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1.  Introduction

The idea that climate may substantially 
influence economic performance is an 

old one, featuring prominently in the writ-
ings of the Ancient Greeks, in Ibn Khaldun’s 
fourteenth-century Muqaddimah (Gates 
1967), and during the Enlightenment, when 
Montesquieu argued in The Spirit of Laws 
(1748) that an “excess of heat” made men 

“slothful and dispirited.” To the extent that 
climatic factors affect economically rel-
evant outcomes, whether agricultural out-
put, economic growth, health, or conflict, a 
careful understanding of such effects may 
be essential to the effective design of con-
temporary economic policies and institu-
tions. Moreover, with global temperatures 
expected to rise substantially over the next 
century, understanding these relationships 
is increasingly important for assessing the 
“damage function” that is central to estimat-
ing the potential economic implications of 
future climate change. 

A basic challenge in deciphering the rela-
tionship between climatic variables and eco-
nomic activity is that the spatial variation 
in climate is largely fixed. Canada is colder 
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on average than Cameroon, and it always 
has been. As such, while there can be large 
cross-sectional correlations between a coun-
try’s climate and its economic outcomes, it 
is difficult to distinguish the effects of the 
current climate from the many other char-
acteristics potentially correlated with it. The 
difficulty in identifying causative effects 
from cross-sectional evidence has posed 
substantial and long-standing challenges for 
understanding the historical, contemporary, 
and future economic consequences of cli-
mate and climate change.

In the last few years, there has been a wave 
of new empirical research that takes a differ-
ent approach. These new studies use panel 
methodologies, exploiting high-frequency 
(e.g., year-to-year) changes in temperature, 
precipitation, and other climatic variables to 
identify these variables’ economic effects. 
As nomenclature, this new literature uses 
“weather variation” to describe shorter-run 
temporal variation. The word climate is 
reserved for the distribution of outcomes, 
which may be summarized by averages over 
several decades, while weather describes a 
particular realization from that distribution 
and can provide substantial variability.

The primary advantage of the new lit-
erature is identification. By exploiting 
exogenous variation in weather outcomes 
over time within a given spatial area, these 
methods can causatively identify effects of 
temperature, precipitation, and windstorm 
variation on numerous outcomes, including 
agricultural output, energy demand, labor 
productivity, mortality, industrial output, 
exports, conflict, migration, and economic 
growth. This literature has thus provided a 
host of new results about the ways in which 
the realizations of temperature, precipita-
tion, storms, and other aspects of the weather 
affect the economy. 

In light of these developments, this paper 
has two related goals. The first goal is to take 
stock of this new literature, providing a guide 

to its methodologies, datasets, and findings. 
The second goal is to clarify the interpre-
tation of this literature. The new approach 
speaks directly to contemporary effects of 
weather on economic activity, and in this 
sense, provides an unusually well-identified 
understanding of channels affecting contem-
porary economic issues, including economic 
development, public health, energy demand, 
and conflict. 

At the same time, this literature has impor-
tant implications for the “damage function” 
in climate change models, which consider 
how future changes in climate—i.e., future 
changes in the stochastic distribution of 
weather—will affect economic activity. The 
opportunity here is to bring causative identi-
fication to the damage functions, elucidating 
the set of important climate–economy chan-
nels and their functional forms. The chal-
lenge lies in bridging from the evidentiary 
basis of short-run weather effects to thinking 
about longer-run effects of changes in the 
distribution of weather, which may be either 
larger (e.g., due to intensification effects) 
or smaller (e.g., due to adaptation) than the 
short-run impacts. While certain climate 
change aspects are difficult to assess, we 
examine a number of empirical methodolo-
gies that can help bridge toward longer-run 
effects while maintaining careful identifi-
cation. Examples include comparing how 
the impact of a given weather shock differs 
depending on the locations’ usual climate, 
examining whether the impact of weather 
shocks depends on a region’s previous expe-
rience with similar shocks, and examining the 
impact of changes over longer time scales. 
We further reexamine the climate damage 
functions used in current climate–economy 
models in light of the evidence reviewed 
here.

This paper proceeds as follows. In sec-
tion 2, we review the panel methods used in 
this literature and discuss the methodologi-
cal choices involved in implementing them. 
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We further review standard climate datasets, 
providing guidance on how to effectively use 
these resources. Section 3 reviews the find-
ings of the new literature, organized by the 
outcome variable of interest. This section 
covers the effects of temperature, precipita-
tion, and windstorms on economic growth, 
agriculture, labor productivity, industrial 
output, health, energy, political stability, 
conflict, aggression, and other outcomes. 
Section 4 considers applications of the new 
literature to understanding the potential eco-
nomic effects of climate change. This section 
first considers methodological opportunities 
for panel methods to inform our understand-
ing of longer-run climate change processes. 
It then examines the economic damage func-
tion within Integrated Assessment Models 
(IAMs), which are used to estimate the social 
cost of carbon and guide climate change pol-
icy, and discusses how these damage func-
tions can be informed by the new findings. 
Section 5 offers concluding observations and 
suggests promising directions forward for 
this literature. This paper also has two online 
appendices. Online Appendix I summarizes 
the panel data methodologies used in the 
papers reviewed. Online Appendix II indi-
cates the primary data sources used in the 
papers reviewed.

2.  Methods and Data 

2.1	 What is the New Approach?

To understand the impact of climate on 
the economy, we would ideally like to deter-
mine the following unknown functional 
relationship: 

(1) 	 y = f (C, X)

which links vectors of climatic variables (C) 
and other variables (X) to outcomes, y. C 
may include temperature, precipitation, and 
extreme weather events like windstorms, 

among other climatic phenomena. Outcomes 
of interest include national income, agricul-
tural output, industrial output, labor produc-
tivity, political stability, energy use, health, 
and migration, among others. X includes 
any characteristics that are correlated with C 
and also affect the outcomes of interest, pos-
sibly by conditioning the climate response. 
This section discusses several different 
approaches that have been used to estimate 
the relationship given by equation (1). 

2.1.1	 Estimation using the Cross Section 

A classic approach to estimating (1) empha-
sizes spatial variation at a point in time. A 
linearized version of the above model is

(2)	​ y​i​  =  α  +  β ​C​i​  +  γ ​X ​i​  + ​ ε​i​,

where i indexes different geographic areas, 
e.g., countries or subnational entities like 
counties, as dictated by the question of inter-
est and sources of data. The outcome vari-
able and explanatory variables are typically 
measured either in levels or logs. The error 
process is typically modeled using robust 
standard errors, possibly allowing for spa-
tial correlation in the covariance matrix by 
clustering at a larger spatial resolution or  
allowing correlation to decay smoothly with 
distance (Conley 1999). 

The vector X typically includes several 
controls. For example, one may want to 
include other variables that are correlated 
with C and impact y. The vector X could 
also include other exogenous geographic 
controls, such as elevation and ruggedness, 
to the extent those are correlated with the 
variables of interest in C.1

1 Related, it can be important to include a rich set of 
climatic variables in C. Auffhammer et al. (forthcoming), 
for example, show that temperature and precipitation tend 
to be correlated, with a sign that varies by region. Thus, 
failing to include both could lead to omitted variables bias 
when interpreting a particular climatic variable estimated 
in isolation.
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To the extent that climatic variables, like 
other geographic variables, are exogenously 
determined, reverse causation is unlikely 
to be a major concern.2 The more press-
ing econometric challenge for estimating β 
from the cross-sectional equation in (2) is 
the potential omitted variable bias; i.e., the 
correlation between the climate variables of 
interest and other features that may influ-
ence the outcome. To the extent that these 
other variables are not adequately captured 
in the control variables ​X​ i​, or the functional 
form through which they are controlled for 
is not exactly correct, the estimates of β will 
be biased. 

Importantly, however, adding more 
controls will not necessarily produce an 
estimate ​  β​ that is closer to the true β. If 
the Xs are themselves an outcome of C, 
which may well be the case for controls 
such as GDP, institutional measures, and 
population, including them will induce 
an “over-controlling problem.” In the lan-
guage of the model, if X is in fact X(C), then 
equation (1) would instead be written as 
y = f (C, X(C)) and estimating an equation 
that included both X and C would not cap-
ture the true net effect of C on y. For exam-
ple, consider the fact that poorer countries 
tend to be both hot and have low-quality 
institutions. If hot climates were to cause 
low-quality institutions, which in turn cause 
low income, then controlling for institutions 
in (2) can have the effect of partially elimi-
nating the explanatory power of climate, 

2 Nevertheless, reverse causation may need to be 
considered in some settings. In the cross section, urban 
areas are known to be hotter than rural areas due to the 
heat-sink effects from asphalt, black roofs, etc. (Houghton 
et al. 2001), though this can be corrected for using mea-
surements of temperatures in rural areas (Nakicenovic 
et al. 2000). In the panel, economic shocks in very poor 
countries can lead to changes in the quality of tempera-
ture measurement and potentially change the urban/mix of 
measurements, so even if actual ​C​i​ is unaffected, observed ​
C​i​ may be. We discuss these issues in more detail in sec-
tion 2.2.

even if climate is the underlying fundamen-
tal cause.3 

Beyond these identification challenges lies 
a more substantive question of what under-
lying structural equation the econometric 
equation in (2) estimates. To continue the 
previous example, suppose that temperature 
and income are correlated in the cross section 
today largely because climate affected the 
path of agricultural development, technolog-
ical exchange, and/or subsequent colonial-
ism (Diamond 1997; Rodrik, Subramanian, 
and Trebbi 2004). If the structural equation 
of interest is to estimate the very long-run 
historical effect of, for example, temperature 
on economic outcomes, one might prefer to 
estimate (2) without controlling for poten-
tially intervening mechanisms, such as insti-
tutions. However, climate studies often seek 
to estimate the contemporaneous effect of 
temperature on economic activity for the 
purpose of assessing the potential impacts 
of forecasted temperature changes over the 
next several decades. The cross-sectional 
relationship, which represents a very 
long-run equilibrium, may incorporate pro-
cesses that are too slow to accurately inform 
the time scale of interest, or it may include 
historical processes (such as colonialism) that 
will not repeat themselves in modern times.

2.1.2	 Estimation using Weather Shocks

To the extent that one is interested in iso-
lating the impact of climatic variables such 
as temperature—apart from the many other 
factors that they are correlated with and 
have influenced over the very long run—a 

3 The fact that geographic characteristics, e.g., tropi-
cal climate, and institutional quality are highly correlated 
in the cross section has led to a vigorous, but ultimately 
hard-to-resolve debate over their relative importance for 
long-run economic development, where the inclusion of 
institutional variables in cross-sectional specifications like 
(2) diminishes otherwise strong relationships between geo-
graphic variables and income. See, for example, Acemoglu, 
Johnson, and Robinson (2001); Sachs (2003); and Rodrik, 
Subramanian, and Trebbi (2004).



Journal of Economic Literature, Vol. LII (September 2014)744

different approach is to use longitudinal 
data to investigate the effects of weather 
shocks. This approach, which is the focus 
of this review, has emerged in recent years 
and emphasizes variation over time within a 
given spatial entity.

Using standard panel methods, the regres-
sion models in this literature typically take 
variations of the form

(3) ​ y​it​  =  β ​C​it​  +  γ ​Z​it​  +  ​μ​i​  + ​ θ​rt​  +  ​ε​it​,

where t indexes time (e.g., years, days, 
months, seasons, decades). The literature 
uses a nomenclature of “weather varia-
tion” for shorter-run temporal variation, as 
opposed to “climate variation,” where the 
word climate is used to describe the distribu-
tion of outcomes (e.g., the range of tempera-
ture experienced in Mexico), while weather 
refers to a particular realization from that 
distribution. 

Noting that temperature, precipitation, 
windstorms, and other weather events vary 
plausibly randomly over time, as random 
draws from the distribution in a given spa-
tial area (i.e., “weather” draws from the 
“climate” distribution), the weather-shock 
approach has strong identification proper-
ties. The fixed effects for the spatial areas, ​μ​i​, 
absorb fixed spatial characteristics, whether 
observed or unobserved, disentangling the 
shock from many possible sources of omitted 
variable bias. Time-fixed effects, ​θ​rt​, further 
neutralize any common trends and thus help 
ensure that the relationships of interest are 
identified from idiosyncratic local shocks. 
In practice, the time-fixed effects may enter 
separately by subgroups of the spatial areas 
(hence the subscript r) to allow for differ-
ential trends in subsamples of the data. An 
alternative (and potentially complimentary) 
approach to capturing spatially specific 
trends is to include a spatially specific time 
trend.

The approach in (3) is explicitly reduced 
form, focusing on the effect of weather varia-
tion on the outcome variable per se. Other 
studies use weather variation as an instru-
ment to study nonclimatic relationships, such 
as the link between poverty and civil conflict 
(e.g., Miguel, Satyanath, and Sergenti 2004, 
which uses rainfall as an instrument for GDP 
growth; see section 3.7 below). While such 
instrumental variable studies rely on vari-
ous exclusion restrictions to make causative 
inference about such relationships, the 
simple reduced-form analysis in (3) does 
not. It simply identifies the net effect of 
the weather shock on an outcome of inter-
est (e.g., the effect of rainfall on conflict). 
Thus, the reduced-form panel approach 
makes relatively few identification assump-
tions and allows unusually strong causative 
interpretation. 

There are a number of methodological 
decisions that arise in implementing panel 
models. One methodological choice concerns 
the inclusion of other time-varying observ-
ables, ​Z​it​. Including the ​Z​it​ may absorb resid-
ual variation, hence producing more precise 
estimates. However, to the extent that the ​
Z​it​ are endogenous to the weather variation, 
the “over-controlling” problem that compli-
cates cross-sectional estimation appears in 
the panel context as well. For example, if 
national income is the outcome of interest, 
then controlling for investment rates would 
be problematic if the climatic variables influ-
ence investment, directly or indirectly. 

As will be reviewed in section 3 below, 
effects of weather shocks appear across a 
very wide range of economic and political 
outcomes, which suggests substantial cau-
tion when including explanatory variables 
or when asserting one particular mechanism 
as the unique causal path through which 
weather affects another one of these out-
comes. Best practices suggest including only 
credibly exogenous regressors as control 
variables ​Z​it​, such as terms of trade shocks 
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for a small economy and other weather 
variables that are not the main focus of the 
analysis. Potentially endogenous regressors 
should typically only be included if there is 
a strong argument that these variables are 
not affected by climate or can otherwise be 
modeled appropriately in a credible struc-
tural context.

A related issue is the inclusion of lags of the 
dependent variable, ​y​it​. Including these lags 
biases coefficient estimates in short panel 
models,4 yet excluding the lagged dependent 
variable may also bias the estimates if it is an 
important part of the data-generating pro-
cess. While what comprises a “short” panel 
will depend on the data-generating process, 
Monte Carlo experiments suggest that the 
bias can be nonnegligible with panel lengths 
of T = 10 or even T = 15.5 The median 
panel length of studies cited in this review 
is 38, whereas the twenty-fifth percentile is 
T = 18 and the seventy-fifth percentile is 
T = 57. So in many cases, the panel is long 
enough that these biases can probably be 
safely considered second-order. When the 
panels are short, however, estimating models 
with lagged dependent variables is an active 
area of research, and it can be helpful to show 
robustness to different estimation methods. 
For example, further lags of levels or differ-
ences of the dependent variable can be used 

4 This bias declines at rate 1/T, where T is the number 
of observations within a group (Nickell 1981). To see this 
more intuitively, suppose that the data-generating process 
is ​y​t​ = γ ​y​t−1​ + β  ​w​t​ + ​ϵ​t​ . Consider the within estimator 
from the following regression:

​y​t​ − ​
_
 y​ = γ  (​y​t−1​ − ​

_
 y​) + β(​w​t​ − ​

_
 w​) + (​ϵ​t​ − ​

_
 ϵ​),

where y is the outcome of interest, w is a weather variable, 
ϵ is the error term, ​

_
 y​ denotes the mean of the outcome, 

and so forth. By definition, ​y​t−1​ is correlated with ​ϵ​t−1​, and 
hence with ​_ ϵ​. Therefore, ​( ​y​t−1​ − ​

_
 y​ )​ is correlated with the 

error term, and all the coefficients, including the estimated 
weather effect β, will be biased. However, as panel length 
approaches infinity, the contribution of ​ϵ​t−1​ to ​_ ϵ​ approaches 
zero and this problem disappears. 

