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a b s t r a c t

Fracture mode of ductile solids can vary depending on the history of stress state the material experienced.
For example, ductile plates under remote in-plane loading are often found to rupture in mode I or mixed
mode I/III. The distinct crack patterns are observed in many different metals and alloys, but until now the
underlying physical principles, though highly debated, remain unresolved. Here we show that the exist-
ing theories are not capable of capturing the mixed mode I/III due to a missing ingredient in the consti-
tutive equations. We introduce an azimuthal dependent fracture envelope and illustrate that two
competing fracture mechanisms, governed by the pressure and the Lode angle of the stress tensor,
respectively, exist ahead of the crack tip. Using the continuum damage plasticity model, we demonstrate
that the distinctive features of the two crack propagation modes in ductile plates can be reproduced using
three dimensional finite element simulations. The magnitude of the tunneling effect and the apparent
crack growth resistance are calculated and agree with experimental observations. The finite element
mesh size dependences of the fracture mode and the apparent crack growth resistance are also
investigated.

Published by Elsevier Ltd.
1. Introduction

A thorough physical understanding of ductile crack initiation
and propagation is of essential interest to many scientific disci-
plines and engineering applications. Existing constitutive models
are so far not capable of predicting and explaining several key fea-
tures of ductile fracture known to experimentalists, such as the flat
to slant transition of fracture modes in flat ductile panels. Mathe-
matical simplification has been given to macrocracks in solids such
that a singularity is placed at the crack tip in the scope of conven-
tional fracture mechanics. The treatment for crack advance is de-
scribed by field variables remote to the crack tip such that the
singularity no longer poses problems. This treatment works for
brittle and quasi-brittle materials where the fracture process zone
is small compared with the specimen geometries and the specimen
dimensions are large enough to assess field variables away from
the crack tip. In reality, however, these assumptions do not hold
for the many metallic materials where large plastic deformation
precedes the occurrence of fracture. Crack blunting and necking
greatly reduce the accuracy of these simplifications and idealiza-
tions. Moreover, the geometry of the solid bodies is often too com-
plex to calculate and the cracked body may not be idealized
as plane strain condition, such that theoretical solutions exist
Ltd.
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(Hutchinson, 1968; Rice and Rosengren, 1968), due to the con-
straint length scale in practical problems. These issues cannot be
resolved without considering the details about the crack process
zone ahead of a ductile crack.

Traditionally, the plane strain models near the crack tip is used
in finite element analyses using explicitly modeled voids in the
crack path (e.g. Gao et al., 2006; Kim et al., 2007; Xia et al.,
1995). We show here that, with an additional dimension in the
continuum damage plasticity theory, experimentally observed
ductile crack patterns and trends in the crack growth resistance
can be predicted using three dimensional finite element simula-
tions. In a laboratory setup, pre-cracked flat plates are often used
to study ductile crack propagation. Although some materials show
a continuation of a flat mode I crack (which is normal to the plate
surface and to the remotely applied load), a transition from a flat
pre-crack to a slant mixed mode I/III crack (which is approximately
45� to the surface) in thin plates is commonly observed in experi-
ments for many polycrystalline metals and alloys (Anderson, 2005;
Barsom and Rolfe, 1999; Broek, 1982; Knott, 1973). Fractographi-
cally, a mode I flat fracture surface is of a fibrous nature and a slant
mixed mode I/III fracture surface is a shear type of failure and is
less voided compared with a flat crack surface (Barsom and Rolfe,
1999; Benzerga et al., 2004; Cottrell, 1965; Pineau and Pardoen,
2007; Thomason, 1990). However, why and how this transition
of the global fracture mode occurs is not fully understood. The vast
experimental slant fracture results (e.g. Dawicke and Sutton, 1994;
Irwin et al., 1958; Mahmoud and Lease, 2003; Newman, 1985;
Srawley and Brown, 1965) are in sharp contrast with the absence
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of slant crack predicted by three dimensional finite element anal-
yses using existing constitutive theories (e.g. Roy and Dodds,
2001; Dawicke et al., 1995; Gullerud et al., 1999; James and
Newman, 2003; Lan et al., 2006; Li et al., 2002; Mahmoud and
Lease, 2004; Newman et al., 2003; Tvergaard and Needleman,
2006). This discrepancy between theories and experiments is re-
solved here through a new isotropic continuum damage plasticity
theory, which adopts a scalar measurement of damage from a three
dimensional description.

We begin with the experimentally observed differences be-
tween the flat and slant modes in cracked plates. The slant region
of fracture is not a mode III crack but involves some pulling apart
(mode I). Besides the apparent fracture angle to surface, there are
several generally perceived distinctive features and trends be-
tween the two aforementioned ductile crack modes, as shown in
Fig. 1. These features and trends include: (i) A flat crack is usually
observed for strong strain hardenable materials; and a slant crack
is usually observed for low strain hardenable materials. (ii) Signif-
icant necking often precedes the appearance of a ductile flat crack;
while there is often very little neck ahead of a slant crack tip. (iii) A
flat crack front shows significant tunneling in the mid plane; while
a slant crack front shows little tunneling throughout the thickness.
(iv) Flat cracks are usually found for thicker plates (although shear
lips may exist near surface); and slant cracks are more often found
for thinner plates. (v) Materials are found to exhibit flat cracks at a
quasi-static loading rate may change to a slant crack upon dynamic
loading (see Rivalin et al., 2001). These features will be replicated
here by a series of numerical simulations.

