Am. J. Physiol. 262, R1025–R1032.

Wirtshafter, D., and Davis, J.D. (1977). Set points, settling points, and the

control of body weight. Physiol. Behav. 19, 75–78.
Cell Metabolism 9, 52–63, January 7, 2009 ª2009 Elsevier Inc. 63


	A Mathematical Model of Murine Metabolic Regulation by Leptin: Energy Balance and Defense of a Stable Body Weight
	Introduction
	Results
	Settling Point Model
	Baseline Conditions
	Leptin Deficiency
	Compensatory Responses to Changes in Energy Balance
	Sensitivity Analysis
	Simulation of Leptin Resistance
	Set-Point Model
	Response to Dietary Changes
	Combination Model

	Discussion
	Experimental Procedures
	Leptin Production and Transport
	Settling Point Model
	Leptin Resistance
	Set-Point Model
	Combination Model

	Supplemental Data
	Acknowledgments
	References