5 Bond (2013), see also Arellano and Bond (1991) and 
Bond (2002).

as instruments for ​Y​i,t−1​ (Arellano and Bond 
1991), external variables can also be used as 
instruments when available, and ​y​i,  t−1​ can 
be instrumented with long differences of y 
(Hahn, Hausman, and Kuersteiner 2007), 
though these methods only work if the data- 
generating process is correctly specified.6

A further implementation question 
involves the appropriate functional form 
for the weather variables. One common 
approach measures ​C​it​ in “levels” (e.g., 
degrees Celsius for temperature or millime-
ters for precipitation). In the panel set up, 
the identification thus comes from devia-
tions in levels from the mean.7 Another com-
mon approach, aimed at revealing nonlinear 
effects, considers the frequencies at which 
the weather realizations fall into different 
bins. For example, temperature may be 
accounted for via several regressors, each 
counting the number of days in the year with 
temperatures within prespecified degree 
ranges (e.g., 0–5°C, 5–10°C, etc.). Deschênes 
and Greenstone (2011) is an early example 
of this approach. The key advantage lies in 
avoiding functional form specifications, since 
this method is relatively nonparametric. Note 
that this approach demands high-resolution 
data: if one aggregates across either space or 
time before constructing the bins, extreme 
days could be averaged away, and if nonlin-
earities are important, this smoothing of the 
data may produce misleading estimates.

6 Another possible check is to include ​y​0​ interacted 
with time dummies, in place of the lagged dependent 
variable(s). 

7 Logs might also be used, with identification thus com-
ing from percentage deviations. The disadvantage of this 
approach for temperature data is that it requires strictly 
positive support and that different temperature units have 
different 0s (i.e., 0ºF is equal to −17.8ºC). Thus, log tem-
perature may truncate the data and further raises an issue 
where changing units from Fahrenheit to Celsius can sub-
stantively change the coefficient estimates. Using a Kelvin 
temperature scale (0º Kelvin is −273.2º Celsius) eliminates 
negative values, although this change is not innocuous, in 
the sense that it alters the functional form.
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A different approach emphasizes “anom-
alies,” where the weather variable is cal-
culated as its level difference from the 
within-spatial-area mean and divided by 
the within-spatial-area standard deviation. 
The first part—the difference in mean—is 
already captured in a broad sense by the 
panel model. The second part—scaling by 
the standard deviation—takes a particular 
view of the underlying climate–economy 
model where level changes matter not in an 
absolute sense but in proportion to an area’s 
usual variation.8 

Alternatively, outcome-specific approaches 
may be preferred where existing research 
provides guidance. For example, knowledge 
of biological processes in agriculture sug-
gest refined temperature measures such as 
“degree-days” for crop growth, possibly with 
crop-specific thresholds (e.g., Schlenker 
and Roberts 2009). Another example comes 
from labor productivity studies, where lab-
oratory evidence finds temperature effects 
only beyond specific thresholds (Seppanen, 
Fisk, and Faulkner 2003).

As a general rule, imposing specific func-
tional forms on the data, such as crop degree-
days, is useful to the extent that one has 
confidence in the specific model of the pro-
cess that translates weather to economic out-
comes. The more agnostic about the model, 
the more general the researcher would like 
to be about the functional form. 

Panel studies also often examine het-
erogeneous effects of climatic variables. 
Heterogeneity may exist with regard to 
the climatic variables themselves. For 
example, positive temperature shocks may 

8 It should be noted that precisely estimating a long-run 
standard deviation requires more data than precisely esti-
mating a mean—and, moreover, may be particularly sensi-
tive to data problems like weather stations entering and 
exiting the record (see section 2.2.1). Thus, anomalies 
measures in contexts with limited data may be relatively 
noisy, leading to attenuation bias that becomes exacerbated 
in the panel context.

have worse effects conditional on high 
average temperature. Heterogeneity may 
also exist with regard to nonclimate vari-
ables. For example, poor institutions or 
poor market integration could increase the 
sensitivity to climate shocks, and certain 
groups—such as the elderly, small chil-
dren, and pregnant women—may also be 
more sensitive to weather shocks. In prac-
tice, panel models can incorporate such 
heterogeneity by interacting the vector of 
climate variables, ​C​it​, with a variable that 
captures the heterogeneity of interest or 
by running regressions separately for sub-
samples of the data. 

There are two notable interpretative 
issues with the panel models that, while 
not calling into question the experimental 
validity of the regression design, do raise 
questions about their external validity for 
processes such as global warming. One 
interpretive challenge is whether and how 
the effects of medium- or long-run changes 
in climatic variables will differ from the 
effects of short-run fluctuations. A second 
issue is that panel models, in focusing on 
idiosyncratic local variation, also neutral-
ize broader variation that may be of poten-
tial interest, including general equilibrium 
effects that spill across spatial borders or are 
global in nature, like effects on commodity 
prices. These issues will be discussed exten-
sively in section 4.1.

While this review will briefly consider 
cross-sectional econometric analyses as in 
(2), its primary purpose is to discuss the 
recent climate–economy literature that 
uses panel methodologies, as in (3). With 
this focus in mind, appendix table 1 catego-
rizes the panel studies cited in this review. 
In addition to summarizing which weather 
variables and outcome variables are investi-
gated, the table indicates each panel study’s 
design according to (i) functional forms for 
the weather variables, (ii) temporal resolu-
tion, (iii) spatial resolution, (iv) nonweather 
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regressors, (v) heterogeneity, and (vi) error 
structure. 

2.2	 What Data are used to Identify Weather 
Shocks?

This section outlines sources of weather 
data that have been used in econometric 
analyses. It highlights the relative advan-
tages and disadvantages of different types of 
weather data and then discusses aggregation 
approaches—i.e., how one can aggregate 
underlying weather measurements into vari-
ables that can be used for economic analysis. 

There are currently four principal types of 
weather data: ground station data, gridded 
data, satellite data, and reanalysis data. The 
most basic type of data are from ground sta-
tions, which typically directly observe tem-
perature, precipitation, and other weather 
variables such as wind speed and direction, 
humidity, and barometric pressure. Gridded 
data provide more complete coverage by 
interpolating station information over a grid. 
Satellite data use satellite-based readings 
to infer various weather variables. Finally, 
reanalysis data combine information from 
ground stations, satellites, weather balloons, 
and other inputs with a climate model to esti-
mate weather variables across a grid. The fol-
lowing review will focus on temperature and 
precipitation data.9 Interested readers should 
also consult Auffhammer et al. (forthcoming) 
for a related review and more in-depth cover-
age of these issues. Appendix table 2 lists the 
weather datasets used by each of the panel 
studies discussed in this review.

2.2.1	 Ground Stations

When a weather station is present on the 
ground in a given location, it will typically 

9 Other weather events—such as windstorms—involve 
measurement methods that are too complex to be dis-
cussed in this data overview. The interested reader is 
referred to Hsiang (2010).

provide a highly accurate measurement of 
that exact location’s climate.10 One repository 
for station data is the Global Historical 
Climatology Network (GHCN).11 For 
regions of the world with extensive ground 
station networks and good historical cover-
age, such as the United States, Canada, and 
Europe, as well as some developing coun-
tries, ground station data can be used even 
at a fairly disaggregated level of analysis. In 
contexts where ground station coverage is 
sparse, these data may still offer important 
advantages for locations near the station.

While ground station data in general 
provides highly reliable weather measures 
for the areas where stations are located, 
there are some issues researchers should be 
aware of. Most importantly, entry and exit 
of weather stations is common, especially 
in poorer countries, which face more severe 
constraints to their weather monitoring bud-
gets.12 Figure 1 shows how the number of 
stations in the Terrestrial Air Temperature 
database, which incorporates the GHCN and 
a variety of other sources, changes over time 
(Willmott, Matsuura, and Legates 2010). 
The decline in stations around 1990 resulted 
from the collapse of the Soviet Union, which 

10 There could still be measurement error, for example 
if strong winds prevent rainfall or snow from entering the 
mouth of a gauge (Goodison, Louie, and Yang 1998).

11 Note that, while the GHCN tries to include as 
much ground station data as possible, it is not necessar-
ily an exhaustive collection. Some countries consider their 
weather data to be proprietary, and there are extensive 
collections of historical data available for some regions 
that have yet to be digitized. The National Climatic Data 
Center (NCDC) is a useful online resource for download-
ing station data: http://www.ncdc.noaa.gov/data-access/
land-based-station-data/land-based-datasets. Station data 
can also be found through other organizations, such as 
NASA’s GISS.

12 An excellent animation of station entry and exit can be 
found on the Web page “Visualizations of Monthly Average 
Air Temperature Time Series (1900–2008)” (University of 
Delaware). http://climate.geog.udel.edu/~climate/html_
pages/Global2_Ts_2009/Global_t_ts_2009.html.
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funded many weather stations in Eastern 
Europe, Africa, and elsewhere.13 

While the exit and entry of stations in the 
GHCN data does not appear to substantially 
affect aggregate conclusions about overall 

13 More subtle changes can occur simply due to replace-
ment of the weather sensors or slight movements in the 
physical location of the weather station. The current (ver-
sion 3) GHCN monthly weather dataset incorporates an 
automatic procedure for detecting and correcting these 
changes by comparing a time series with its nearest neigh-
bors (see Menne and Williams 2009), although no such 
correction is made for daily data.

global increases in temperature (Rohde et al. 
2013), changes in ground stations can poten-
tially matter for estimations of (3), to the 
extent that they substantially increase mea-
surement error.14 For example, if a weather 
station exits from a warmer part of a county, 
temperature in that county may erroneously 

14 To address concerns about observable station entry 
and exit, Auffhammer and Kellogg (2011) and Schlenker 
and Roberts (2009) develop an approach that addresses 
station entry and attrition by estimating missing values in 
the station record, then using a balanced panel constructed 
from the “patched” station data.
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Figure 1. Changes Over Time in the Number of Ground Stations included in the 
Global Historical Climatology Network

Note: This figure plots the number of ground stations included each year in the GHCN dataset.

Source: Figure reproduced from http://climate.geog.udel.edu/~climate/html_pages/Global2_Ts_2009/air_
temp_stat_num.pdf.
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appear to decrease. If the error is uncorre-
lated with the dependent variable, this will 
be essentially classical measurement error, 
and there will be attenuation bias reduc-
ing the estimate of β in equation (3); if exit 
and entry of stations is correlated with the 
dependent variable of interest, then biases of 
unknown sign could result. In any case, cor-
relations between ground station entry and 
exit and dependent variables are testable, 
hence, may be assessed.15 If such correla-
tions do appear, the researcher can explicitly 
address the concern raised, for example by 
using satellite data as a robustness check.

2.2.2	 Gridded Data

One important challenge posed by ground 
station data is their incomplete coverage, 
particularly in poor countries or areas with 
sparse population density. As a result, cli-
mate scientists have developed a variety of 
gridded data products, which interpolate 
among the ground stations. The result is 
a balanced panel of weather data for every 
point on a grid. Since gridded data offer a 
balanced panel, they are frequently used by 
economists in constructing weather data.

The most frequently used gridded data-
sets in the studies reviewed here are the 
global temperature and precipitation data 
produced by the Climatic Research Unit 
(CRU) at the University of East Anglia and 
by Willmott, Matsuura, and Legates (2010) 
at the University of Delaware (UDEL). Both 
have a spatial resolution of 0.5 × 0.5 degrees, 
but the station records and extrapolation 
algorithms used differ somewhat. CRU con-
tains data on monthly minimum and maxi-
mum temperature, while the Delaware data 
provides the monthly average temperature. 
A more recently created gridded dataset for 
temperature is the NOAA GHCN_CAMS 

15 See, for example, Dell, Jones, and Olken (2012), 
appendix table 15, which examines ground station 
coverage.

Land Temperature Analysis, and the Global 
Precipitation Climatology Center pro-
vides gridded precipitation data. There are 
also gridded monthly datasets for specific 
regions, such as the Parameter–Elevation 
Regressions on Independent Slopes Model 
(PRISM) dataset for the United States (Daly, 
Neilson, and Phillips 1994).16

In general, gridded datasets are a good 
source of temperature data for economic 
analysis in that they provide a balanced 
panel that potentially adjusts for issues like 
missing station data, elevation, and the 
urban heat island bias in a reasonable way. 
Nevertheless, there are several issues that 
one should be aware of when using gridded 
data. First, different interpolation schemes 
can produce different estimates, particularly 
in short time periods and particularly for 
precipitation. Precipitation has a far greater 
spatial variation than temperature, especially 
in rugged areas, and thus is more difficult 
to interpolate.17 This issue is important for 
middle-income and developing countries, 
where underlying ground station data are 
sparse.18 When using gridded data prod-
ucts in these contexts, it is useful to check 

16 Schlenker, Hanemann, and Fisher (2006) used 
PRISM and daily station data to develop an innova-
tive dataset of daily gridded weather data for the United 
States, which has subsequently been used in a variety of 
applications.

17 Interested readers are referred to Rudolf and 
Schneider (2005), Rudolf et al. (1994), and World 
Meterological Organization (1985) for a more detailed 
discussion.

18 Auffhammer et al. (forthcoming) document how 
country average measures of temperature and precipita-
tion compare across these datasets. For average long-run 
temperature and precipitation between 1960 and 1999, 
the correlation for temperature is 0.998 and for precipita-
tion it is 0.985. When considering annual deviations from 
mean, these correlations fall to 0.92 for temperature and 
0.70 for precipitation. The correlation for precipitation is 
lower because precipitation is less smooth across space, 
which makes the extrapolation algorithm more critical. 
Auffhammer et al. note that there are significant regional 
differences—the precipitation deviation correlation is 0.96 
for the United States and thus presumably much lower for 
many middle-income and developing countries.
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for robustness across datasets, particularly if 
precipitation is the main variable of interest.

A second challenge concerns cases where 
there are more grid cells than underlying sta-
tions. This issue would not necessarily com-
promise the analysis if the gridded data are 
aggregated to large enough units (e.g., coun-
tries), but it can pose challenges for inference 
regarding smaller geographic units, particu-
larly in areas with sparse coverage, such as 
Africa. Users of the data in areas with sparse 
coverage should be aware of these issues, 
particularly when using fine geographic units 
and particularly for precipitation, which 
is much harder to measure accurately and 
much more variable than temperature. In 
addition to attenuation bias, it is also impor-
tant to account for the underlying spatial cor-
relation resulting from both the weather and 
the extrapolation algorithms.

2.2.3	 Satellite Measurements

The third source for weather data is satel-
lite measurements. Satellite datasets, begin-
ning in 1979, include those produced by the 
University of Alabama Huntsville (UAH) and 
Remote Sensing Systems (RSS). These data 
products are available at a 2.5 × 2.5 degree 
resolution, and hence are considerably more 
aggregated than the datasets discussed 
above. If data are only required since the 
early 2000s, newer satellite sensors allow sig-
nificantly higher resolution to be achieved.19

While satellite data can provide important 
weather information for areas with a limited 
ground network, satellite data are not nec-
essarily a panacea. Satellites were launched 
relatively recently, so their data does not 
extend back nearly as far historically as 

19 For example, NASA’s TRMM Multi-satellite 
Precipitation Analysis (TMPA), available at 0.25 degree 
resolution, GPCP 1DD precipitation analysis available 
at 1 degree daily resolution, NOAA’s CMORPH data at 
0.072 degree resolution for thirty-minute time steps, and 
MODIS data on land surface temperature and emissivity 
available at 1000m resolution.

other datasets. Furthermore, an individual 
ground station is more accurate than the 
satellite data for that particular location, 
in part because satellites do not directly 
measure temperature or precipitation, but 
rather make inferences from electromag-
netic reflectivity in various wavelength 
bands. Lastly, a satellite-based series is not 
drawn from a single satellite, but rather 
from a series of satellites. Sensors have 
changed subtly over the years and, within a 
particular satellite, corrections are needed 
due to subtle changes in the satellite’s orbit 
over time and other factors.20

2.2.4	 Reanalysis Data

The final type of data, reanalysis data, 
combines information from ground sta-
tions, satellites, and other sources with a 
climate model to create gridded weather 
data products. The key difference between 
reanalysis and gridded data is that, rather 
than use a statistical procedure to interpo-
late between observations, a climate model 
is used. Prominent examples of reanalysis 
products used in the panel literature are 
those produced by the National Center for 
Environmental Prediction (NCEP) (Kistler 
et al. 2001), the European Center for 
Medium-Range Weather Forecasting, and 
Ngo-Duc, Polcher, and Laval (2005). While 
reanalysis may offer some improvements in 
regions with sparse data, it is not obviously 
better than interpolated gridded data, since 
the climate models it uses (like any model) 
are considerable simplifications of the cli-
mate reality. 

Auffhammer et al. (forthcoming) pro-
vide correlations between CRU and UDEL 
gridded data and NCEP reanalysis data. 
Correlations are generally high for tempera-
ture. Correlations for precipitation, however, 

20 For more information on these datasets, see the 
Third Assessment Report of the IPCC (Houghton et al. 
2001) and Karl et al. (2006).
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fall dramatically when examining deviations 
from mean, especially in poor countries 
where the underlying ground station data is 
sparse. Readers should consult Auffhammer 
et al. (forthcoming) for a more detailed dis-
cussion. For analysis at high spatial resolu-
tions, particularly when underlying weather 
stations are sparse, the terrain is rugged, or 
precipitation is the main variable of interest, 
consulting multiple datasets that have been 
constructed using different approaches pro-
vides a useful robustness check. Alternatively, 
when interested in precipitation in areas 
with sparse ground station coverage, a more 
promising approach may be to focus on geo-
graphic areas near ground stations, rather 
than trying to interpolate.