Here we show how mode transition is controlled by the interac-
tion of the pressure and the azimuthal angle of the stress states
which dominate the damage accumulation in the plastic process
zone ahead of the crack tip by extensive finite element simulations.
The azimuthal dependence on an octahedral plane for ductile frac-
ture is found to be a missing ingredient that is responsible for the
fracture mode transition. We demonstrate using compact tension
specimen that mode transition is determined by the combination
of strain hardening capability, the azimuthal dependence and the
pressure sensitivity of the fracture characteristics of the material.
In the crack process zone, the mode of crack is determined by
two competing mechanisms: (i) a flat pattern dominated by the
pressure effect with tunneling that can be captured by existing
damage theories; (ii) a slant crack about 45� to the surface driven
by the azimuthal (the Lode angle) dependence of ductile fracture,
which de facto is the controlling factor of mixed mode I/III for thin
plates. This Lode angle dependence introduces the effect of the
third invariant J3 of the stress tensor. Our results demonstrate that
the azimuthal dependence of ductile fracture together with the
pressure sensitivity plays a vital role in determining the fracture
a b

Fig. 1. The two distinct modes of crack in ductile plates (a) flat mode; (b) slant mode. Sh
Red lines indicate the crack fronts. (For interpretation of the references to color in this
pattern. We anticipate the present study to lead to more accurate
modeling of ductile fracture at a continuum length scale. For exam-
ple, crack predictions in metal forming and failure analyses of large
scale structures.

2. Continuum theory of damage plasticity

Stripped to its essentials, the continuum damage plasticity
model consists of (1) a classical strain hardening and associated
flow rule for the plasticity of the matrix material; (2) an evolution
law for the ductile damage to depict the microstructural rearrange-
ment along the plastic loading path; and (3) a damage coupled
yield condition to account for the material deterioration due to
the microstructural change. For simplicity, we employ von Mises
yield criterion for the matrix which only depends on the second
invariant of the stress deviator. The evolution law of ductile dam-
age described by a three dimensional ‘‘cylindrical decomposition”
(Xue, 2007a), which incorporates all three stress invariants, i.e.
I1; J2 and J3. The evolution of damage resembles the evolution of
equivalent stress in conventional plasticity theories. Here, we sum-
marize this damage model below.

Because the plastic damage is path dependent, the damage is gi-
ven in the rate form, which relies on the concept of fracture enve-
lope. A fracture envelope is defined in the three dimensional space
of the triaxial plastic strain plane and the hydrostatic pressure. The
fracture envelope is characterized by the plastic strains at which
material fracture occurs from all possible loading paths of constant
pressure and constant azimuthal angle. The pressure sensitivity
and the azimuthal dependence of the fracture strains are described
by a pressure dependence function lpðpÞ and an azimuthal depen-
dence function lhðhLÞ, respectively.

An illustrative fracture envelope for a ductile material is
sketched in Fig. 2. The vertical axis is the mean stress (i.e. negative
pressure) and the triaxial horizontal plane is the principal plastic
strain plane, which characterizes the azimuthal angle on an octa-
hedral plane when the plastic deformation is assumed to be iso-
choric. Many materials, such as rocks and metals, exhibit higher
ductility under high compressive pressure. This phenomenon has
been extensively studied in the past century (e.g. see monographs
by Bridgman (1952) and Pugh (1970)). In the present model, the
azimuthal dependence of the fracture envelope is described by
six peaks (at generalized tension and compression conditions)
and six valleys (at generalized shear conditions). In other words,
ductile fracture of solids is more sensitive to shear type of loading.
This consideration is based on the observation of many experiment
results (see e.g. Bao and Wierzbicki, 2004; Barsoum and Faleskog,
2007; Clausing, 1970; McClintock, 1971; Wilkins et al., 1980). It
should be noted that convexity does not apply to fracture envelope,
aded areas are the cross-sections perpendicular to the crack propagation direction.
figure legend, the reader is referred to the web version of this paper.)



Fig. 2. A three-dimensional representation of the fracture envelope in the space of
the principal plastic strains ðe1; e2 and e3Þ and the mean stress rm.
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since it is a collection fracture strains from prescribed loading
paths and is based on measurement of strains rather than stresses.
For isotropic materials, the azimuthal angle can be characterized
by the Lode angle, which varies from �p/6 to p/6 and is defined
for each sextant of the octahedral plane. Here, we restrict ourselves
to isotropic materials such that the fracture envelope is periodic,
i.e. it is identical in each of these six sextants.

We start by separating the matrix material, which is defect free,
from the macroscopic structure of solid. The weakening effect due
to the deterioration of the material is introduced by the damage-
coupled yield condition:

U ¼ req �wðDÞrM 6 0: ð1Þ

For arbitrary plastic loading path, the damage is calculated by the
following integral:

D ¼
Z ec

0
m

ep

ef

� �ðm�1Þ dep

ef
6 1; ð2Þ

where m is a material parameter, ef is a fracture strain envelope de-
fined on the stress state and ec is the critical strain at which fracture
occurs. It is assumed D ¼ 0 for virgin material and D ¼ 1 for a com-
plete loss of load carrying capacity, i.e. fracture occurs. It can be ver-
ified that for loading paths with constant fracture strain ef the
above definite integration reaches unity when ec ¼ ef .

We assume the Young’s modulus of the material decrease as
damage accumulates, i.e. EðDÞ ¼ wðDÞE0, where E0 is the original
undamaged Young’s modulus. The weakening function wðDÞ in
Eq. (1) is described by

wðDÞ ¼ 1� Db; ð3Þ

where b is a material constant to be calibrated from fitting experi-
mental curves.