2.2.5	 Aggregating Weather Data into 
	 Variables for Analysis

Once one has an underlying source of 
weather data, the data typically need to be 
aggregated to an economically meaningful 
level. Aggregation may be motivated by the 
substantive question, such as an interest in 
country-level effects, or because economic 
data is not available at the same resolution 
as the weather data. Note that aggregating to 
larger spatial areas may also be advantageous 
in areas with sparse ground stations, where 
gridded data may otherwise give a false sense 
of precision or spatial independence.

One approach is to aggregate spatially; 
that is, to overlay administrative or other 
boundaries with the gridded weather dataset 
and take a simple area-weighted average of 
weather variables within the administrative 
unit, which can be done easily using GIS soft-
ware. However, this approach will lead large 
areas with little economic activity and sparse 
populations (such as deserts, rain forests, or 
the Arctic) to dominate the weather aver-
ages of large spatial units such as the United 
States, Russia, and Brazil. A second approach 
is, therefore, to aggregate using a fixed set 
of population weights, so that the relevant 

concept is the average weather experienced 
by a person in the administrative area, not 
the average weather experienced by a place. 
The difference can matter, particularly for 
large and diverse geographies: in the year 
2000, the average area-weighted mean tem-
perature for the United States was 8.3ºC, 
whereas the average population-weighted 
mean temperature for the United States 
was 13.1ºC, the difference being driven by 
the many cold, sparsely populated areas in 
Alaska and the north central United States. 
Which method to use depends on the con-
text: for analyzing agriculture, area weights 
may be preferable; for analyzing the impact 
on labor force productivity, a fixed set of 
population weights may be preferable.21 

2.2.6	 Climate Projection Data

Finally, in order to assess the potential 
impacts of future climate change, some stud-
ies have combined weather impacts esti-
mated from historical data with data that 
predict future climate change. Estimates 
of future climate change rely on two major 
components: a time path of GHG emissions 
and a General Circulation Model (GCM), 
which is a mathematical model simulating 
the Earth’s climate system. There are many 
such estimates; more detailed information 
about these models can be found in the 
IPCC Special Report on Emissions Scenarios 
(Nakicenovic et al. 2000) and more informa-
tion about their use in economics can be 
found in Auffhammer et al. (forthcoming) 
and Burke et al. (2011). 

3.  The New Weather–Economy Literature

This section provides an overview of the 
relationship between weather fluctuations 

21 Note that aggregation can also create tension with the 
capacity to estimate nonlinear effects, since aggregation 
can smooth out nonlinearities across space or over time 
(see further discussion in section 2.1.2).
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and various outcomes, including aggre-
gate output, agriculture, labor productivity, 
industrial output, health, energy, political 
stability, and conflict. It focuses on studies 
employing the panel methodology outlined 
in section 2. We also briefly summarize some 
studies using alternative methodologies in 
order to provide insight into how the panel 
estimates relate to the broader climate–
economy literature. 

Overall, the studies discussed in this sec-
tion document that temperature, precipi-
tation, and extreme weather events exert 
economically meaningful and statistically 
significant influences on a variety of eco-
nomic outcomes. These impacts illustrate 
the multifaceted nature of the weather–
economy relationship, with numerous appli-
cations for understanding historical, present, 
and future economic outcomes and possible 
policy responses. For example, the effects of 
weather variables on mortality rates, labor 
productivity, energy demand, and agricul-
tural output can inform investments and 
policy design around public health, air-con-
ditioning, energy infrastructure, and agricul-
tural technologies. Moreover, these studies 
can help inform classic issues of economic 
development, especially the role of geo-
graphic features in influencing development 
paths. Finally, these analyses may inform 
estimates of the economic costs of future 
climatic change. The possibility of future 
climatic change has been a primary motive 
for the recent, rapid growth of this literature; 
these applications are discussed in detail in 
section 4.

3.1	 Aggregate Output

3.1.1	 Prior Literature

Although this review focuses on panel 
estimates based on weather variation, it 
is important to have a basic understand-
ing of the previous literature and debates 
that inspired these more recent studies. A 

negative correlation between temperature 
and per capita income has been noted at 
least since Ibn Khaldun’s fourteenth-century 
Muqaddimah (Gates 1967). Claims that high 
temperatures cause low income appear there 
and continue as centerpieces of prominent 
subsequent works, including Montesquieu’s 
The Spirit of Laws (1748) and Huntington’s 
Civilization and Climate (1915), both of 
which hinge on the idea that high tempera-
tures reduce labor productivity. Numerous 
contemporary historical analyses relate eco-
nomic success to temperate climates through 
advantageous agricultural technologies (e.g., 
Jones 1981; Crosby 1986; Diamond 1997). 
Modern empirical work has tested the tem-
perature–income relationship, initially using 
cross-sectional evidence, and more recently 
using the panel models featured in this 
review. 

Cross-country empirical analyses show a 
strong negative relationship between hot cli-
mates and income per capita. For example, 
Gallup, Sachs, and Mellinger (1999) show 
that countries located in the tropics (i.e., 
between the Tropic of Cancer and the Tropic 
of Capricorn) are 50 percent poorer per cap-
ita in 1950 and grow 0.9 percentage points 
more slowly per year between 1965 and 
1990. These findings have been further asso-
ciated empirically with malarial prevalence 
and unproductive agricultural technologies 
(Sachs 2001; Sachs 2003), as well as the fre-
quency of frost days that may have beneficial 
agricultural and/or health effects (Masters 
and McMillan 2001). Using temperature 
directly, Dell, Jones, and Olken (2009) show 
in the world sample in the year 2000 that 
countries are, on average, 8.5 percent poorer 
per capita per 1°C warmer.

Other cross-sectional studies examine cli-
mate variation within countries, harnessing 
climatic differences that are not entangled 
with cross-country differences and exist 
within more consistent environments, insti-
tutionally or otherwise. Nordhaus (2006) 
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uses a global database of economic activity 
with a resolution of 1° latitude by 1° longi-
tude. Controlling for country fixed effects, 
this study finds that 20 percent of the income 
differences between Africa and the world’s 
rich industrial regions can be explained by 
geographic variables, which include temper-
ature and precipitation as well as elevation, 
soil quality, and distance from the coast. Dell, 
Jones, and Olken (2009) use municipal-level 
data for twelve countries in the Americas and 
find that a statistically significant negative 
relationship between average temperature 
and income persists within countries—and 
even within states (provinces) within coun-
tries. The drop in per capita income per 
1°C falls from 8.5 percent (across countries) 
to 1–2 percent (within countries or within 
states), and they find little or no impact of 
average precipitation levels either across or 
within countries. Overall, geographic varia-
tion (temperature, precipitation, elevation, 
slope and distance to coast) explains a remark-
able 61 percent of the variation in incomes at 
the municipal level across the 7,684 munici-
palities studied in these 12 countries. 

In general, the cross-sectional evidence 
finds a strong, negative relationship between 
temperature and economic activity, with less 
clear evidence on precipitation. Of course, 
as discussed in section 2.1.1, cross-sectional 
estimates may conflate climate with other 
long-run characteristics of an economy, such 
as its institutions. To more directly isolate 
contemporaneous impacts of temperature, 
we turn to panel estimates. 

3.1.2	 Panel-Based Estimates

Panel studies exploit the exogeneity of 
cross-time weather variation, allowing for 
causative identification. We begin by exam-
ining those studies that focus on average 
weather across a year (e.g., temperature 
and precipitation), and then consider those 
studies that examine more extreme weather 
events, such as droughts and windstorms.

Studies on Temperature and Precipitation

In a world sample from 1950 to 2003, Dell, 
Jones, and Olken (2012) examine how annual 
variation in temperature and precipitation 
affects per capita income. They show that 
being 1°C warmer in a given year reduces 
per capita income by 1.4 percent, but only 
in poor countries. Moreover, estimating a 
model with lags of temperature, they find 
that this large effect is not reversed once 
the temperature shock is over, suggesting 
that temperature is affecting growth rates, 
not just income levels.22 Growth effects, 
which compound over time, have potentially 
first-order consequences for the scale of eco-
nomic damages over the longer run, greatly 
exceeding level effects on income, and are 
thus an important area for further modeling 
and research (see section 4.2). Estimating 
long-difference models (see section 4.1.2), 
Dell et al. further find that over 10–15 year 
time scales, temperature shocks have similar 
effects to annual shocks, although statistical 
precision decreases. Variation in mean pre-
cipitation levels is not found to affect the path 
of per capita income. Temperature shocks 
appear to have little effect in rich countries, 
although estimates for rich countries are not 
statistically precise. 

Hsiang (2010) shows similar findings 
using annual variation in a sample of twenty-
eight Caribbean-basin countries over the  
1970–2006 period. National output falls 2.5 
percent per 1°C warming. This study further 
examines output effects by time of year and 
shows that positive temperature shocks have 

22 Bansal and Ochoa (2011) examine the empirical rela-
tionship between a country’s economic growth and world-
wide average temperature shocks, as opposed to a country’s 
particular temperature shock. They find that, on average, a 
1ºC global temperature increase reduces growth by about 
0.9 percentage points, with effects largest for countries 
located near the equator. The global time variation in tem-
perature thus appears to produce broadly similar results to 
Dell, Jones, and Olken (2012).



Journal of Economic Literature, Vol. LII (September 2014)754

negative effects on income only when they 
occur during the hottest season. Mean rain-
fall variation is controlled for in this study, 
but results are not reported. 

Barrios, Bertinelli, and Strobl (2010) focus 
on sub-Saharan Africa over the 1960–1990 
period, using a subsample of twenty-two 
African and thirty-eight non-African coun-
tries and weather variation occurring across 
five-year periods. The authors find that 
higher rainfall is associated with faster growth 
in these sub-Saharan African countries but 
not elsewhere. They estimate that worsening 
rainfall conditions in Africa since the 1960s 
can explain 15–40 percent of the per capita 
income gap between sub-Saharan Africa and 
the rest of the developing world by the year 
2000. Unlike the majority of studies, which 
consider the effect of precipitation and 
temperature levels, this study uses weather 
anomalies (changes from country means, 
normalized by country standard deviations). 
Other studies, like Miguel, Satyanath, and 
Sergenti (2004) and Dell, Jones, and Olken 
(2012) find that anomalies-based analyses 
tend to provide broadly similar results to lev-
els-based analyses when predicting national 
income growth, but with weaker statistical 
precision.

In addition to studies focused on income 
effects per se, other studies use weather 
variation as instruments for national income, 
harnessing this source of income variation 
to test theories about how income affects 
other outcomes, such as conflict or politi-
cal change. Leaving the ultimate objective 
of these studies aside for the moment (we 
will return to them below), the first-stage 
regressions provide additional information 
on the income effects of weather variation. 
Miguel, Satyanath, and Sergenti (2004), 
seeking to explain civil conflict, study forty-
one African countries from 1981–1999 and 
show that annual per capita income growth 
is positively predicted by current and lagged 
rainfall growth, while not controlling for 

temperature.23 However, this relationship 
appears weaker after 2000 (Miguel and 
Satyanath 2011). Bruckner and Ciccone 
(2011), in their study of democratization, 
also find that negative rainfall shocks lower 
income in sub-Saharan Africa. Finally, Burke 
and Leigh (2010) use precipitation and 
temperature as instruments for per capita 
income growth to explain democratization, 
studying a large sample with 121 countries 
over the 1963–2001 period. In their analyses, 
temperature is a strong predictor of income, 
while precipitation is weak.

Studies of Extreme Weather Events 

In addition to studies of average annual 
precipitation, a number of studies examine 
extreme weather events, such as storms and 
severe droughts.

Several studies examine windstorms by 
constructing meteorological databases that 
track storm paths. For example, Hsiang and 
Narita (2012) use a detailed global wind-
storm dataset and investigate the effect 
of windstorms across 233 countries from 
1950–2008. They find that higher wind 
speeds present substantially higher eco-
nomic losses. Hsiang’s (2010) study of 
twenty-eight Caribbean nations shows no 
average effect on income from cyclones, 
though there are significant negative impacts 
in some sectors (such as agriculture, tourism, 
retail, and mining), but positive impacts in 
construction (presumably due to its role in 
reconstruction). 

Hsiang and Jina (2013) also find evidence 
for growth effects from windstorms, rather 
than level effects. Using annual fluctuations 
in windstorms, they find that the effects of 
cyclones reduce growth rates, with effects 
that cumulate over time. On net, they esti-
mate that the annual growth rate of world 

23 Miguel and Satyanath (2011) further show in the 
same sample that current and lagged rainfall levels (as 
opposed to growth) predict income growth.
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GDP declined by 1.3 percentage points due 
to cyclones during the period 1970–2008. 

Looking within countries, Deryugina 
(2011) examines U.S. counties and finds no 
effect on county earnings ten years after a 
hurricane, a result supported by large gov-
ernment transfers into the affected coun-
ties after these events (suggesting that there 
may be a substantial loss in locally produced 
income, with consumption effects damp-
ened by the transfer). Anttila-Hughes and 
Hsiang (2011) study a panel of provinces in 
the Philippines and show that local exposure 
to a typhoon reduces household incomes in 
the province on average by 6.7 percent.

Additional studies examine “economic 
losses” as the dependent variable, rather 
than looking at the income path itself. To 
measure such losses in cross-country studies, 
authors use the Emergency Events Database 
(EM-DAT), which includes fatalities and 
direct economic loss estimates that countries 
self-report. Yang (2008) finds that stronger 
storms, as measured from meteorological data 
from 1970–2002, lead to higher economic 
losses (damage from the EM-DAT database as 
a fraction of GDP) and greater deaths and inju-
ries, as well as larger international aid flows in 
response.24 Although not panel studies in the 
sense of equation (3), studies focused on the 

24 A number of studies also use the EM-DAT dataset 
to construct the weather events and then use this data to 
study the impacts of droughts and windstorms on national 
income (Raddatz 2009; Loayza et al. 2012; Fomby, Ikeda, 
and Loayza 2013). Given that the inclusion criteria for the 
events dataset is that ten or more people were killed, one 
hundred or more people were affected, an official state of 
emergency was declared, or a call for international assis-
tance was made, a challenge with this approach is that it 
selects, to some extent, on events that have notable eco-
nomic impact. This approach may then create a bias in the 
direction of finding larger effects and thus these results 
may not generalize to the average windstorm, drought, etc. 
For windstorms, meteorological-based methods can help 
deal with this concern. A promising direction for future 
research on droughts would construct a drought definition 
based solely on exogenous environmental variables such as 
precipitation, temperature, evapotranspiration, and other 
exogenous measures of soil moisture balance.

United States also find substantially increased 
economic losses with increasing storm sever-
ity (Nordhaus 2010b; Mendelsohn, Emanuel, 
and Chonabayashi 2011). For example, 
Nordhaus (2010b) estimates the relation-
ship between wind speed and damages, find-
ing that annual hurricane costs in the United 
States from 1950–2008 averaged 0.07 percent 
of GDP, but with high variability; Hurricane 
Katrina made 2005 an outlier, with damages 
nearing 1 percent of GDP.

Integrating across the weather stud-
ies above, it appears that an unusually hot 
year is associated with substantially lower 
income growth in poor countries. This find-
ing is consistent with the strong negative 
cross-sectional relationship between tem-
perature and per capita income. The studies 
also show that unusually low precipitation has 
had negative impacts on income per capita 
in Africa, with less clear effects elsewhere. 
Studies find large effects of windstorms on 
local income but generally smaller effects 
on national income, although damages from 
windstorms are highly convex in wind speed. 

3.2	 Agriculture

Given the natural relationship between 
the environment and agricultural produc-
tivity—temperature and water are direct 
inputs into the biological processes of plant 
growth—agriculture has been the focus of 
much of the existing research on climate 
impacts. It is also the area where many of the 
core methodological contributions occurred.

3.2.1	 Experimental and Cross-Sectional 
	 Estimates

The early debate over the likely impacts of 
climate on agriculture was characterized by 
two approaches. One approach, frequently 
denoted the production function approach, 
specifies a relationship between climate and 
agricultural output, and uses this estimate 
to simulate the impacts of changing climate 
(Adams 1989; Kaiser et al. 1993; Adams et al. 



Journal of Economic Literature, Vol. LII (September 2014)756

1995).25 While the production function is 
often calibrated through the use of experi-
mental data, it has been criticized for not 
realistically modeling real farmer behavior in 
real settings. For example, many studies do 
not allow farmers to adopt new crops when 
the temperature input into the production 
function changes, nor do they allow farmers 
to switch their cultivated land to livestock or 
nonfarm use. 

To address these concerns, Mendelsohn, 
Nordhaus, and Shaw (1994) developed a 
second approach, which they called the 
Ricardian approach, that instead used 
cross-sectional regressions with land values 
to recover the net impacts of climate on agri-
cultural productivity. By analyzing farm land 
prices as a function of climate and a host of 
other characteristics, they estimated that the 
impacts of climate change would be much 
smaller than those estimated by the produc-
tion function approach and might even be 
positive. 

While Mendelsohn, Nordhaus, and Shaw 
(1994) remains a major methodological con-
tribution, it has been subject to critiques by 
Schlenker, Hanemann, and Fisher (2005) 
and others. Schlenker, Hanemann, and 
Fisher, for example, show that it is criti-
cal in the hedonic approach to account for 
irrigation. In particular, in estimating a 
cross-sectional relationship like equation (2) 
for irrigated areas, which transport water 
from other locations, the localized climate 
is not the key determinant of production. 
Instead, water supply is a more complicated 
function of precipitation in the overall sup-
ply area for the irrigation system, and since 
this is not measured, it biases the coefficients 

25 See Adams et al. (1995); Adams et al. (1998); Kaiser et 
al. (1993); and Liverman and O’Brien (1991). Rosenzweig 
and Iglesias (1994) provides a compilation of various other 
studies, and the IPCC Second Assessment Report (Bruce, 
Lee, and Haites 1996) provides a discussion. 

in (2).26 When Schlenker, Hanemann, and 
Fisher estimate the hedonic model for dry-
land counties alone, they find robustly nega-
tive estimates, similar to those from earlier 
estimates.

3.2.2	 Panel Estimates

Deschênes and Greenstone (2007), in 
an important methodological contribu-
tion, argue that the cross-sectional hedonic 
approach could be biased by unobserved 
determinants of agricultural productivity 
that are correlated with climate. Instead, 
Deschênes and Greenstone argued that one 
could exploit year-to-year within-county 
variation in temperature and precipitation 
to estimate whether agricultural profits are 
affected when the year is hotter or wetter 
than normal, as in equation (3). They find no 
statistically significant relationship between 
weather and U.S. agricultural profits, corn 
yields, or soybean yields, and further argue 
that if short-run fluctuations have no impact, 
then in the long run when adaptation is pos-
sible, climate change will plausibly have little 
impact or could even be beneficial. These 
findings have subsequently been questioned 
by Fisher et al. (2012), who point to data 
errors and argue that, when these are cor-
rected, the fluctuations approach indeed 
finds a negative impact of climate change on 
U.S. agriculture, which is further consistent 
with studies examining nonlinear effects of 
extremely high temperatures on U.S. agri-
culture (see below). Nevertheless, the meth-
odological contribution remains extremely 
important.27 

Impacts on developing countries estimated 
using panel models such as (3) typically find 

26 In areas that depend on snowmelt, the extent of snow 
and timing of snowmelt may create further complexities 
when attempting to link local water availability to local 
climate.

27 Deschênes and Greenstone (2012), in their reply to 
Fisher et al. (2012), summarize the implied estimates once 
the errors are corrected.
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consistently negative impacts of bad weather 
shocks on agricultural output. Schlenker 
and Lobell (2010) use weather fluctuations 
to estimate a model of yield response in 
sub-Saharan Africa, finding that higher tem-
peratures tend to reduce yields. Similarly, 
Guiteras (2009) estimates that higher tem-
peratures in a given year reduce agricultural 
output in India, and Feng, Krueger, and 
Oppenheimer (2010) document that high 
temperatures reduce agricultural output 
at the state level in Mexico. Using a panel 
dataset that provides detailed data on rice 
farms in a variety of Asian countries, Welch 
et al. (2010) estimate that higher minimum 
temperature reduces yields, whereas higher 
maximum temperature increases yields. On 
net, their estimates suggest that Asian rice 
yields will decline under a moderate warm-
ing scenario. Levine and Yang (2006) show, 
using a panel of Indonesian districts, that 
more rainfall leads to more rice production. 

A number of additional studies have 
established negative effects of low rainfall 
on agricultural output or rural income in 
developing countries as a precursor to test-
ing other hypotheses. Examples include 
Paxson (1992), which uses negative rainfall 
shocks to test for the permanent income 
hypothesis and shows impacts of rainfall on 
rural incomes; Jayachandran (2006), which 
focuses on the determinants of labor sup-
ply elasticities and shows that more rainfall 
in Indian districts leads to higher crop yields 
and higher agricultural wages; Yang and Choi 
(2007), which uses rainfall shocks to test for 
international remittances as insurance and 
shows impacts of rainfall on rural incomes 
in the Philippines; and Hidalgo et al. (2010), 
who, in their study of land invasions, esti-
mate that rainfall deviations in Brazil lower 
agricultural incomes, with a one standard 
deviation change in rainfall reducing income 
by around 4 percent. 

The recent literature has also highlighted 
several issues that are useful for evaluating 

potential future impacts of global climate 
change, a topic we return to in much more 
detail in section 4. One issue is the importance 
of accounting flexibly for nonlinearities. For 
example, Schlenker and Roberts (2009) exam-
ine a panel model of U.S. agricultural yields 
using daily temperature data. Their approach 
allows flexible estimation of nonlinear rela-
tionships between yields and temperature, 
using very fine (1 or 3ºC) temperature bins, 
polynomials, or piecewise splines. They find 
a threshold in output effects starting between 
29–32ºC, depending on the crop, with tem-
perature being moderately beneficial at tem-
peratures lower than the threshold and sharply 
harmful above the threshold. Understanding 
nonlinearities becomes important when con-
sidering the impact of global climate change 
because a right-shift in the distribution of 
average temperature causes a disproportion-
ate increase in the number of very hot days 
(see section 4.1.2 below for more discussion 
of this issue). Globally, Lobell, Schlenker, 
and Costa-Roberts (2011) use a fixed-effects 
model as in (3), augmented with quadratic 
terms to account for nonlinearities in weather 
and find similar nonlinear effects of higher 
temperatures.

Another key issue in using estimates from 
short-run weather fluctuations to shed light 
on the long-run impacts of climate change 
is assessing how much adaptation is likely 
to occur. (We discuss these issues in more 
detail in section 4.1.2.) On the one hand, 
economic historians have pointed to the abil-
ity of agricultural producers to successfully 
adapt to new climates in the past. For exam-
ple, as North American settlement advanced 
northwards and westwards in the nineteenth 
century, wheat started to be farmed in areas 
once thought too dry or too cold to farm, 
with the innovation of new grain varieties 
(Olmstead and Rhode 2011). The possibil-
ity of adaptation was a major argument for 
the approach of Mendelsohn, Nordhaus, 
and Shaw (1994), since presumably, changes 
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in land values would incorporate future 
adaptation effects. However, in the con-
text of the American Dust Bowl, Hornbeck 
(2012) finds limited evidence for adaptation 
through changes in land use. More recently, 
Burke and Emerick (2013) also find limited 
evidence for adaptation in U.S. agriculture: 
long-difference estimates of changes in out-
put on changes in temperature (as in equa-
tion (8) below), estimated for the period 
between 1980 and 2000, appear statistically 
similar to the impact of annual temperature 
fluctuations. 

Fishman (2011) examines the potential 
of irrigation as a mitigating mechanism for 
climate change in the Indian context. To do 
so, he runs a panel specification interacting 
highly detailed weather variables with mea-
sures of access to irrigation, which change 
over time in his sample. Overall, he finds 
that the distribution of rainfall matters as 
well as the total amount of rainfall—i.e., 
conditional on the total amount of rain, 
the number of rainless days reduces yields. 
Irrigation substantially mutes this effect, 
though it mitigates little of the impact of 
higher temperatures.

 Agricultural producers may also respond 
to a negative weather shock by moving else-
where. Munshi (2003) documents that when 
rainfall is lower in a given Mexican commu-
nity, it sends more migrants to the United 
States over the coming years. Feng, Krueger, 
and Oppenheimer (2010) use temperature 
and precipitation variation in panel data 
for Mexican states as instruments for crop 
yields, and then look at the implied relation-
ship between crop yields and emigration to 
the United States. They find that lower crop 
yields (predicted from temperature and pre-
cipitation shocks) increase emigration, with 
the reduced-form effects suggesting that the 
effects are predominantly driven by tem-
perature shocks. Gray and Mueller (2012) 
study internal migration in Bangladesh from 
1994–2010. They show modest migration 

responses to flooding, but large migration 
due to rain-related crop failure. Examining 
internal migration in the United States, 
Hornbeck (2012) finds substantial migration 
out of areas affected by the Dust Bowl in the 
1930s. More recently, Feng, Oppenheimer, 
and Schlenker (2012) examine the 1970–
2009 period and find outmigration from corn 
and soybean producing areas where yields 
have fallen due to changes in weather pat-
terns, particularly for young adults.28 

The scientific literature has examined 
forestry changes, which may be particularly 
important, to the extent that forests play 
an important role in the global carbon bal-
ance and preserve biodiversity. These stud-
ies often use longitudinal data, but do not 
always exploit panel regressions to estimate 
the effects of temperature or precipitation 
shocks within spatial areas. For example, 
longitudinal data has established substantial 
increases in tree mortality throughout the 
western United States, with suggested links 
to warming and precipitation declines (van 
Mantgem et al. 2009). Longitudinal data 
has also shown that tree deaths are strongly 
related to low rainfall levels on the Iberian 
Peninsula region (Carnicer et al. 2011), 
although the variation used for estimation 
is across both space and time. Related work 
has shown experimentally that warming 
weakens trees’ drought resistance (Adams et 
al. 2009).29 Westerling et al. (2006) use panel 

28 While migration appears to be an important adap-
tation channel, it can potentially pose a complication for 
interpreting panel-based estimates. In many datasets, we 
know where people are at the time of the survey, but not 
necessarily where they were previously, so endogenous 
migration may have influenced the measured economic 
outcomes (such as average health or GDP). To the extent 
that one is interested in effects allowing for such migration, 
the measured response will still be appropriate. Otherwise, 
the use of data that incorporates place of birth, such as cen-
sus data, can be helpful since one can analyze the data at 
the place of birth level, which removes the problems of 
endogenous migration.

29 Research relating forest loss to drought and warming 
is reviewed by Allen et al. (2010).
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data for the western United States to show 
that wildfire increases within subregions are 
closely related to shifts in local temperature 
and precipitation, particularly as they relate 
to earlier springs, hence longer and drier 
summer seasons. 

In summary, panel estimates tend to pre-
dict economically and statistically significant 
negative impacts of hotter temperatures 
on agricultural output. These impacts are 
pronounced when temperatures increase 
beyond a crop-specific threshold. They 
appear in rich countries such as the United 
States—particularly in the rain-fed eastern 
part of the country—and are also important 
in poor countries, where agriculture is a large 
share of aggregate output. Evidence also sug-
gests that rainfall and droughts impact agri-
cultural output, although these effects can be 
complicated to disentangle and may be miti-
gated in the presence of large-scale irrigation 
systems. The negative effects of low rainfall 
on agriculture in developing counties appear 
consistently in those countries, perhaps due 
to lower levels of irrigation. Outmigration 
appears to be a common response to declines 
in local agricultural productivity.

3.3	 Labor Productivity

The idea that temperature affects labor 
productivity and cognitive functioning 
dates back at least to the Ancient Greeks.30 
Montesquieu placed labor-productivity 
effects of temperature at the center of 
his reasoning about development in The 
Spirit of Laws (1748), and the geographer 
Ellsworth Huntington in Civilization and 
Climate (1915) not only argued that climate 
was central to culture, but also presented 
early empirical evidence showing a link 
between labor productivity and temperature 

30  The Greeks and subsequent societies believed that 
the body was composed of four elements (humors) and 
that temperature was a frequent reason for an imbalance 
in the humors.

in micro data. Specifically, he documented 
daily worker productivity for a number of 
types of workers (e.g., “operatives in cot-
ton factories” in South Carolina, and “cigar 
makers” in Florida), and showed that pro-
ductivity was highest in spring and fall, when 
temperatures are moderate, and lowest in 
summer and winter, when temperatures are 
more extreme. 

Modern lab experiments have investi-
gated the impact of temperature on pro-
ductivity. Subjects are typically randomly 
assigned to rooms of varying temperatures 
and asked to perform cognitive and physical 
tasks. Examples of tasks shown to respond 
adversely to hot temperatures in laboratory 
settings include estimation of time, vigilance, 
and higher cognitive functions, such as men-
tal arithmetic and simulated flight (Grether 
1973; Seppanen, Fisk, and Faulkner 2003). 
Surveying multiple experimental studies, 
for example, Seppanen, Fisk and Faulkner 
(2003) conclude that there is a productivity 
loss in various cognitive tasks of about 2 per-
cent per 1ºC for temperatures over 25ºC. 

Observational and experimental studies 
also show a strong relationship between tem-
perature and the productivity of factory, call 
center, and office workers, as well as students. 
Niemelä et al. (2002) examine the productiv-
ity of call center workers in different ambi-
ent temperatures, which vary both due to 
external weather and due to changes in cool-
ing technology. The authors find that, within 
the range of temperatures from 22–29ºC, 
each additional ºC is associated with a reduc-
tion of about 1.8 percent in labor produc-
tivity. Other studies of call center workers 
also find a link between indoor climate and 
performance, with high temperatures (e.g., 
above 24–25ºC) generally associated with 
worse performance. They also note that the 
relationship is complex and find that other 
aspects (e.g., humidity, amount of outdoor 
air, carbon dioxide levels) have complex inter-
actions with temperature within the normal 
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temperature zone (see, e.g., Federspiel et al. 
2004; Tham 2004). A meta-analysis of these 
studies concludes that increasing temperature 
from 23 to 30ºC reduces productivity by about 
9 percent (Seppanen, Fisk, and Lei 2006). 
For students, Wargocki and Wyon (2007) 
run an experiment with children between ten 
and twelve years old in classroom settings. 
Classroom temperatures were randomly var-
ied each week between warm (around 25ºC) 
and normal (around 20–21ºC) using a cross-
over design, and the authors found improve-
ments on a variety of numerical tasks in the 
cooler temperatures. Lee, Gino, and Staats 
(2012) show using bank workers in Japan that 
productivity appears highest in days where 
outside weather is less attractive for leisure 
activities, arguing that nice outside weather is 
a distraction. 

For the economy at large, Graff Zivin and 
Neidell (forthcoming) show, using a panel, 
that weather fluctuations lead to substantial 
changes in labor supply. Looking across the 
United States, Graff Zivin and Neidell use a 
panel-data specification similar to equation 
(3), examining the link between shocks to 
temperature and labor supply as measured 
by time-use surveys. They find that hot days 
reduce labor supply in industries exposed to 
outdoor temperature, such as agriculture, 
forestry, mining, construction, and utilities, 
particularly at extremes of temperature. For 
example, at temperatures over 100ºF, labor 
supply in outdoor industries drops by as 
much as one hour per day, compared to tem-
peratures in the 76–80ºF range. They find no 
statistically detectable effects in other indus-
tries that are less exposed to climate (e.g., 
nonmanufacturing indoor activities). These 
findings suggest a potentially important role 
for air-conditioning in unlinking temperature 
and productivity; we discuss air-condition-
ing further in section 3.6. Connolly (2008) 
examines the impact of rainfall on the labor/
leisure choice in the United States using 
time-use data. She finds that men substitute 

about thirty minutes per day, on average, 
from leisure to work when it is raining.

3.4	 Industrial and Services Output

Given the negative effects of high tem-
perature on labor productivity in factories, 
call centers, and outdoor industries such 
as mining, forestry, and utilities discussed 
above, a natural next question is whether 
these impacts affect aggregate output in 
other sectors, such as industry and services. 
While high temperatures per se appear to 
affect labor productivity, indoor air tempera-
ture is not necessarily the same as outdoor 
air temperature (e.g., given heating and air-
conditioning), and other aspects of industrial 
production (assembly lines, mechanization), 
may further dampen any labor productivity 
effects. Effects of precipitation and storms 
are also not a priori obvious.

Recent work suggests that there are impor-
tant effects of weather shocks on industrial 
and services output. Hsiang (2010); Jones 
and Olken (2010); and Dell, Jones, and Olken 
(2012) all examine the effect of weather fluc-
tuations on aggregate industrial output for 
large samples of countries, using panel spec-
ifications as in equation (3). Hsiang (2010) 
measures the effects of temperature and 
cyclones in twenty-eight Caribbean coun-
tries over the 1970–2006 period, while also 
controlling for precipitation. He finds that 
periods of unusually high heat have large neg-
ative effects for three of six nonagricultural 
sectors, where nonagricultural output 
declines 2.4 percent per 1°C. Output losses 
are driven by heat shocks during the hottest 
season. Two of the three affected sectors are 
service-oriented and provide the majority of 
output in these Caribbean economies, while 
the other affected sector is industrial (mining 
and utilities). Hsiang does not find a statis-
tically significant impact of temperature on 
manufacturing output. Cyclones, measured 
as years with unusually high cyclone energy 
dissipation, have negative output effects on 



761Dell, Jones, and Olken: What Do We Learn from the Weather?

mining and utilities, among other sectors in 
the economy, while having offsetting positive 
output effects for construction, leading to no 
net effects on economywide output flows.