The fracture strain envelope is defined on the current pressure
and the Lode angle hL only

ef ðp; hLÞ ¼ ef0lpðpÞlhðhLÞ; ð4Þ

where ef0 is a material constant and lpðpÞ and are lhðhLÞ the pres-
sure sensitivity function and the azimuthal angle dependence func-
tion, which in the present study adopt a logarithmic form of
pressure dependence function:

lpðpÞ ¼
1� q log 1� p

plim

� �
; p P plim½1� expð1=qÞ�;

0; p < plim½1� expð1=qÞ�;

(
ð5Þ

and the second kind of Lode angle dependence function:
lhðhLÞ ¼ cþ ð1� cÞ 6jhLj
p

� �k

; ð6Þ

where q, plim, c and k are material constants, p is the current pres-
sure and hL is the Lode angle ðhL 2 ½�p=6;p=6�Þ. The Lode angle is
one of several parameters that are commonly used to denote the
azimuthal angle on an octahedral plane in the principal stress space.
The Lode angle is defined by the principal stress components

hL ¼ tan�1 1ffiffiffi
3
p 2r2 � r1 � r3

r1 � r3

� �
or

hL ¼ �
1
3

sin�1 27
2

J3

r3
eq

 !
; ð7Þ

where r1; r2 and r3 are the ordered principal stress components
and J3 ¼ s1s2s3 is the third stress invariant where s1; s2 and s3 are
the ordered principal stress deviator components.

In this set of constitutive equations, six material parameters are
used in total. These material parameters are a reference strain ef0,
two for pressure dependence function plim, q, two for the Lode an-
gle dependence function c and k, one for the damage accumulation
exponent m and one for the weakening effect b. These parameters
are treated as constants for a given material and are to be
calibrated from experiments. Xue and Wierzbicki (submitted for
publication) presented a combined experimental and numerical
procedure to calibrate aluminum alloy 2024-T351 using a series
of tests at different mean stresses and Lode angles.

To summarize the above method, a nonlinear integral for dam-
age is adopted (Eq. (2)). In Eq. (2), the integrand, i.e. the accumula-
tion rate of damage (a non-negative value), is implicitly influenced
by the pressure and the Lode angle of the current stress state by
the respective effects on the fracture envelope ef for a given incre-
mental plastic strain _ep. The weakening effect of the accumulated
damage enters the yield condition through a weakening factor
wðDÞ, which depends on the magnitude of damage at the current
state. The strain hardening effect enters the yield condition
through the matrix stress–strain relationship rM, which is a func-
tion of the equivalent plastic strain. The stress integration proce-
dure for explicit algorithm is summarized in Appendix A.

In a previous paper, Xue and Wierzbicki (2008) adopted the
present theory and found that the synergistic combination of the
Lode angle dependence and the weakening factor governs a slant
mode in compact tension specimens and promotes shear lips. In
the present paper, we further explore the transition of fracture
mode on various material and geometry aspects of the compact
tension tests. These factors include the Lode angle sensitivity
parameter, the strain hardening, the pressure sensitivity and the
thickness of the compact tension plate. Their effects on the fracture
mode, the tunneling of crack front and the apparent crack growth
resistance, R, are discussed.
3. Modeling

We consider a base scenario of a compact tension specimen
according to ASME E399 with width W = 50.8 mm, thickness
B = 6.35 mm, a pre-crack of 60� notch angle (normal to surface)
and a crack to width ratio a=W ¼ 0:5. The external load is applied
in the two cylindrical holes through pulling apart of two frictionless
pins inside the holes in a single stroke. No fatigue crack is considered.

In Sections 4–6, the compact tension specimen is discretized
into 145,400 8-node reduced integration elements. Twenty ele-
ments are used in the thickness direction and the aspect ratio of
the elements along the crack path is about 1:1:1. The element size
in central zone where the crack path is anticipated is approxi-
mately 0.3 mm � 0.3 mm � 0.3 mm (W � L � H). Same mesh size
are used in Section 7 for the thickness dependence simulations,
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where additional elements are added in the thickness direction. In
Section 8, the base scenario compact tension specimen is adopted
for the mesh size dependence simulations, where element size is
varied. All simulations are carried out using LS-DYNA with the
damage plasticity model implemented as a user subroutine. The
stress integration procedure is included in Appendix A.

The matrix stress–strain relationship is assumed to follow the
Swift type of power law relationship

rM ¼ ry0ð1þ ep=e0Þn; ð8Þ

where ry0 is the initial yield stress of the matrix, n is the hardening
exponent, e0 is a reference strain, ep is the plastic strain and rM is
the equivalent matrix stress.

In the present study, we focus on the dependence of fracture
modes and crack growth resistance on the strain hardening, the
Lode angle dependence and pressure sensitivity. In order to draw
conclusions from these influencing factors, we adopt the following
set of fixed parameters in the numerical study Young’s modulus
E = 70 GPa, Poisson’s ration m = 0.3, mass density q ¼ 2700 kg=m3,
ry0 ¼ 300 MPa, e0 ¼ 0:008, ef0 ¼ 0:8, plim ¼ 1000 MPa, k ¼ 1:0,
m ¼ 2:0, b ¼ 2:0 and n, q and c will be varied to perform a parame-
teric study. The choice of fixed parameters is based on an alumi-
num alloy tested and calibrated for the damage plasticity model
(Xue, 2007b; Xue and Wierzbicki, submitted for publication).

4. Effect of azimuthal dependence

In this section, studied is the dependence of the crack propaga-
tion patterns on the material parameters of c. Material constants
n = 0.2, q = 1.0 are chosen for this example. The mixed mode I/III
and mode I of cracks are shown in Fig. 3. Fig. 3(a) shows a transi-
tion from a flat starting crack with tunneling to a slant crack
throughout the thickness direction for c = 0.5. Fig. 3(b) shows
continuing flat crack propagation in the entire thickness for
c = 0.7. The difference in the azimuthal sensitivity of the fracture
envelope triggers the change in the crack mode. With diminishing
azimuthal dependence of ductile fracture ðc! 1:0Þ, the compact
tension crack changes from a slant crack to a flat one. This is con-
sistent with the result in Xue and Wierzbicki (2008) that shows a
slant crack can only be predicted for materials with both effects
of the azimuthal angle dependence and the weakening of material
strength. Fig. 4 shows a comparison of the two different modes
while propagating along the ligament. Note the differences in the
crack fronts, where propagating flat crack shows a more significant
tunnel in the mid section. A fully developed slant crack is relatively
straight compared with a parabolic curved flat crack front.