Dell, Jones, and Olken (2012) study annual 
industrial value-added output within a global 
sample of 125 countries over the 1950–2003 
period. They find that industrial losses are 
2 percent per 1°C, but only in poor coun-
tries. The magnitudes of these estimated 
temperature effects are similar to Hsiang 
(2010). Further, like Hsiang (2010), this 
study controls for mean rainfall; no effect of 
mean precipitation levels is found. 

Jones and Olken (2010) reconsider indus-
trial output losses in the global sample using 
trade data. This data, collected in rich coun-
tries, helps avoid possible data quality issues 
in national accounts while also allowing 
examination of narrower product classes. 
Using two-digit product codes, this analy-
sis finds an average 2.4 percent decline in 
exports from a poor country per 1°C warm-
ing there. No robust effect of average pre-
cipitation appears across specifications. 
Analyzed by sector, twenty of the sixty-six 
two-digit export categories show statistically 
significant negative impacts of temperature. 
In addition to agriculture exports, negative 
temperature effects appear for many manu-
factured goods (covering fourteen differ-
ent product codes such as wood, metal, and 
rubber manufactures; electrical machinery; 
office machines; plumbing, heating, and 
light fixtures; and footwear). 

The above studies all examine sector-level 
aggregates. Cachon, Gallino, and Olivares 
(2012) examine the effects of weather at 
the plant level for one particular indus-
trial sector—automobiles—in the United 
States, focusing on the 1994–2004 period. 
They find that hot days reduce output sig-
nificantly: a week with six or more days 
above 90°F reduces that week’s production 
by about 8 percent. The temperature effect 
on automobile production may be surprising 

because the work is indoors and presumably 
occurs in the presence of air-conditioning; 
the authors hypothesize that air-conditioning 
may be imperfect at extreme heat or that 
the temperature effects come from opera-
tional disruptions outside the plant interior. 
Worker absenteeism could also play a role. 
This study also finds large output losses from 
extreme windstorms, which occur on average 
2.5 times per year, per plant and are associ-
ated with weekly output declines of 26 per-
cent per windstorm day. Snow on at least two 
days of the week and rains on at least six days 
of the week are also found to have statisti-
cally significant but more modest negative 
output effects. 

While few in number, a notable consistency 
emerges among the studies of industrial out-
put using aggregated data. These estimates 
center approximately on a 2 percent output 
loss per 1°C. The findings are also remark-
ably consistent with micro-level studies of 
labor productivity (see section 3.3), which 
estimate labor productivity losses that center 
around 2 percent per additional 1°C when 
baseline temperatures exceed 25°C. The 
two studies that consider heavy winds both 
find large effects of windstorms on indus-
trial production. Effects of precipitation on 
industrial output appear slight, although only 
one study looks at extremely heavy precipita-
tion and in that case finds modest negative 
effects.

3.5	 Health and Mortality

The epidemiology and economics litera-
tures emphasize the detrimental effects of high 
temperatures on mortality, prenatal health, 
and human health more generally, across 
contexts ranging from seventeenth-century 
England to sub-Saharan Africa, and the 
United States in recent years.31 Numerous 

31 The review in this section is highly complementary 
with Deschênes (2012), which is focused exclusively on the 
relationship between temperature and health. 



Journal of Economic Literature, Vol. LII (September 2014)762

recent papers have examined the impact on 
mortality, both in developed and in develop-
ing countries, using the panel approach. 

In the United States, Deschênes, and 
Greenstone (2011) examine death records 
and find that each additional day of extreme 
heat (exceeding 32ºC), relative to a moder-
ate day (10 to 15ºC) raises the annual age-
adjusted mortality rate by about 0.11 percent. 
They also find that extreme cold increases 
mortality. The elderly and infants are at par-
ticularly high risk.  Barreca (2012) reports a 
similar analysis using bimonthly (moving 
average) weather data controlling for humid-
ity, with each additional day of extreme 
heat (exceeding 90ºF) increasing mortality 
by about 0.2 deaths per thousand, or about 
0.2 percent. He also finds that extreme cold 
effects appear to be driven in part by low 
humidity, not cold per se. Curriero et al. 
(2002), in a study of eleven eastern cities in 
the United States using daily data, find higher 
mortality on very cold days and very hot days, 
with the negative impacts of hot days primar-
ily occurring in northern cities. 

Although the magnitudes estimated by 
these papers are substantial, they may be 
even larger in developing countries. When 
Burgess et al. (2011) repeat the same exer-
cise as Deschênes and Greenstone (2011) for 
India, they find that an additional day with 
mean temperatures exceeding 36ºC, rela-
tive to a day in the 22–24ºC range, increases 
the annual mortality rate by 0.75 percent, 
about seven times larger than in the United 
States.32 Interestingly, the mortality impacts 
of temperature in the United States in the 
1920s and 1930s were also six times larger 
than the estimated impacts in the United 
States during more recent periods, as shown 

32 While the temperature bins and empirical specifica-
tions in these two papers are somewhat different, Burgess 
et al. (2011) reestimate the U.S. results using the same 
empirical specification as they use for India and find quali-
tatively similar magnitudes for the United States to those 
reported in Deschênes and Greenstone (2011).

by (Barreca et al. 2013), who further find that 
the adoption of residential air-conditioning 
may explain this decline. These findings sug-
gest that, should countries like India develop 
and gain widespread access to adaptation 
technologies (in particular, air-conditioning), 
the impacts of temperature on mortality may 
decline and more closely resemble those 
observed in developed countries today.

By focusing on total deaths over a period of 
several months or a year, many of the papers 
discussed here seek to address the impact of 
“harvesting,” i.e., the idea that a particularly 
hot day may cause the death of someone who 
would have died shortly thereafter even in 
the absence of high temperatures. Evidence 
substantiates that such time shifting may be 
substantial: Deschênes and Moretti (2009), 
for example, use U.S. daily data on deaths 
matched with daily weather data to docu-
ment that, for extreme heat events, much 
of the immediate mortality effect is offset 
by fewer deaths in the subsequent weeks. 
The same, however, does not apply in their 
sample for extremely cold periods. Similarly, 
Braga, Zanobetti, and Schwartz (2001) find 
persistent mortality effects from cold shocks 
in their time series study of twelve U.S. cities 
but, as above, substantial harvesting effects 
of heat shocks. Finally, Hajat et al. (2005) 
suggests that the harvesting effect of extreme 
heat may vary with income (and perhaps 
access to climate-control technology): they 
find only partial harvesting offset of heat in 
Delhi, somewhat more offset in Sao Paolo, 
and full offset in London. 

The literature has identified a number 
of potential channels through which tem-
peratures can have health effects. One is 
direct: extreme temperatures can directly 
affect health, particularly for those with 
preexisting respiratory or cardiovascular 
diseases. In addition, temperatures can also 
affect pollution levels, the rate of food spoil-
age—particularly in environments with low 
refrigeration—and potentially vector-borne 
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disease.33 Each of these channels could have 
corresponding health effects. Temperatures 
can also affect incomes, e.g., through the 
channels outlined above (agriculture, labor 
productivity), which can in turn affect health.

Several papers examine these issues in the 
particular context of infant health. In U.S. 
data, Deschênes, Greenstone, and Guryan 
(2009) find that birth weight declines 
between 0.003 and 0.009 percent for each 
day above 30ºC during pregnancy. Currie 
and Rossin-Slater (2013) find that exposure 
to hurricanes in Texas during pregnancy 
increase the probability of newborns being 
born with abnormal conditions or complica-
tions, though they find no impacts on birth 
weight or gestational age. In the developing 
world, Anttila-Hughes and Hsiang (2011) 
find that typhoons in the Philippines lead 
to substantial increases in infant mortality. 
Kudamatsu, Persson, and Strömberg (2012) 
pool Demographic and Health Survey data 
from twenty-eight African countries to exam-
ine the impact of prenatal weather on subse-
quent outcomes. They find impacts through 
two channels. First, they find that weather 
associated with the flourishing of malaria—
sufficient rainfall, no very cold temperatures, 
and generally warm temperatures—during 
pregnancy is associated with higher infant 
mortality, particularly in areas where malaria 
is sometimes prevalent but not endemic. 
While they do not observe malaria directly 
in their data, three months higher predicted 
malaria exposure during pregnancy raises 
infant mortality risk by about three per thou-
sand. Second, they find drought, which is 
likely to predict poor or delayed harvests and 
hence maternal malnutrition, leads to higher 
infant mortality, particularly in arid areas. 

33 We do not explicitly review the literature on the 
impacts of pollution on health; the interested reader 
should consult Graff Zivin and Neidell (forthcoming) for a 
review of that literature.

Looking in the long run, Maccini and Yang 
(2009) examine the implications of poor rain-
fall in the year of birth of Indonesian adults 
born between 1953 and 1974 on health 
outcomes in the year 2000. They find that 
women who experienced higher rainfall as 
infant girls (and likely therefore had better 
maternal and infant nutrition) are, as adults, 
taller, better educated, wealthier, and have 
higher self-reported health. This finding sug-
gests that weather-induced poor nutrition as 
neonates and infants can have long-lasting 
effects.

While the focus here has been on those 
papers that use a panel empirical specifi-
cation such as equation (3), there is also a 
large literature examining the impact of tem-
perature and health (especially mortality) 
using other econometric approaches, such 
as focusing on heat waves or estimating dis-
tributed lag time series models within a set 
of cities, states, or countries. This literature 
primarily focuses on developed countries 
such as the United States, and each study 
typically considers a single or small group of 
cities or regions (See Basu and Samet 2002 
for an extensive review). Consistent with the 
results discussed here, these studies gen-
erally find evidence for negative mortality 
effects of both extremely hot and extremely 
cold temperatures.

3.6	 Energy

The literature has looked extensively at 
how climatic variables, in particular temper-
ature, influence energy consumption. This 
relationship, which has received renewed 
attention in light of potential climate change, 
has long been important for the design of 
electricity systems, where demand varies 
with climate and weather. Understanding 
temperature effects matters for the energy 
consequences per se and for potential feed-
back loops, incorporated into some climatic 
models (see section 4.2 below), where 
energy demand influences greenhouse 
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gas emissions, which in turn affects future 
energy demand.

Most literature focuses on residential 
energy demand, where the relationship 
between energy consumption and tempera-
ture is naturally heterogeneous; namely, 
consumers demand heat when temperatures 
are cold and air-conditioning when tempera-
tures are hot, so that the effect of an “unusu-
ally warm day” can either reduce or increase 
energy demand depending on the season or 
location. Separately, the energy–tempera-
ture relationship may naturally depend on 
the stock of heating and cooling equipment. 
Auffhammer and Mansur (2012) review the 
broad empirical literature; we focus here on 
panel model approaches.

Deschênes and Greenstone (2011) study 
residential energy consumption across the 
United States. Their panel model uses state–
year observations from 1968–2002 and con-
siders the number of days each state spends 
in nine different temperature bins. The 
regressions further control for precipitation 
and use time-fixed effects for each of eight 
census divisions. They find a clear U-shape 
relationship between energy demand and 
temperature, with an extra day below 10ºF 
or above 90ºF raising annual energy demand 
by 0.3–0.4 percent. The study further exam-
ines these relationships for different subre-
gions of the United States and finds noisy 
distinctions between them.

Auffhammer and Aroonruengsawat (2011) 
examine household-level electricity con-
sumption data in California from 2003–2006, 
using a similar panel design that examines 
temperature effects flexibly in different tem-
perature bins. While the panel is limited 
to one state, the underlying dataset covers 
over 300 million monthly household obser-
vations. This large sample allows estimation 
of how the temperature–electricity demand 
relationship varies across different climate 
zones within California. This study broadly 
confirms the U-shape seen in Deschênes 

and Greenstone (2011), with similar magni-
tudes for increased energy demand from one 
additional day over 90ºF, although the shape 
changes across climate zones.

These panel-data papers, in using tempera-
ture bins, depart from a prior practice of using 
“heating degree days” (HDD) and “cool-
ing degree days” (CDD), which count the 
number of days below and above a threshold 
temperature, with each day weighted by its 
temperature difference from the threshold. 
This degree-days approach misses the con-
vexity found in the nonparametric approach, 
where extreme temperatures provoke much 
stronger energy demand increases. The con-
vexity of the U-shape appears important both 
in getting the energy demand estimation cor-
rect and in light of climate change models, 
which show an increasing number of very 
hot days. Partly for this reason, Deschênes 
and Greenstone (2011) and Auffhammer 
and Aroonruengsawat (2011) find that the 
net effect of warming over the twenty-first 
century is likely to increase energy demand 
substantially, ceteris paribus, with these 
studies estimating 11 percent and 3 percent 
demand increases respectively.

Bhattacharya et al. (2003) show that there 
can be consequences of increased energy 
costs for other aspects of household bud-
gets. Using the consumer expenditure sur-
vey, they find that low temperatures lead to 
higher fuel expenditures. For poor house-
holds, this in turn leads to a decline in food 
consumption. Richer households face even 
larger increases in energy costs than poor 
households in response to colder weather, 
but they do not report declines in food, pre-
sumably since they have a less tight budget 
constraint. The effects are stronger outside 
of the southern United States.

Similar panel studies have also been con-
ducted outside the United States. In the 
United Kingdom, Henley and Peirson (1997) 
study space heating with a household panel 
in 1989–1990 and find that, netting out 
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household averages, demand for space heat-
ing declines with temperature and especially 
over the 10–20ºC range. Across Europe, 
Eskeland, and Mideksa (2010) study resi-
dential electricity consumption in thirty-one 
countries over ten years, with approximately 
250 country–year observations. Using the 
“degree days” measure of temperature, 
they find that a one unit increase in CDD 
increases electricity consumption by about 
four times as much as a one unit increase in 
HDD. 

Collectively, the aforementioned panel 
studies find some agreement in how residen-
tial energy demand responds to temperature 
in relatively rich countries over the short 
run. Several opportunities for further study 
are clear. One large opening in the literature 
concerns panel studies outside relatively rich 
countries.34 Such studies appear important 
for understanding global energy demand 
responses, especially given that the penetra-
tion of heating and cooling technologies in 
poor countries is low. 

Related, longer-run warming may lead to 
more installation of cooling technologies. 
Panel studies that isolate air-conditioning 
adoption, and the heterogeneity of adop-
tion by income, will be important for under-
standing energy demand and, separately, 
adaptive mechanisms. To the extent that 

34 Two recent studies use panel data that encom-
passes poorer countries, but analyze it using time-series 
techniques rather than fixed effect models. In China, 
Asadoorian, Eckaus, and Schlosser (2008) study a panel of 
Chinese provinces from 1995–2000, looking at residential 
energy use and appliance adoption in addition to nonresi-
dential energy use. Dividing their sample into urban and 
rural areas, the panel includes approximately 150 urban 
province–year observations and approximately sixty rural 
province–year observations. This study works to iden-
tify price and income effects, in addition to temperature 
effects, and the temperature findings prove noisy. Finally, 
De Cian, Lanzi, and Roson (2013) study a panel of thirty-
one countries worldwide from 1978–2000 at the country–
year level, although the analysis uses an error correction 
model rather than a panel model with country and time 
fixed effects.

cooling appliances attenuate other climatic 
effects, including effects on labor pro-
ductivity, industrial output, and health as 
reviewed above, the biggest question here 
may be less about the costs of increased 
energy demand and more about the adap-
tive benefits such energy appliances may 
provide. Integrating across the studies 
above, one (speculative) description of 
mechanisms may note that in rich countries, 
high heat raises energy demand but does 
not reduce GDP, while in poor countries, 
GDP and sectoral losses appear large. To 
the extent that cooling technologies decou-
ple heat from productivity in many sectors, 
energy demand increases may signal impor-
tant adaptive responses—but ones that are 
largely unavailable in much of the world. 
Increased energy demand may, meanwhile, 
further exacerbate climate change.35 These 
issues appear first-order for future research 
in this area.

3.7	 Conflict and Political Stability 

The relationship between weather and 
conflict/political stability has generated 
an explosion of research over the past 
decade, providing extensive panel evi-
dence for a weather–instability link.36 In 
an early panel-data contribution, Miguel, 
Satyanath, and Sergenti (2004) examined 

35 Wolfram, Shelef, and Gertler (2012) examine the 
Oportunidades cash transfer scheme in Mexico and docu-
ment large increases in purchases of electric appliances 
(e.g., refrigerators) with income. They suggest that many 
developing countries are near the point in income space 
where many households will soon acquire these cooling 
products, which would lead to an increase in electricity 
consumption and presumably a much larger electricity–
temperature response gradient.