The extent of necking in the path of the stable crack propagation
is indicated by the distance from the fracture edge to the edges of
Fig. 3. Crack patterns of compact tension specimens. (a) An overall slant crack ðc ¼ 0:5Þ a
under isothermal condition. (c) Same specimen for ðc ¼ 0:7Þ changes to a slant mode un
the undeformed plate which are indicated by the horizontal thin
lines in Fig. 4. In these simulation results, the shrinkage in the
thickness direction at the vicinity of crack is more severe for the
mode I case than the mixed mode I/III case. This agrees with fea-
ture (ii) of experimental observations.

The load versus load line displacement and the normalized tun-
neling versus mid-plane crack extension for various c values are
plotted in Fig. 5(a) and (b). For a straight pre-cracked flat plate,
the fracture starts at the mid-plane and propagates both forward
and laterally to the surface. The crack front is usually a parabolic
shape, and is thus often called ‘‘tunneling”. The extent of tunneling
is defined as the difference of crack extension at mid-plane and at
surface divided by the original plate thickness (Dawicke and Sut-
ton, 1994). For mode I, the tunneling remains at a high level after
initial crack forms over the entire thickness. However, for slant
crack propagation, the tunneling drops sharply after a maximum
value is reached. This distinct feature of tunneling is identified in
Fig. 5(b) and (c) as the shape of tunneling evolution curves can
be categorized into two groups depending on the c values. The sim-
ulation results agree with experimentally observed feature (iii).

The mode transition from slant to flat mode occurs at about
c = 0.65 in this case. There exists a steep transition of average tun-
neling between the two full fledged propagation modes (as shown
in Fig. 5(c)). On the left-hand-side of the mode transition line, slant
cracks develop and the stable normalized tunneling increases with
increasing c. On the right-hand-side of the mode transition line,
flat cracks appear and the stable normalized tunneling decreases
with increasing c, which indicates the mid-plane crack extension
is increasingly longer than the crack extension at the surface for
decreasing c values. The advance of mid-plane crack is understood
as the mid-plane material is subjected to more severe plane strain
condition than the surface materials; therefore, the mid-plane
material is more prone to fracture for lower c values. However,
such advances in the mid-plane are not sustainable as the material
parameter c drops further. A global mode transition occurs when
the crack finds itself an easy path to propagate divergently to sur-
faces at an approximately 45� angle. Consequently, shear lips form
at the tail of the crack near surfaces. The shear lips grow and even-
tually merge to form a slant crack over the entire thickness. When
opposite shear lips form, a small portion of anti-symmetric load is
introduces to the nominally symmetric loading system. This can be
seen in Fig. 4 as the remote edges of a slant cracked specimen (hor-
izontal thin lines) are no longer overlapping, which further pro-
motes a mixed mode I/III to form. For a flat cracked specimen,
the loading system remains symmetric with respect to the mid-
plane; therefore, the remote edges remain overlapping (Fig. 4(a)).

It is also noted that the apparent crack growth resistance is
found to be a strong function of the material parameter
nd (b) a flat crack ðc ¼ 0:7Þ propagate in the ligaments of compact tension specimens
der adiabatic loading.



Fig. 4. A comparison of crack front evolution: (a) a flat crack becomes a slant crack and (b) a continued flat crack.
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(c). However, such mode change has little effect on the trend of the apparent crack growth resistance (d).
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(Fig. 5(d)). The apparent crack growth resistance is calculated for
the steady crack propagation by integration the load–displacement
curve with respect to load line displacement and divided by the
cracked ligament area in the original configuration. It is a charac-
teristic of the energy dissipated per unit area of fracture of the
material under stable crack advancing. The ‘‘apparent fracture
area” is obtained by counting the fractured elements in the projec-
tion plane perpendicular to the load line. (NOT the fracture surface
area, which is about

ffiffiffi
2
p

times of the ‘‘apparent fracture area” for
slant crack.) It is shown in Fig. 5(d) that the apparent crack growth
resistance grows steadily and no obvious transition in the slope is
found at the mode transition line.

Considering the crack advancing, we focus on the damaging and
fracturing sequence at the crack tip process zone. A close examina-
tion of the stress state reveals two competing damaging mechanisms
ahead of the crack tip driven by the mean stress effect and the azi-
muthal angle effect, respectively. In the three-dimensional fracture
envelope shown in Fig. 2, these two mechanisms can be graphically
interpreted as (1) the mean stress effect pushing upwards and the
fracture envelope shrinks; and (2) the azimuthal angle effect drag-
ging into the ‘‘valleys” (where the Lode angle hL = 0). In both cases,
the damaging process is accelerated at constant plastic strain rate.

The stress state histories of the fractured elements at three dif-
ferent locations – (1) at surface, (2) at 1/4 thickness and (3) at mid-
plane – are plotted in Fig. 6. Several trends emerge from the stress
state histories at different locations along crack paths.

Firstly, the azimuthal sensitive factor lh has more contribution
in a slant crack, while the pressure sensitive factor lp is more
important in a flat crack (see the relative position of lines marked
by square and triangle in the right subplots, Fig. 6(d) and (h)). In
both cases, pressure effect has more influences near the center of
the plate – due to the buildup of constraint in the thickness direc-
tion. While the damage-averaged stress state sensitive factors
lh and lp do not vary much in the thickness direction in our calcu-
lation, it is noted that the pressure sensitive factor for the slant
crack increases sharply near the surface for a slant crack
(Fig. 6(d) and (h)). Note a larger sensitivity factor means less influ-
ential to damage accumulation. Comparing with a flat crack, the
mean stress factor does not change much at the center of the plate
for the slant case. The relatively straight crack front and very little
necking in the slant mode reduce the constraint in the thickness
direction near the surface (see the line marked by square in
Fig. 6(d)).

Secondly, the pressure factors ðlpÞ increase when the materials
approach their final fracture points, which indicate decreasing
damage rate. This means the mean stresses decrease before onset
of fracture. The reason for this is that the mean stresses reduce
as the Young’s moduli decrease and, therefore, the initially high
mean stresses cannot be hold. In a way, the previous elastic volu-
metric strain is now generating less mean stress due to a weakened
bulk modulus.

Finally, another noticeable feature in the time history of the
fractured elements is that there exists a major peak in the azi-
muthal dependence factor (dash–dot curves in Fig. 6(a)–(c) and
(e)–(h)) before the element is fractured and removed. This peak
is found for all three locations in the thickness direction for both
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Fig. 6. Time histories of damage ðDÞ, pressure sensitivity factor ðlpÞ, azimuthal sensitivity factor ðlhÞ and their product at three different locations (a–c; e–g) in the thickness
direction for the two fracture modes. The average values of the stress state sensitive factors with respect to damage (d and h) indicate that the governing factors for flat and
slant fracture modes are driven by the pressure sensitivity and the Lode angle dependence, respectively.
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flat and slant crack modes. An examination in the stress history of
the fractured elements shows that this peak is due to the quick
buildup of the stress component in the thickness direction (Z),
which surpasses the stress component in the crack propagation
direction (X), while the stress component in the loading direction
(Y) remains the maximum in the fracture process zone. Therefore,
the Lode angle of the stress state turns from a close-to-plane-strain
condition (a ‘‘valley” in the fracture envelope) to a generalized ten-
sion condition (a ‘‘peak” in a fracture envelope) and then again
goes to the other side of the ‘‘peak”. Thus, a peak is created in
the history of the azimuthal dependence factor.

The formation of the shear slips can be illustrated by taking a
closer look at the contours of the two competing stress state
dependent factors at a cross-section of the flat panel as shown in
Fig. 7. The cross-sections are similar to that of the cup-cone frac-
ture of a round bar but the compact tension specimens are more
constrained in the propagation direction due to the length of liga-
ment. For a high c value (c = 0.7 as in Fig. 7(a)–(d)), the crack prop-
agation direction is governed by the pressure sensitivity where
does not vary much in all directions ahead of the crack tip and dic-
tates the flat crack. On the contrary, for a low c value (c = 0.5 as in
Fig. 7(e)–(h)), the crack propagation direction is dictated by the
azimuthal dependence factor which forms fast damaging zones
at about 45� to the surface (dark areas) and overshadows the pres-
sure dependence factor as shown in Fig. 7(f) and (g).
5. Effect of adiabatic heating

In the dynamic responses of materials, adiabatic heating induces
thermal weakening that can trigger shear localization in the heated
zone (Bai and Dodd, 1992; Wright and Batra, 1985). The formation of
adiabatic shear bands is critical in certain impact and penetration
problems. Rivalin et al. (2001) conducted both quasi-static and dy-
namic experiments on pre-cracked steel plates. In their experiments,
a transition from flat quasi-static crack to a slant dynamic crack was
found, which suggests the adiabatic behaviour of material can trig-
ger mode transition in dynamic crack propagation. Mathur et al.
(1996) analyzed a very thin pre-cracked plate (thickness = 0.33 mm)
and showed adiabatic shear banding forms at the slip planes approx-
imately 45� to the surface in a voided media.

For adiabatic loading condition, a classic plasticity work dissipa-
tion induced thermal effect is introduced. The yield stress is not
generally sensitive to strain rate for aluminum alloys (Zhang and
Ravi-Chandar, 2006) and is therefore neglected in the present
study. Under the adiabatic condition, the local temperature in-
crease is calculated through the plastic work dissipation, i.e.

qCp
oT
ot
¼ ar : dp; ð9Þ

where q is the material density, Cp is the heat capacity, t denotes
time, T denotes temperature, r is the stress tensor, dp is the plastic



Fig. 7. Contour plots of the pressure sensitivity factor ðlpÞ, azimuthal sensitivity factor ðlhÞ and their product at a partially cracked cross-section for flat and slant fracture
modes. The final through thickness cracks are shown in the right subplots. The azimuthal sensitive factor dictates a slant crack, while the pressure sensitive factor dictates in a
flat crack. A smaller sensitivity factor (indicated by dark area) means more influential to the damage accumulation. Panels (a)–(d) are for c = 0.7 case and panels (e)–(h) are for
c = 0.5 case.
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part of rate of deformation tensor and a is Taylor–Quinney coeffi-
cient, which is taken to be 0.9.

A modified Johnson–Cook thermal weakening factor to the
material strength is adopted (Zhang and Ravi-Chandar, 2006).
The temperature dependent matrix strength is characterized by

rM ¼ ry0ð1þ ep=e0Þn½ðT � Tref Þ=ðTmelt � TrefÞ�mT ; ð10Þ

where T is the current temperature of the material, Tref ¼ 297 K is a
reference temperature (e.g. room temperature where the experi-
ments are conducted), Tmelt ¼ 755 K is the melting temperature
for aluminum alloy and the exponent mT is a material constant,
which is chosen to be 1.0 in the present study.