36 Conflict can be defined in a variety of ways. For 
example, conflict is often defined for empirical research as 
occurring when total battle deaths in a country fall above 
a given threshold. However, it can also be defined using 
more disaggregated measures, such as the number of bat-
tles, violence against civilians, riots, and rebel recruitment 
(all recorded in the ACLED conflict database), or using 
other measures specific to a given context. 
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the relationship between changes in rainfall 
and civil conflict in forty-one sub-Saharan 
African countries between 1981 and 1999. 
This study finds that lower rainfall growth 
led to more conflict and also documents 
that economic growth is lower when rain-
fall growth is lower. It posits a mechanism 
through which low rainfall leads to a nega-
tive economic shock, which in turn spurs 
conflict. Subsequent panel work by Burke 
et al. (2009) finds that higher tempera-
tures also lead to higher conflict incidence 
in Africa, with 1ºC higher temperatures 
increasing civil conflicts by 4.5 percentage 
points (49 percent of the mean). 

Moreover, weather shocks also plausibly 
impact political stability. For example, Burke 
and Leigh (2010) and Bruckner and Ciccone 
(2011) document that weather shocks appear 
to lead to democratization. Dell, Jones, and 
Olken (2012) show that adverse temperature 
shocks increase the probability of irregular 
leader transitions (i.e., coups). 

The relationship between weather and 
conflict/political stability documented in 
cross-country analysis has been supported by 
several studies exploiting subnational varia-
tion in weather. Hidalgo et al. (2010) docu-
ment that low rainfall shocks in Brazilian 
municipalities between 1988 and 2004 
led the rural poor to invade and occupy 
large landholdings. Bohlken and Sergenti 
(2010), using an approach similar to Miguel, 
Satyanath, and Sergenti (2004), find that 
negative rainfall shocks increase Muslim–
Hindu riots in Indian states. Both of these 
studies posit reduced incomes as a mecha-
nism. Using a panel specification, Fjelde and 
von Uexkull (2012) find that negative rainfall 
shocks increase communal conflict in subna-
tional regions in Africa, particularly in areas 
dominated by groups outside the political 
mainstream. Similarly, in Somalia between 
1997 and 2009, Maystadt, Ecker, and Mabiso 
(2013) document that droughts increased 
local conflict. 

Evidence for a weather–conflict nexus 
exists across many centuries.37 Both Kung 
and Ma (2012) and Jia (forthcoming) show, 
using panel analysis, that across four cen-
turies, suboptimal rainfall triggered peas-
ant rebellions in China. Nevertheless, 
Confucianism appears to have partially miti-
gated these effects (Kung and Ma 2012), 
and technological innovation—in the form 
of the introduction of drought-resistant 
sweet potatoes—weakened them further.38 
Similarly, Dell (2012) finds that municipali-
ties in Mexico that experienced more severe 
drought in the early twentieth century were 
more likely to have insurgency during the 
Mexican Revolution than nearby municipali-
ties with less severe drought. 

Despite the large number of panel studies 
that find important weather effects on con-
flict and political stability, panel results have 
not been fully unambiguous, particularly for 
precipitation. For example, Couttenier and 
Soubeyran (forthcoming) find, using a stan-
dard panel specification, that the Palmer 
Drought Severity Index is positively related 
to conflict at the country level in sub-Saha-
ran Africa between 1957 and 2005 when they 
control for linear weather variables, whereas 
the linear weather variables alone are not sig-
nificantly correlated with conflict. Ciccone 
(2011) argues that the relationship between 
rainfall and conflict in sub-Saharan Africa 
appears weaker when the data is extended to 
2009, though Miguel and Satyanath (2011) 
note in reply that the first stage between 
rainfall and economic growth also does not 
appear to hold in the 2000–2009 period. A 

37 Anderson, Johnson, and Koyama (2013) show, using 
a decadal level panel from 1100–1800, that colder growing 
seasons led to greater expulsion of the Jewish population 
from European cities during the sixteenth century.

38 There also exist a number of studies of specific 
civilizations over centuries or millennia that suggest that 
adverse shifts in weather can lead to the collapse of civi-
lizations. Because these are not panel studies, they fall 
beyond the scope of this paper, but the interested reader is 
referred to Hsiang, Burke, and Miguel (2013) for a review.
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number of studies that are not fully identi-
fied from within-location deviations from 
means have also found conflicting results.39 

The reasons for differences in this litera-
ture have been difficult to isolate for several 
reasons: conflict and weather shocks can 
be parameterized in many different ways; 
some studies have omitted fixed effects and 
included potentially endogenous controls; 
inference does not always account for spatial 
correlation; and weather measures in differ-
ent datasets—for rainfall in particular—may 
only be weakly correlated in regions with 
few weather stations (Auffhammer et al. 
forthcoming).40 Beyond differences in specifi-
cation and data, heterogeneity is also likely to 
be at play. Weather shocks typically do not lead 
to civil conflicts in wealthy, stable countries, 
and in the world as a whole, weather shocks 
are not strongly related to civil conflict (Dell, 
Jones, and Olken 2012). Moreover, many of 
the estimates in this literature are quite noisy, 

39 For example, consider the following studies using 
variation across 1, 0.5, or 0.25 degree grid cells in Africa. 
Harari and La Ferrara (2013) document that between 1997 
and 2011, droughts during the growing season increase 
conflict. In contrast, O’Loughlin et al. (2012) find that in 
East Africa, droughts have no impact on conflict, wetter 
precipitation deviations reduce conflict, and higher tem-
peratures increase conflict. Using a gridded analysis for 
Kenya, Theisen (2012) finds, in contrast to other papers, 
that low rainfall seems to reduce conflict in the follow-
ing year, with no clear impacts of temperature. Finally, 
Theisen, Holtermann, and Buhaug (2011) find no rela-
tionship between precipitation and conflict. None of these 
studies include grid cell fixed effects, allowing potentially 
confounding correlates with weather across geographic 
areas to influence the regression findings. Moreover, three 
of these four studies do not account for high spatial cor-
relation across grid cells and they use different sources of 
rainfall data (interpolated versus reanalysis) that may be 
only weakly correlated. When Hsiang, Burke, and Miguel 
(2013) rerun these analyses using cell fixed effects, exclud-
ing endogenous controls and adjusting the inference for 
spatial correlation, they find strong evidence that tem-
perature affects conflict, as well as evidence for drought 
impacts, whereas evidence for linear precipitation effects is 
weak (see their supplementary appendix for more details). 

40 Note that the exclusion of fixed effects and inclusion 
of endogenous controls is often intentional in these studies 
because the coefficients on the controls are themselves of 
interest.

making it difficult to assess whether a statisti-
cally insignificant effect is a noisily measured 
zero or a noisily measured large effect.41 

To examine this issue systematically, Hsiang, 
Burke, and Miguel (2013) conduct a reanaly-
sis of all empirical studies of weather and 
intergroup conflict whose empirical analysis 
can be specified as fixed-effect panel regres-
sions of the form in equation (3). All twenty-
one estimates of temperature in the reanalysis 
are positive. While not all estimates are sta-
tistically significant, they argue that these 
coefficients would be very unlikely to arise 
by chance if the true impact of temperature 
on conflict were zero or negative. Rainfall is 
more difficult to assess, since in some studies 
the focus is on negative deviations (low rain-
fall), in others it is on positive deviations (high 
rainfall), and yet others use absolute devia-
tions or more complicated drought indices. 
Nevertheless, sixteen of eighteen studies 
reviewed predict that anomalous precipitation 
events increase conflict (although again, not 
all produce statistically significant estimates). 
Overall, the study calculates that on average, 
a one standard deviation change in weather 
variables generates a 14 percent change in the 
risk of group conflict ( p < 0.001). 

The studies discussed here and the 
meta-analysis by Hsiang, Burke, and Miguel 
(2013) in particular provide compelling evi-
dence that weather affects conflict across a 
variety of different contexts. These results 
underline the importance of further exami-
nation of open questions in the literature 
relating to mechanisms, heterogeneity, har-
vesting, and which types of weather shocks 
matter most. Further subnational studies, 
which can employ detailed disaggregated 
data, may be particularly useful in improving 
our understanding of these open questions. 

41 For example, Theisen, Holtermann, and Buhaug 
(2011) do not find statistically significant weather effects, 
but due to large confidence intervals, large effects cannot 
be ruled out.
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First consider mechanisms: because 
extreme weather events lead output to 
decline, they potentially lower the opportu-
nity cost of engaging in violence or in pro-
test against the government. Moreover, a 
decline in economic output could decrease 
government revenues, in turn reducing state 
capacity to maintain security. Increased food 
prices may lead to widespread food riots 
that spill over into broader political insta-
bility, and weather-induced migration could 
potentially lead to conflict as well. Weather 
shocks could also directly impact conflict 
through changing the environment—i.e., 
making roads more or less passable (Fearon 
and Laitin 2003)—or through altering the 
bioneurological regulation of aggression (see 
below). Related to the mechanisms issue 
is heterogeneity: the broader political and 
economic circumstances that lead extreme 
weather to trigger instability in some places 
but not others remain poorly understood.42 
Finally, our understanding remains limited 
concerning the extent to which weather 
events create conflicts that would not oth-
erwise occur, as opposed to impacting the 
timing at which latent conflicts surface. This 
issue, which is akin to the questions about 
harvesting discussed in the health section, 
is important for assessing the likely conflict 
impacts of climate change.43 

3.8	 Crime and Aggression

The idea that temperature affects the 
proclivity for aggression directly is an old 
one, also dating back to at least the Ancient 
Greeks.44 During the 1960s, U.S. govern-
ment officials noted that riots were more 

42 See Tutino (1989) for an excellent discussion of the 
reasons for heterogeneous responses of conflict to weather 
shocks in Mexico historically. 

43 Hsiang, Meng, and Cane (2011) find suggestive but 
statistically insignificant evidence that around 40 percent 
of the conflict episodes associated with El Nino are dis-
placed in time. 

44 See p. 25 in Andaya (1993).

likely to occur in warmer weather, and sub-
sequent analysis confirmed this relationship 
(U.S. Riot Commission 1968; Carlsmith 
and Anderson 1979). In analysis of detailed 
data from the Dallas police department, 
Rotton and Cohn (2004) find that the rela-
tionship between outdoor temperature and 
aggravated assault is substantially weaker 
in locations that are likely to be air condi-
tioned. Experimental evidence has linked 
temperature to horn honking (Kenrick and 
MacFarlane 1986) and aggression by police 
officers (Vrij, Van der Steen, and Koppelaar 
1994). By contrast, a link between precipita-
tion and crime has been less evident in the 
criminology literature (see Wright and Miller 
2005), although this link may be stronger in 
locations where precipitation exerts impor-
tant impacts on income, as discussed below.

A small number of rigorous panel studies 
relate weather fluctuations to crime. Using 
a fixed effects panel specification, Jacob, 
Lefgren, and Moretti (2007) find that higher 
temperatures in a given week increase both 
violent and property crime in the United 
States during that week, whereas higher 
precipitation reduces violent crime but has 
no impact on property crime. Using a fifty-
year panel of monthly crime and weather 
data for nearly 3,000 U.S. counties, Ranson 
(2012) also finds that increased tempera-
tures lead to increased criminal activity. He 
finds roughly linear positive effects of tem-
perature on violent crimes. For property 
crimes, he finds that very cold days (below 
40ºF) reduce property crimes, but very hot 
days do not increase them. Together, these 
studies and the evidence discussed above 
suggest that weather has an immediate 
effect upon criminal activity, particularly 
for violent crime. Some researchers have 
argued for a biological pathway through 
which temperature affects serotonin neu-
rotransmission in the brain, influencing 
impulsivity and aggression (see for example 
Tiihonen, Räsänen, and Hakko 1997), but 
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this hypothesis remains controversial (see, 
for example, Maes et al. 1993). Whether the 
temperature–aggression nexus occurs via 
neurological or social-psychological chan-
nels remains an important area of research 
in criminology, and studying potential link-
ages between aggression mechanisms and 
broader social conflict (section 3.7) is an 
interesting subject for further research.

Weather might also impact crime and 
aggression through its effects on income. 
Miguel (2005) documents that extreme rain-
fall events increase the murder of “witches” 
(typically elderly women) in Tanzania, hypoth-
esizing that negative income shocks induced 
by rainfall lead households to seek to remove 
or kill relatively unproductive family mem-
bers. Oster (2004) finds that cold weather 
increased witch trials in sixteenth–eighteenth 
century Europe. Using time series analysis, 
Mehlum, Miguel, and Torvik (2006) find that 
low rainfall in nineteenth-century Bavaria 
increased crime via increasing the grain price 
(hence reducing real wages for consumers). 
Sekhri and Storeygard (2011) document that 
dowry killing—the murder of a woman for 
failing to bring sufficient dowry—has been 
higher in India in recent years during periods 
of low rainfall. 

3.9	 Other Channels

This section reviews two other channels 
in the climate–economy interface that are 
potentially important but, to this point, have 
been the subject of comparatively few stud-
ies exploiting weather shocks. We first con-
sider international trade. We then briefly 
discuss effects on innovation.45

Market integration has the potential to 
influence weather-shock sensitivity. Trade 

45 Note that the subject of migration is discussed else-
where; we discuss this topic in section 3.2 when reviewing 
the agriculture literature and return to it again in section 
4.1.2 when discussing labor reallocation as a possible adap-
tation mechanism. 

can, in principle, dampen or exacerbate local 
effects of productivity losses. By muting the 
price effects of local productivity shocks, 
access to foreign markets could help local con-
sumers (who can still access products at low 
prices) but hurt local producers (who cannot 
raise prices). At the same time, foreign con-
sumers and producers may experience more 
diffuse but opposing effects. Several stud-
ies discussed above shed some preliminary 
light on these issues. Burgess and Donaldson 
(2010), using annual data for 125 Indian dis-
tricts, show that, while famine intensity histor-
ically in India is strongly associated with low 
rainfall, this famine–rainfall link is essentially 
eliminated in Indian districts that had access 
to railroads. Thus, for mortality, market inte-
gration may have substantially reduced the 
negative local effects of local weather shocks. 
Jones and Olken (2010) show that tempera-
ture shocks in poor countries reduce their 
exports to rich countries across a wide vari-
ety of agricultural and industrial goods. This 
finding is consistent with local producer losses 
due to the weather shocks. It also indicates 
that losses can be exported to consumers in 
other countries, although the effects for the 
individual foreign consumer may be small if 
there are many substitute providers.

Another potentially first-order adaptation 
mechanism is innovation. Miao and Popp 
(2013) study patenting in response to natural 
disasters using a panel of thirty countries over 
twenty-five years. They study earthquakes, 
floods, and droughts, and count patents in 
relevant technologies. They find, for exam-
ple, that an additional $1 billion in economic 
losses from drought in the past five years 
increases current patent applications regard-
ing drought-resistant crops by approximately 
20 percent. Similarly large effects on patent-
ing are found for earthquakes and floods. 
While the effectiveness of these patents is 
not clear, this study suggests that innovative 
activity does respond causatively to weather 
shocks, an important area for ongoing study.
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3.10	 Summary: Weather and the Economy

The previous sections have documented 
many ways in which weather fluctuations 
affect economic activity, from agriculture, 
to labor productivity, to health and conflict. 
These estimates provide rigorous economet-
ric evidence that weather—temperature, 
precipitation, and events such as windstorms 
and droughts—has manifold effects on eco-
nomic activity. Poor economies appear par-
ticularly vulnerable to detrimental weather 
effects, while certain demographic groups, 
such as children and the elderly, appear espe-
cially sensitive on health-related dimensions.

The unusual identification opportunity 
provided by weather shocks has allowed a 
rigorous analysis of weather–economy link-
ages, and implications for breadth, hetero-
geneity, and functional forms. While much 
work remains in developing a detailed under-
standing of the underlying mechanisms, 
especially for macroeconomic and politi-
cal economy outcomes, the new literature 
shows that weather variation has substantive 
effects in contemporary periods. This begins 
to suggest policy targets, whether the goal is 
preventing substantial economic damages or 
protecting public health and security. 

4.  What Does All This Mean for Thinking 
about Global Climate Change?

The recent explosion of literature con-
cerning climate–economy relationships has 
largely been sparked by a desire to inform 
the potential consequences of global climate 
change. According to the fourth assessment 
report from the Intergovernmental Panel on 
Climate Change (Solomon et al. 2007), which 
takes a mean estimate across many climate 
models, global temperatures are expected to 
rise from 1.8 to 3.1ºC over the twenty-first 
century, depending on the emissions sce-
nario. At the same time, the same climate 
models predict a wide range of potential 

outcomes, even for a given emissions sce-
nario, with a substantial upper tail globally 
and substantial regional uncertainties, so the 
range of potential outcomes is substantially 
higher. Some countries will naturally expe-
rience larger changes than the global mean. 
Moreover, these climate changes will not be 
limited to increased temperatures: climate 
change is expected to alter precipitation pat-
terns and lead to changes in the frequency 
and location of intense storms, as well as 
other changes such as rising sea levels.