With the thermal weakening, the crack under adiabatic condi-
tion turns into a slant crack for n ¼ 0:2 and c ¼ 0:7 material
(Fig. 3(c)), which should be compared with a flat crack for the same
material under isothermal condition (Fig. 3(b)). This demonstrates
the experimentally observed feature (v).
Fig. 8. A fracture mode transition line is determined from a series of numerical
simulation results where the strain hardening exponent n and the Lode angle
dependence parameter c are two varying material constants. Triangles denote slant
cracks; squares denote flat cracks.
6. Effect of strain hardening

Experimental results suggest that materials with strong strain
hardening capability are more likely to fracture in a flat pattern
(Newman, 1985; Pardoen et al., 2004; Pineau and Pardoen,
2007). To further investigate the hardening effect, a series of
numerical simulations using the same finite element model is car-
ried out for varying strain hardening exponent n and azimuthal
dependence parameter c to determine the separating line between
the two distinct fracture modes. The results are presented in Fig. 8.
The abscissa denotes the azimuthal dependence parameter c
where on the left end c = 0.0 means ideal nil ductility in general-
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Fig. 9. Fracture characteristics varies with respect to the strain hardening exponent n. Note the distinct normalized tunneling for slant and flat fracture modes for different
hardening exponent n. The apparent crack growth resistance increases for small n but decreases for large n.
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ized shear condition and on the right end c = 1.0 means the frac-
ture envelope is independent of the Lode angle. The coordinate is
the strain hardening exponent n which covers a wide range of val-
ues for common metals and alloys.

In Fig. 8, near the limiting cases of the transitional boundary, for
n ¼ 0:05; c ¼ 0:45 (circle), the flat crack turned to slant crack after
propagates about 10 mm. For n ¼ 0:50; c ¼ 0:10 (diamond), two
tiny shear lips form near free surface and leave a flat zone in the
middle; the shear lips never join into a through thickness slant
crack.

The results shown in Fig. 8 that the material parameters lead to
slant fracture pattern locate at the low left corner of the c� n ma-
trix (indicated by a light green color1). The remaining regime where
a flat crack is found is shown in grey color. A transitional boundary is
also shown in Fig. 8 as a solid line. Above the boundary line, the
strain hardening exponent is large and the mean stress influence is
significant in the flat panel, which leads to a flat crack. This agrees
the well-known experimental observations, i.e. experimentally ob-
served feature (i).

Another pattern emerges from Fig. 8 is that low Lode angle
dependence (i.e. larger c values) tends to result in a flat crack. This
can be seen from the right-hand side of the boundary, the Lode an-
gle dependence of fracture is diminishing and a flat crack is ob-
served. However, this effect is not known previously due to the
inadequate awareness of the azimuthal dependence of ductile frac-
ture in the literature. Further experimental verification is in need
in this regard.

Similar to Fig. 5, we draw conclusions from Figs. 9 and 10 on the
dependence of fracture characteristics with respect to the strain
hardening exponent n (for fixed c = 0.5 and q = 1.0) and the pres-
sure sensitivity parameter q (for fixed c = 0.5 and n = 0.2). In Figs.
9 and 10, slant cracks are found in the intermediate range of n
and q values. For small n, the deformation is highly localized in
the crack plane. When constraints are build-up in the thickness
direction, significant tunneling propagates in the mid-plane
(Fig. 9(c)), which is followed by lateral propagation instead of
forming shear lips at the tail of the crack. For large n, excessive
pressure build-up drives the material to fracture in a flat pattern.
It should be noted that the fracture transition between intermedi-
ate and large values of n, the crack growth resistance peaked and
then drops when n > 0:25 (Fig. 9(d)).
1 For interpretation of the references to color in Fig. 8, the reader is referred to the
web version of this paper.
For small q, because of the diminishing pressure sensitivity,
excessive necks form ahead of the crack tip and result in an
overall flat crack in the significantly reduced section thickness
due to geometrical influence. In this case, the influence of geo-
metrical change in the fracture process zone is significant. The
plastic strain rate (in Eq. (2)) in the normal section is much
greater than the rest. For large q, the material is highly sensitive
to pressure and breaks in cleavage manner. This can be seen
from Fig. 9(d) that the crack growth resistance drops to almost
zero for q > 2:0.

From the vertical line of c = 1 in Fig. 5, without the consider-
ation of the Lode angle dependence of ductile materials, the pre-
dicted fracture modes are all flat cracks. Because of this reason,
all numerical studies published in the literature have not been able
to predict a slant crack and to capture the five distinctive features
listed in Section 1. As for the formation of shear lips, Tvergaard and
Needleman (1984) simulated the flat-to-slant transition in the cup-
cone rupture of round bars using micromechanical modified Gur-
son model (Gurson, 1977) and explained the formation of shear
lips near surface due to ‘‘void sheeting mechanism” of secondary
particles. The cup-cone transition can also be found in numerical
simulations using continuum damage mechanics (Teng, 2008
etc.). However, the modified Gurson model and the conventional
continuum damage mechanics method do not include the effect
of third stress invariant (in other word, c = 1.0 is tacitly assumed).
From Fig. 8, under the present assumptions, a slant crack in thin
plate cannot be predicted without introducing additional effects,
such as adiabatic heating (Mathur et al., 1996) or anisotropy (Bes-
son et al., 2001). Further modifications to the Gurson-type models
are also introduced by Xue (2006) to include damages associated
with void shearing that is dependent on the Lode angle (Xue,
2007b, 2008). Similar remedy was adopted by Nahshon and Hutch-
inson (2008) to include a third stress invariant dependent damage
evolution law more recently.
7. Effect of plate thickness

The general opinion about crack growth resistance for flat plates
is that it increases at low thickness where a slant crack is observed
and decreases with respect to thickness as mode I crack becomes
dominant. Eventually, the crack growth resistance reaches its
asymptotic value of the mode I fracture for very thick plate. This
phenomenon is well known to the experimentalists when measur-
ing the fracture toughness for ductile materials using flat plates of
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Fig. 10. Fracture characteristic varies with respect to the pressure sensitivity parameter q. The apparent crack growth resistance decreases with increasing pressure
sensitivity (increasing q values). The fracture mode does not have an obvious effect on R value (d), but slant crack significantly reduces the tunneling effect (c).
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different thicknesses (Broek, 1982, Chapter 4; Barsom and Rolfe,
1999, Chapter 4; Anderson, 2005, Chapter 2).