Given the substantial changes in climate 
that are forecast in many climate models and 
the intense global policy discussion about 
what policies can be undertaken in response, 
there has been substantial interest in under-
standing the economic consequences of 
potential climate changes. In section 4.1, 
we explore ways in which the estimates we 
have reviewed above—i.e., those estimates 
based on short-run fluctuations in weather—
can and cannot be used to inform thinking 
about global climate change. In particular, 
we discuss methodological innovations for 
creating tighter linkages between panel esti-
mates, which are typically estimated based 
on short-run weather shocks and changes 
over longer periods. In section 4.2, we then 
review the current economic approaches 
used to forecast economic consequences 
of climate change—primarily Integrated 
Assessment Models (IAMs). We discuss 
how such models could potentially be modi-
fied to incorporate the recent advances in 
econometric estimation of weather impacts 
reviewed here.

4.1	 From the Short to the Long Run: 
The Econometrics of Adaptation, 
Intensification, and Other Issues

4.1.1	 Conceptual Issues in Moving from 
	 Short to Long Run

To begin, return to the econometric 
framework in section 2.1. Suppose now that 
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the structural equation of interest—i.e., the 
analogue of equation (1), is 

(4)	​ y​it​  =  f (​C​it​, ​X​it​, t),

where ​C​it​ represents the distribution of cli-
mate variables in country or region i, and t 
indexes time, say from today until the year 
2100. The key change from equation (1) 
is that we no longer require the climate 
(defined as the distribution of weather out-
comes) for place i  to be stationary; instead, 
the distribution of outcomes (i.e., the cli-
mate) changes over time. We are interested 
in how alternative realizations of the climate 
variables ​C​it​ will result in different economic 
outcomes. 

Conceptual Issues with Estimates Based on 
Cross-Sectional Models

How does the structural equation of inter-
est in (4) compare to various econometric 
equations that we could estimate? For exam-
ple, suppose we estimate the cross-sectional 
equation 

(5)	​ y​i​  =  α  +  β ​C​i​  +  γ ​X​i​  + ​ ϵ​i​ .

Even abstracting from the identification 
issues discussed in section 2 (i.e., the fact 
that there may be omitted variables such that ​
C​i​ is correlated with ​ϵ​i​), the estimated β from 
equation (5) is not directly applicable to the 
climate change structural equation in 4.1.1. 
Why? Because even to the extent that (5) 
identifies the causal impact of climate on the 
cross-sectional outcome, y, the cross section 
may incorporate very long-run mechanisms 
that are unlikely to come into play over the 
next one hundred years. 

For example, Acemoglu, Johnson, and 
Robinson (2001) argue that the patterns of 
colonialism and subsequent economic devel-
opment were influenced by the mortality 
rates experienced by colonial settlers when 
they first arrived in new territories during 

the sixteenth through nineteenth centuries. 
These mortality rates were influenced by the 
local disease environment, which in turn was 
influenced by local climate. Therefore, some 
of the impact of climate that one would esti-
mate in the cross-sectional equation in (5) 
might include this settler mortality chan-
nel. Yet, if climate changes over the next 
one hundred years, that particular channel 
will not be part of the impact—the era of 
colonialism is over, and a country’s colonial 
origins are fixed, so institutions will not be 
affected by climate today in the same way 
they were in the era when settlers arrived. 
The same is likely true for a variety of other 
“deep historical” mechanisms that determine 
the cross-sectional relationship between cli-
mate and income, such as the date of adop-
tion of agriculture. Thus, even in the absence 
of omitted variables that are correlated with 
climate purely by chance, cross-sectional 
estimates from (5) are unlikely to provide 
an adequate estimate of how climate change 
over the next 35, 75, or even 150 years will 
affect economic outcomes. Within-country 
cross-sectional analysis (such as Dell, Jones, 
and Olken 2009) suffers from the same cri-
tique, where the historical equilibrium they 
represent may depend on mechanisms that 
no longer act in the same way.

Conceptual Issues with Estimates Based on 
Panel Models

By contrast, panel models, as in equa-
tion (3), precisely estimate the impact of 
a weather shock on economic outcomes. 
Moreover, panel models typically estimate 
the impact of a weather shock in contempo-
rary data. The panel approach thus empha-
sizes weather’s current—as opposed to 
long-run—impacts, in addition to its broader 
identification advantages. 

However, short-run changes over annual 
or other relatively brief periods are not nec-
essarily analogous to the long-run changes 
in average weather patterns that may occur 
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with climate change. That is, the effect of 
1ºC higher temperature in a given country 
in a given year, as estimated by equation 
(3), may have different effects than raising 
the average temperature of that country by 
1ºC as in equation (4). Indeed, there are 
several reasons why the panel estimates may 
not be directly applicable to estimating the 
economic impacts of climate change over 
the medium or long run. We briefly lay out 
the potential issues in this section; section 
4.1.2 then considers how these issues can be 
addressed within the context of panel-type 
estimates discussed in this paper.

Adaptation. A key issue is adaptation. If 
the climate changes, agents may ultimately 
adapt economic production processes to the 
new environment. Given enough time, adap-
tation may occur not only by adjusting among 
a set of existing technological opportuni-
ties, but also through technological change. 
Government institutions and policy, includ-
ing policies around public goods, innovation, 
and market integration, may also play impor-
tant roles in the degree and nature of adaptive 
responses. Examples abound: snowfalls that 
occasionally paralyze southern U.S. states are 
minimally disruptive in New England, where 
such events are experienced regularly and 
where (costly) investments in snow removal 
processes have been made. In that sense, the 
estimated coefficient β on a snowfall shock 
may not estimate the long-run effect of a 
shift in climate to more snowfall. As another 
example, regarding innovation, the Canadian 
Experimental Farms, under Canadian gov-
ernment auspices, successfully developed 
wheat varieties in the late nineteenth century 
that were more suitable to Canadian farming 
conditions (Ward 1994). See also Miao and 
Popp (2013) regarding innovation around 
natural disasters. Adaptation suggests that the 
short-run panel estimate of a weather shock β 
from equation (3) may not be the long-run 
impact of a permanent change in climate of 
the same magnitude.

Intensification of climate effects. A 
second, countervailing force is intensifica-
tion. Climatic changes may cause damages 
that are not revealed by small or fleeting 
weather changes. Consider, for example, 
agriculture. A drought in a single year may 
have little effect if there are ample stores of 
water available in a reservoir. On the other 
hand, if the amount of rainfall permanently 
decreases and the reservoir eventually runs 
dry, then the supply of water to agricul-
ture will fall substantially, with concomitant 
impacts on economic activity.46

General equilibrium effects. The pre-
vious two issues—adaptation and intensi-
fication—could be relevant for an isolated 
production process; a single farmer, for 
example. A third class of issues involves 
macroeconomic effects, including general 
equilibrium adjustments of prices and factor 
reallocations. For example, labor and capital 
will likely move in response to long-run cli-
mate damages. If both labor and capital are 
mobile, then this type of macroeconomic 
readjustment could reduce the long-run 
impacts of climate change relative to a 
short-run panel estimate (although any such 
tempering of the impacts would depend on 
moving costs, the extent to which the mar-
ginal product of capital is location specific, 
and potentially a host of other factors). If, 
by contrast, capital is mobile but labor is 
not (e.g., due to restrictions on interna-
tional migration), then the effects could be 
reversed: in the long run, capital outflows 
from areas that experience negative produc-
tivity shocks would further reduce the mar-
ginal product of labor there. 

Extrapolation beyond historical expe-
rience. A final issue is the degree to which 
the observable weather variation incorpo-
rates the range of changes that may occur 

46 Desertification would be an example of potentially 
substantial economic damages through an intensification 
process.
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in the future. Average annual temperatures 
in a country are almost never more than 
2ºC from their long-run historical mean 
(Dell, Jones, and Olken 2012). While tem-
perature changes over the next thirty years 
will plausibly be within this range (recall 
the IPCC middle estimates were between 
1.8–3.1ºC by 2100), the ninety-fifth percen-
tile estimate is warming of 7ºC by 2100. If 
the impacts of climatic variables are linear 
throughout this range, then extrapolation 
is not an issue per se. However, if there are 
nonlinearities that are different from those 
operating within historical experience, one 
cannot directly extrapolate from equation (3) 
to climate scenarios far outside this range. 
This issue suggests a limited capacity for 
panel models to provide quantitative esti-
mates of damages from extreme warming. 
In the plausible scenario in which extreme 
warming introduces additional costs (i.e., the 
costs are convex in warming), linear extrapo-
lation from panel model evidence, suitably 
adjusted to confront the other issues dis-
cussed above, would provide a lower bound 
on future damages.

These issues highlight that, even though 
panel models of the form of equation (3) 
correctly identify the causal effect of weather 
shocks on contemporaneous economic out-
comes, they may not estimate the structural 
equation of interest for understanding the 
likely effects of future global climate change. 
Moreover, even leaving aside the potential 
of catastrophic climate scenarios, such as 
rapid sea-level rise or the release of methane 
from melting permafrost that could greatly 
increase global temperature, the panel esti-
mates are neither obviously an upper bound 
nor a lower bound for the effect of climate 
change. If the adaptation force dominates, 
then the effects of weather shocks will tend to 
be larger than the effects of climate change; 
if the intensification force dominates, then 
the effects of weather shocks will tend to be 
smaller than the effects of climate change.

4.1.2	 Empirical Approaches for Moving 
	 from Short to Long Run

Delving more deeply into panel-based 
estimates, one can make progress on a num-
ber of the important issues outlined above. 
This section outlines the variety of empirical 
techniques through which panel approaches 
can still be used to say something sensible (if 
not definitive) about likely effects of climate 
change, and then reviews the attempts thus 
far to do so. 

We examine several empirical approaches. 
First, different geographic areas have differ-
ent baseline climates. An unusual weather 
shock in one area is often well within normal 
experience in another area, where adaptation 
has had the opportunity to occur. Comparing 
these areas by interacting weather shocks 
with the existing distribution of weather 
events can help assess the magnitude of 
adaptation. Second, one can examine long 
differences; i.e., instead of looking at annual 
shocks, one can examine average impacts 
over longer time horizons, such as decades. 
Third, one can focus on particular perma-
nent shocks and trace out their impacts over 
many years. Fourth, combining the previous 
two methods with short-run panel estima-
tion, one can explicitly compare the same 
event at different time scales to assess the 
degree of adaptation. Fifth, one can extend 
panel models to explicitly examine spillovers 
of weather shocks. We examine each of these 
mechanisms in turn.

Interactions with the Existing Distribution  
of Weather Events

One way to learn about adaptation is 
to examine the range of climate distribu-
tions available today, which vary greatly. In 
fact, the range of experience is substantial 
even within a given location. For example, 
consider New York City. Figure 2 plots the 
distribution of maximum daily tempera-
tures for New York’s Central Park between 
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2000–2010 and shows that, like many places, 
New York City experiences a wide range of 
average daily temperatures across seasons 
and years. The 1st percentile day in New 
York has a maximum temperature of –4.5ºC 
(that is, about thirty-five days per decade are 
colder than –4.5ºC). The 99th percentile day 
in New York has a maximum temperature of 
35ºC—and New York has experienced days 
up to 40ºC, even though such days are rare. 

A first observation is that future climate 
change represents a shift in the stochastic 
distribution of degrees that may sit largely 
within the support experienced historically. 

This distributional overlap is expected to 
be particularly strong when looking at tem-
perate climates that already experience a 
range of temperatures during a year and 
when examining shorter horizons—i.e., 
2050 instead of 2150. While some tempera-
tures expected under global climate change 
would be novel (e.g., days with maximum 
temperatures exceeding 42ºC, which did 
not occur in the decade shown in figure 2) 
much of the expected shift from moderate 
climate change in temperate zones within a 
given year will occur at temperatures that 
are within the historical range.
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Figure 2. Maximum Daily Temperatures in New York’s Central Park

Note: Data is from 2000–2010.

Source: Authors’ calculations based on data from GHCN daily summaries.
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This observation is important because, 
with sufficiently fine data, econometric 
models can estimate the impact within pre-
cise weather bins. Depending on the locus 
of impacts, one may then make some infer-
ence about adaptation. For example, when 
weather-based models find effects within 
existing ranges and one is interested in cli-
mate change effects within these ranges, 
one could argue that the scope for adapta-
tion may be somewhat limited. As shown in 
the figure, New York has had much oppor-
tunity to adapt to a wide range of tempera-
tures. Therefore, should there be weather 
effects within this historical range, say at 

28ºC, which New York experiences quite 
frequently already, one might expect those 
effects to continue. Conversely, if one found 
effects in the weather bins that are rare 
(e.g., in the New York example, tempera-
tures over 39ºC), one may suspect that the 
impacts might change as such rare events 
became more frequent and agents adapted.

In this stylized example, we considered 
a single location: New York City. Suppose 
we see substantive effects in New York 
when temperatures exceed 39ºC, which is 
currently rare. For a single place, one can-
not know for sure if the effects of such rare 
events will persist when they become more 
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Figure 3. Maximum Daily Temperatures in Phoenix, Arizona, compared to New York’s Central Park

Note: Data is from 2000–2010.

Source: Authors’ calculations based on data from GHCN daily summaries.
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common, or whether they will attenuate 
substantially through adaptation. However, 
with multiple locations, one can begin to 
make progress on understanding the pos-
sibility of adaptation to such events. For 
example, figure 3 shows the temperature 
distribution of New York City overlaid with 
that of Phoenix, Arizona. 

As is evident from the figure, the extreme 
39ºC day in New York (which occurs just 
a few days each decade) is well within the 
normal range for Phoenix (where it occurs 
forty days per year). This variation allows 
one to test for adaptation econometrically. 
Specifically, one can modify the standard 
panel specification in equation (3) to esti-
mate a model of the form

(6) ​ y​it​  =  β ​C​it​  +  γ ​Z​it​  +  ν ​C​it​ 

	 × ​ C​i0​  + ​ μ​i​  + ​ θ​rt​  + ​ ε​it​,

where the ​C​it​ variables are weather shocks 
specified in narrow ranges and the ​C​i0​ vari-
able captures the average initial conditions; 
in the example above, the long-run histori-
cal frequency with which a given tempera-
ture tends to occur. In taking this approach, 
it is important to recognize that ​C​i0​ is a fixed 
characteristic of place i. To the extent that ​
C​i0​ is correlated with other characteristics 
of place i—which creates an interpreta-
tive issue for the cross section, as discussed 
above—one may also want to control for the 
interactions of those other characteristics 
with the climate shocks.

Several studies pursue versions of this 
approach. For example, Deschênes and 
Greenstone (2011) estimate the impact of 
temperature on mortality throughout the 
United States. They begin by estimating the 
weather panel model, as in equation (3), but 
broken up into temperature bins. They find 
evidence of nonlinearities—each day above 

90ºF is associated with about one more 
death per 100,000 population, but find no 
impacts of days in the 80–90ºF range rela-
tive to cooler days. While they find hetero-
geneity across the nine U.S. census regions 
in the responsiveness to hot days, this 
heterogeneity is not systematically related 
to average temperatures in each of those 
nine regions, suggesting that adaptation to 
higher average temperatures does not sub-
stantially affect the mortality response.47 

Dell, Jones, and Olken (2012) take a simi-
lar approach when studying the impact of 
temperature on economic growth. Rather 
than break temperature up into fine bins, 
the paper estimates a coarser version of (6) 
in which annual temperature shocks are 
interacted with a country’s average tem-
perature level. They find no evidence that 
hot countries experience systematically dif-
ferent impacts of temperature shocks on 
economic growth, once one controls for a 
country’s average income level, though they 
note that temperature and income are cor-
related in the cross section, so this relation-
ship is hard to tease out empirically.

A related approach is taken by Schlenker 
and Roberts (2009), who use fine tempera-
ture bins to estimate nonlinear effects of 
temperature on crop yields in the United 
States. They find a sharp nonlinearity, with 
negative impacts of temperature above 
29ºC for corn, 30ºC for soybeans, and 32ºC 
for cotton. If farmers can adapt to perma-
nently higher temperatures by growing dif-
ferent varieties, one would expect yields in 
the South to be less sensitive to extreme 

47 This paper regresses the estimated coefficient β from 
equation (3) in each of the nine census regions on the aver-
age number of days above 90ºF in that region. In principle, 
one could obtain more power by estimating the regres-
sion using much finer gradations in average temperatures 
across the United States.
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heat. In general, however, they find similar 
results in northern and southern states.48 

Similar analyses can be used for the other 
types of weather-related events (e.g., pre-
cipitation and windstorms). One example is 
found in Hsiang and Narita (2012), which 
examines the impact of tropical cyclones. 
They estimate equation (6), where the key 
weather variable (​C​it​) is the intensity of 
a given tropical cyclone, the key climate 
variable is the average intensity of tropical 
cyclones experienced by a country (​C​i0​), and 
the dependent variables are economic dam-
ages (normalized by GDP) and deaths (nor-
malized by population). In both cases, they 
find statistically significant evidence of adapta-
tion—that is, the coefficient ν in (6) indicates 
that the marginal effect of higher windspeed 
in a cyclone is lower in those places that more 
frequently experience higher windspeeds. 
However, this adaptive magnitude is small—
they estimate that only 3 percent of the esti-
mated impact of increased tropical cyclones 
will be “adapted away” in the long run. 