A phenomenological explanation is given by Krafft et al. (1961)
who separated the energy dissipation of the shear lips (slant re-
gion) from the grossly flat central zone in fractured thick plates.
They explained the increase of crack growth resistance in the small
thickness regime is due to the energy dissipation in a quadratic
form to the depth of shear lip and in the large thickness regime
the depth of shear lips is bounded and eventually only energy asso-
ciated with mode I is dissipated. We simulate the fracture of com-
pact tension specimens for various thicknesses and the crack
growth resistances are calculated.

Simulations are performed for a series of compact tension plates
for n ¼ 0:2, c = 0.5 and with thickness various from 1.5875 to
25.4 mm. The 1.5875 mm thick plate buckles in the ligament and
therefore is excluded from the following discussion. The results
are shown in Fig. 11. From Fig. 11, the center portion of the crack
surface becomes flat as the thickness of the plates increases. For
thinner plates (thickness equals 6.35 mm and less), an overall slant
mode is observed throughout the thickness. For thicker plates
(greater than 6.35 mm), the specimens show (1) a central flat zone
where materials fail in mode I opening mode and (2) two shear lip
zones where mixed I/III mode slant cracks form. Due to the differ-
ences in fracture mechanisms of the flat and slant regimes, the
apparent crack propagation resistance varies with the plate thick-
ness. The apparent crack growth resistance is computed from the
Fig. 11. The appearance of crack surface varies with the plate thickness. With
crack surface in the original configuration projected to the initial
crack plane. The trend obtained from the numerical simulation
represents the well-known shape of thickness dependence curve
of the crack growth resistance, as shown in Fig. 12(d). The maxi-
mum thickness calculated here is 25.4 mm, which is limited to
the excessive computational time. It appears that the plane strain
limit has not been reached yet for this hypothetical material.

It is also noticed that the apparent crack growth resistance R
does not decrease immediately after the appearance of a flat region
at the center of the fracture surface. Rather, the apparent crack
growth resistance continues to increase until thickness reaches
about 10 mm when the flat region consists of about 20% of the
thickness. The flat portion of in the thickness direction increases
with increasing thickness as shown in Fig. 12. This matches the
experimental observation feature (iv).

8. Mesh size dependence

In the late stage of deformation of an element, the hardening
modulus of the material becomes non-positive when damage be-
comes important. The numerical solution is mesh sensitive as this
type of damage constitutive relationships usually do. One way to
regulate the deformation is to include a characteristic length scale
in the constitutive model or a strain gradient dependent term in
the damaging process. The present damage plasticity model does
not incorporate such an inherent length scale, therefore, the solu-
increasing plate thickness, the flat zone initiates at the center and grows.
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tion is mesh dependent. Moreover, the slant mode of fracture is
usually localized in narrow shear bands. The characterization of
these shear bands certainly relies on the size of the mesh. Coarse
mesh may not be able to depict the details in a shear band and lead
to a different fracture mode (in the present study, a flat mode is
found instead for coarse meshes).

A series of numerical simulations were conducted to further
investigate the dependence of mode transition on the mesh size.
The 6.35-mm-thick compact tension specimen is discretized by
different size of elements. We denote the element size by the num-
ber of elements in the thickness direction of the plate. The number
of elements in the thickness direction varies from 5 to 25 elements
(element size 1.27–0.254 mm). The aspect ratio of the elements
along and in the neighborhood of the crack path is kept 1:1:1.

The matrix stress–strain curve remains the same as the base
scenario, where the hardening exponent n = 0.2. The pressure
dependence parameters are the same. We also explore the depen-
dence of the mode transition on the Lode angle dependence
parameter c, which has been identified as one of the key parame-
ters for the mode transition in flat plate. The results with respect to
Fig. 13. The numerical results of fracture mode depend on the mesh size and the
Lode angle dependence factor c. For example, the critical number of elements in the
thickness direction is 15 for c = 0.5 to capture a slant mode in this case (element
size 0.423 mm).
the element size and the Lode angle dependence are plotted in
Fig. 13.

From Fig. 13, smaller element size are more capable of captur-
ing a slant mode of fracture for a fixed c. There appears a transition
line between the flat and the slant modes of fracture. The transition
line is plotted in Fig. 13 as a thin solid line. The simulations where a
slant mode is found are indicated by a triangle and where a flat
mode is found are indicated by a square. The critical number of ele-
ments in the thickness direction to capture a slant mode depends
on the tendency of the material on how easy a shear band forms.
For instance, at low c values (e.g. c 2 ½0:1;0:2�), less than 10 ele-
ments are need to capture a slant mode (element size
0.635 mm). At higher values, e.g. c = 0.5, 15 elements are needed
(element size 0.423 mm). For the number of through thickness
element greater than 18, the slant mode of failure persists for all
c values when other material parameters are fixed.

Nine load–displacement curves for different mesh sizes of the
same compact tension specimen and same material parameters
are plotted in Fig. 14. For the same set of material parameters,
the load–displacement curve drops when the mesh is finer. The
crack pattern and energy dissipation when crack propagates ap-
pear to be sensitive to the mesh size. At low resolution of discret-
ization (the number of through thickness elements between 5 and
12), the numerical results show a flat crack, which indicates the
shear bands in the thickness direction cannot be captured. The sig-
nificance of the tunneling effect becomes more obvious when the
mesh size decrease (see Fig. 14(b) and (c)). When the number of
through thickness elements is equal or greater than 15, the resolu-
tion of the mesh becomes capable of depicting the shear bands. In
these simulations, shear lips form first and then the entire crack
front changes to a slant pattern after a short transitional area.
Due to the diminishing constraint in the thickness direction for a
slant crack, the tunneling effect also decreases when the mesh be-
comes finer.

The apparent crack growth resistance is a monotonic decreasing
function with the number of elements in the thickness direction.
When elements become smaller, the crack processing zone is char-
acterized in more details. The deformation is more localized in the
shear bands such that the energy dissipation is narrowed to a
smaller zone. This yields the continuous decreasing of the apparent
crack growth resistance with finer mesh. It also appears that the
mode of crack does not have an obvious impact on the apparent
crack resistance. The transition line between the two modes
depending on the mesh size is marked in Fig. 14(c) and (d).
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Fig. 14. The load-displacement curves (a) and the relationships between the tunneling (b) and (c), the apparent crack growth resistance (d) and the number of through
thickness elements are plotted for the simulation results.
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9. Conclusions

We have determined that the crack mode in ductile flat panels
is governed by the interaction of the pressure sensitivity and the
Lode angle dependence characteristics of the material. The Lode
angle dependence was a missing ingredient in the constitutive
characterization of the ductility of material in existing theories.
By including this additional dimension, the underlying competing
fracture mechanisms are revealed. The novelty of this work also re-
sides in the systematic investigation of the influencing factors of
the strain hardening, the Lode angle parameter and the hydrostatic
pressure parameter on the ductile fracture characteristics that was
not fully explored and addressed in the literature. Experimentally
observed distinct fracture modes are reproduced by a series of fi-
nite element simulations. It is remarkable that all major features
of the dependence of mode transition upon the material hardening
capacity, the Lode angle dependence parameters, the tunneling ef-
fect, the adiabatic heating induced mode transition and the thick-
ness dependence of apparent crack growth resistance are captured
using the newly developed continuum theory of damage plasticity.

Also investigated in the present research is the mesh size
dependence of ductile fracture. It is well known that the numerical
solution of this type of damage model without an inherent length
scale is mesh size dependent when fracture is concerned. In the
compact tension case, the shear bands cannot be correctly repre-
Fig. 15. A schematic drawing illustrates the evolution of the deviatoric stress tensor
for the one-dimensional case.
sented when the resolution of the mesh is low. A series of simula-
tions for different mesh sizes and the Lode angle dependence
parameters c is conducted. A flat crack is observed for relatively
coarse mesh and a slant crack is observed for finer mesh when
the geometry and the material constants remain the same. The
apparent crack growth resistance is found to decrease with
decreasing element size.

Further elucidation of the local damaging process at the crack
tip requires higher resolution in the dependence functions on the
mean stress and the azimuthal angle, the damage evolution law
and the damage-coupled yield function. Given the state-of-art
experimental technique, the determination of these functions re-
mains difficult. We envision a continued progress in describing
and predicting ductile fracture under the proposed framework.
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Appendix A

For illustration purpose, the evolution of the deviatoric stress
tensor is graphically represented in Fig. 15 for the one-dimensional
case, where the deviatoric stress goes from sn at time tn to snþ1 at
time tnþ1 with weakening considered. The abscissa is the total
strain.

An explicit stress integration procedure is used in the calcula-
tion in the present study. At time tn, two state variables,
ep

n and Dn and the stress state rn are given2. The stress integration
procedure is the following:

Given: frn; ep
n;Dng and De ¼ enþ1 � en at time tn.

Step 1:
Calculate

ee
n ¼ 1

wðDnÞC
�1
0 : rn;

ey ¼ ee
n þ De;

ê ¼ ey � 1
3 ðtreyÞ1;

~e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2
3 ê : ê

q
;

9>>>>>=
>>>>>;

ð11Þ

rtrial
nþ1 ¼ rn þwðDnÞC0 : ½De�; ð12Þ
2 Bold faced letters are tensors.
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where C0 is the fourth order ground-state isotropic elasticity tensor,
i.e.

C0 ¼ 2G0Iþ K0 �
2
3

G0

� �
1� 1; ð13Þ

where I is the fourth order identity tensor and 1 is the second order
identity tensor.

rtrial
eq ¼ 3wðDnÞG0~e: ð14Þ

Step 2:
IF

rtrial
eq 6 ð1� DnÞrMnðep

nÞ: ð15Þ

THEN (elastic update)

rnþ1 ¼ rtrial
nþ1;

ep
nþ1 ¼ ep

n;

Dnþ1 ¼ Dn:

9>=
>; ð16Þ

ELSE IF

rtrial
eq > ð1� DnÞrMnðep

nÞ; ð17Þ

THEN (elastic–plastic update)

nnþ1 ¼ 3
2

strial

rtrial
eq

;

Dep ¼ 3G0~e�rMn
3G0þh ;

Dep ¼ Depnnþ1;

9>>=
>>; ð18Þ

and

lp ¼
1� q log 1� p

plim

� �
; p P plim 1� expð1=qÞ½ �;

0; p < plim½1� expð1=qÞ�;

(

lh ¼ cþ ð1� cÞ 6jhL j
p

� �k
;

ef ¼ ef0lplh;

9>>>>>=
>>>>>;

ð19Þ

and

Dnþ1 ¼ Dn þm ep
n

ef

� �ðm�1Þ
Dep

ef
;

wðDnþ1Þ ¼ 1� Db
nþ1;

ep
nþ1 ¼ ep

n þ Dep;

9>>>=
>>>;

ð20Þ

and

ee
nþ1 ¼ ey � Dep;

rnþ1 ¼ wðDnþ1ÞC0ee
nþ1:

)
ð21Þ

END
All necessary field variables frnþ1; ep

nþ1;Dnþ1g are updated at
time tnþ1 ¼ tn þ Dt.
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