While there is no theorem that the effect 
of adaptation in one context will apply to 
another context—e.g., there is no a priori 
reason that farmers’ inability to adapt by 
using different corn seed technologies nec-
essarily tells us anything about adaptation to 
prevent mortality from heat waves or adap-
tation from tropical cyclones—a notable 
similarity among the papers reviewed in this 
section is that the effects of extreme weather 

48 This does not imply that no adaptation is possible. 
Olmstead and Rhode (2011) show that North American 
wheat producers have made substantial adaptations 
between 1839 and 2009, shifting where they grew their 
wheat. The median annual precipitation in areas growing 
wheat in the United States and Canada in 2007 was one-
half that of the areas growing wheat in the 1839 distribu-
tion, and the median annual temperature in wheat-growing 
areas in 2007 was 3.7ºC lower than in wheat-growing areas 
in 1839. This shift, which occurred mostly before 1929, 
required new biological technologies, as well as human 
capital (immigrants from Eurasia) skilled in growing wheat 
in cold, arid climates.

events do not appear to be limited to those 
areas that experience them only rarely. This 
approach seems generally useful, and more 
research is needed along these lines.

Interactions with Lags of Weather Events

A related econometric approach can be 
used to shed light on the question of inten-
sification. Specifically, if the effects build 
over time, then the structure of the weather 
shocks can be used to examine this possibil-
ity; for example, one can examine whether 
the effect of a drought in year t will be dif-
ferent if years t − 1 through t − 5 were also 
droughts than if years t − 1 through t − 5 
had normal climate. This possibility can also 
be estimated as an interaction, but instead 
of interacting the weather variables with 
the long-run averages (in equation (6)), the 
weather variables are interacted with their 
own lags, i.e., 

(7) ​ y​it​ = ρ ​y​it−1​ + β ​C​it​ + ​∑​ 
j=t−K

​ 
t−1

  ​ ​β​j​ ​C​ij​ 

	 + γ ​Z​it​ + ​∑​ 
j=t−K

​ 
t−1

  ​ ​ω​j​ ​C​it​ × ​C​ij​ 

	 + ​μ​i​ + ​θ​rt​ + ​ε​it​.

The key coefficients for estimating intensi-
fication are the ​ω​j​, which examine whether 
the impact of a given shock depends on the 
pattern of previous shocks.

While we are not aware of existing panel 
analyses along these specific lines, this 
approach provides an opportunity to let the 
data speak to intensification concerns. An 
alternative approach is to assert a functional 
form for intensification; for example, drought 
indices that seek to capture the soil mois-
ture balance—such as the commonly used 
Palmer Drought and Palmer Hydrological 
Drought indices—take cumulative events 
into account, so that the measured inten-
sity of drought during the current month 
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depends on current weather patterns, plus 
the cumulative patterns of previous months.

Long Differences

Another econometric approach to estimat-
ing adaptation or intensification effects is to 
estimate the same basic panel specification, 
but over a longer period. To see this, start 
with equation (3) and take, for example, 
decade-long averages. 

This yields the exact same econometric 
specification as (3) but expressed in decades 
(d) rather than years (t):

(8)	​ y​id​ = β ​C​id​ + γ ​Z​id​ + ​μ​i​ + ​θ​id​ + ​ε​id​.

One could also take longer or shorter 
averages.

Although the econometric equation in (8) 
is similar to equation (3), substantively they 
are different; by averaging the weather vari-
ables, C, one is now moving closer to iden-
tifying medium-run impacts. To the extent 
that these averages represent longer-run 
changes (e.g., those induced by climate 
change), longer differences may begin to 
incorporate the adaptation or intensification 
effects discussed above. 

For example, Dell, Jones, and Olken (2012) 
consider a fifteen-year average specification 
in studying the effect of temperature on eco-
nomic growth. That paper estimates (8) with 
two time periods, 1970–1985 and 1985–2000, 
and exploits medium-run variation, where 
many countries’ temperatures increased 
only slightly (e.g., Laos, Kenya, and Nigeria), 
whereas many others experienced increases 
in average temperatures of around 1ºC (e.g., 
Tunisia, Zambia, and Botswana). While the 
results are not as statistically precise as the 
results based on annual variation, this study 
finds larger negative impacts of temperature 
increases on economic growth in poor coun-
tries in the longer-difference specification 
(around 2 percentage points lower economic 
growth per ºC in poor countries; compared 

with around 1 percentage point lower eco-
nomic growth per ºC in the baseline annual 
specification), suggesting that, if anything, 
intensification outweighs adaptation among 
poor countries.49

Burke and Emerick (2013) pursue an 
analogous econometric approach in study-
ing U.S. agriculture. They estimate a version 
of equation (8), comparing the 1978–1982 
average with the 1998–2002 average, exploit-
ing substantial heterogeneity in temperature 
changes over this period, with some coun-
ties cooling by 0.5ºC and others warming by 
1.5ºC. Comparing annual panel estimates 
with longer differences, they estimate the 
degree to which adaptation has offset the 
negative effects of heat. For corn productiv-
ity, their point estimate suggests that adap-
tation has offset 23 percent of the negative 
effect of increased temperatures. Given the 
confidence intervals, at most half of the neg-
ative short-run impacts were offset, and the 
authors cannot reject the null hypothesis of 
no adaptation.

These longer-difference estimates are 
perhaps the closest empirical analogue to 
the structural equation of interest for cli-
mate change in (4), particularly if we are 
interested in climate change impacts in the 
medium term (e.g., by 2050). However, two 
issues should be kept in mind when inter-
preting these medium-run estimates. First, 
even though (8) estimates the impact of a 
change in the average temperature variables, 
it is not obvious how agents perceived this 
change or how their beliefs conditioned 
their response. To the extent that adaptation 
requires forward-looking investments, adap-
tation choices will depend not only on the 
underlying damage functions and adaptation 

49 Among richer countries (those in the upper half of 
the sample by initial income per capita), the longer dif-
ferences show no statistically significant effect of tempera-
ture on economic growth, similar to what was found in the 
short-run panel estimates for these countries.
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possibilities, but also on agents’ expectations. 
Responses will depend on whether agents 
both were aware of the change in average 
temperature, and whether they perceived it 
to be a permanent change or just an accu-
mulation of idiosyncratic shocks. Burke and 
Emerick (2013) discuss this issue and note 
that their results are similar in places with 
lower baseline variance in temperatures 
(where, from a Bayesian perspective, farm-
ers should more easily recognize a change 
in climate) and with higher baseline vari-
ance. Their results are also unaffected by a 
county’s political affiliation, which they argue 
may be correlated with beliefs about global 
warming. Thus, Burke and Emerick (2013) 
provide interesting initial analysis of the 
expectations issue and suggest some meth-
ods to grapple with it. More generally, the 
issue of expectation formation is a rich and 
important avenue for ongoing research in 
linking historical responses to warming with 
forecasts of future effects. 

A second issue is that these papers exam-
ine average effects on the order of fifteen to 
twenty years, while adaptation and intensi-
fication may take place over longer periods. 
In the limit, if one took sufficiently long 
averages (say, one hundred years), then one 
could plausibly begin to estimate directly the 
types of effects in the structural equation in 
(4). Such very long differences are an excit-
ing opportunity for new research, but they 
also amplify an interpretative challenge. 
The challenge is that economies are chang-
ing and the longer the time difference taken 
in (8), the further back in time the analysis 
goes (by necessity), and the further removed 
from present-day economic conditions the 
analysis becomes. To the extent that differ-
ent economies presented very different stan-
dards of living, technologies, and institutions 
through the twentieth century, one may still 
make headway by examining historical het-
erogeneous treatment effects along various 
dimensions of economic development. On 

the other hand, the future presumably prom-
ises new technologies and other features that 
may pull economies outside the range of 
historical experiences, calling for caution in 
drawing sharp conclusions from increasingly 
historical studies.

Long-Run Impacts of Shocks

A third empirical approach traces out 
the long-run effects of a given, permanent 
shock. Although finding geographically 
isolated, permanent climate shocks that 
one can follow empirically is challenging, 
there are several existing studies that illu-
minate this empirical design. For example, 
Hornbeck (2012) studies the 1930s “Dust 
Bowl,” during which a series of large dust 
storms stripped topsoil from farmland in 
the American Great Plains, substantially 
degrading the agricultural productivity in 
some areas. Hornbeck shows that by 1940, 
the value of farmland fell by 30 percent in 
high-erosion areas relative to low-erosion 
areas and by 1992, no more than 25 percent 
of the initially lost value was recovered. 
While farmers did adapt by growing hay 
instead of wheat, these adaptation mecha-
nisms appear to have mitigated only a small 
share of the lost value of the land. 

These long-run studies can be especially 
informative when the data can further trace 
people over time, allowing one to estimate 
the role of migration in influencing long-
run aggregate outcomes.50 Several studies 
using similar empirical techniques suggest 
that migration may be an important chan-
nel of adjustment to weather shocks. In the 
same study, Hornbeck shows that by 1992, 
the population of high-erosion areas was 
23 percent lower than low-erosion areas. 

50 Should migration select on people with certain 
characteristics (such as age, health, or education), care is 
needed in interpreting whether long-run changes in out-
comes are due to a direct effect on the permanent portion 
of the population or reflect a compositional effect caused 
by the migration channel.
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Boustan, Kahn and Rhode (2012) find 
similar outmigration in their study of the 
long-run impact of tornadoes in the United 
States during the 1920s and 1930s. Feng, 
Oppenheimer, and Schlenker (2012) docu-
ment qualitatively similar patterns in a more 
recent period (1970–2009), suggesting that 
outmigration from areas experiencing nega-
tive agricultural productivity shocks still 
occurs today, particularly for young adults. 

The degree of labor migration in 
response to these shocks may provoke 
capital adjustments and may also be muted 
through government programs. Hornbeck 
and Naidu (forthcoming) find that large 
floods along the Mississippi River in 1927 
led many farmhands to migrate north 
permanently, which in turn led the farm 
owners to substantially mechanize their 
agriculture. Boustan, Kahn, and Rhode 
(2012), by contrast, find in-migration asso-
ciated with floods, which they speculate 
may be related to efforts by the United 
States government to rebuild the affected 
areas and make them more flood resistant. 
Examining a more recent period (1980–
1996), Deryugina (2011) finds no change in 
population, earnings, or employment in the 
ten years following a hurricane landfall in 
the United States, but does find a substan-
tial increase in government transfer pay-
ments.51 A common theme between the last 
two papers is that government assistance to 
disaster-prone areas may counteract the 
natural tendencies for out-migration from 
these areas, which suggests that institutions 
may sharply influence adaptation. More 
broadly, these long-run studies illustrate 
that factor reallocation may be an impor-
tant mechanism.

51 Yang (2008), in the international context, also finds 
that international financial flows may substantially mitigate 
the negative impact of hurricanes on economic activity.

Comparing Estimates at Different Time 
Scales to Model Adaptation

Implicit in several of these approaches is 
the idea that one can compare the short-run 
panel estimates from an equation like (3) 
with other estimates that incorporate some 
amount of adaptation, such as long differ-
ences or the cross section, to gauge the 
degree of adaptation. Burke and Emerick 
(2013) and Dell, Jones, and Olken (2012), 
for example, compare annual panel estimates 
from equation (3) with long differences from 
equation (8), and note that the similarity of 
the estimates suggest relatively little adapta-
tion in their respective contexts. Similarly, as 
discussed above, Hornbeck (2012) compares 
the estimates from 1940 (right after the Dust 
Bowl) to estimates from 1992 (more than 
fifty years later) to quantify the amount of 
adaptation over that period.

Several papers also compare panel esti-
mates to the cross section. Schlenker and 
Roberts (2009), in their study of nonlinear 
effects of temperature on agriculture, note 
that the cross-sectional and time-series esti-
mates show similar effects. Dell, Jones, and 
Olken (2009) perform a similar exercise 
in their study of temperature in economic 
growth, but use an economic model to help 
quantify adaptation effects. Employing the 
current world cross section (i.e., equation 
(2)) to inform the very long-run impact of 
temperature on per capita income and cou-
pling this data with panel estimates for the 
short-run effect of temperature shocks on 
income, this paper writes down a model with 
two features—neoclassical convergence, 
so that poor countries grow faster than rich 
countries, other things equal, and adaptation. 
Using consensus estimates on convergence 
rates (e.g., Barro and Sala-i-Martin 1992; 
Caselli, Esquivel, and Lefort 1996), one can 
back out an estimated adaptation parameter. 
The analysis implies that, at the global macro 
level, adaptation could offset about half of 
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the short-run negative effect of higher tem-
peratures estimated from panel models.

Spatial Spillovers

Additional questions about climatic change 
concern global-level effects and cross-border 
effects that extend beyond isolated spatial 
responses. Assessing these issues with panel 
data requires adjustments to the empiri-
cal strategies. Panel models, by employing 
time fixed effects, eliminate common global 
responses. Thus, for example, the average 
effect of a common commodity price shock 
will not be revealed. Moreover, to the extent 
that the effects of climatic shocks in one 
location propagate to other locations (e.g., 
through trade or migration), the effect on 
the other region will not be captured in the 
typical panel setup, which narrowly examines 
the relationship between local shocks and 
local outcomes. In fact, omitting substantive 
spillovers in the estimation could create bias 
in an equation such as (3).

Localized spillovers can be examined in 
panel models with the appropriate setup 
(e.g., Munshi 2003) by including weather 
shocks to one’s neighbors, trade partners, or 
aid providers, for example, as explanatory 
variables for local outcomes. In practice, this 
means extending the vector ​C​it​ in (3) to con-
tain information about other locations that 
are relevant to outcomes in location i. Such 
empirical studies, which appear currently 
rare, are important because the relationships 
between cross-border interactions and cli-
matic changes are potentially first order, but 
also subtle. For example, local weather shocks 
can affect exports to trading partners (Jones 
and Olken 2010), but consequences for the 
importing country do not appear to have been 
studied. From the perspective of the source 
country, market integration should soften 
price variation from local shocks, helping con-
sumers but harming local producers, who are 
less able to raise prices as their output quanti-
ties fall (Burgess and Donaldson 2010). 

Common Global Shocks

Finally, beyond local cross-border effects, 
one may also want to consider common 
global shocks, the estimation of which sug-
gests alternative approaches. To the extent 
that responses are heterogeneous (e.g., a 
commodity price shock will have different 
effects on consumer countries and producer 
countries), one may exploit this variation 
via interaction terms to identify differential 
effects from global shocks. 

To examine the average effect of global 
shocks, one might drop time-fixed effects 
from the panel altogether and attempt iden-
tification directly from the global, rather than 
local shock. While this approach raises the 
risk that the analysis is biased by time-varying 
omitted variables, this method may still be 
compelling if the global weather shocks 
appear randomly and over a long enough 
time series to see these events repeatedly. 
Hsiang, Meng, and Cane (2011) exploit both 
strategies to study the El Ni​̃ n ​o–Southern 
Oscillation (ENSO), a global climatic event 
that is frequently repeated. The analysis, 
comparing variation within countries over 
time, shows that ENSO strongly predicts 
civil conflict. Moreover, these effects are 
heterogeneous; in countries where ENSO 
has strong weather effects, El Ni​̃ n ​o years 
are associated with twice the rate of civil 
conflict compared to La Ni​̃ n ​a years, yet no 
observable effects appear in countries where 
ENSO is weakly felt. 

Bansal and Ochoa (2011) pursue a related 
strategy. They seek to examine in which 
countries economic growth is most respon-
sive to a global temperature shock. They 
therefore estimate a version of equation (3) 
with global temperature innovations as the 
key climate variable, and without global time 
fixed effects. They find that a 1ºC tempera-
ture innovation reduces growth by about 0.9 
percentage points, with stronger impacts felt 
in those countries closest to the equator.
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Summary

Bridging from the short-run panel esti-
mates to the potential longer-term effects 
of climate change requires methods to con-
front sector-specific adaptation possibilities, 
intensification effects, and macroeconomic 
adjustment mechanisms. While long-run 
predictions are innately difficult, the papers 
reviewed in this section present a variety 
of econometric approaches to confronting 
these potential issues, provide an informa-
tive, if still small, set of pertinent facts, and 
suggest that much progress may still be made 
in tackling these challenges.

In considering longer-run responses, it is 
also important to note that models of future 
climatic change suggest an ongoing process, 
rather than a permanent shock. Adaptation 
will thus be an uncertain progression of steps, 
with new uncertainties around each corner. 
Given that the world has been warming, with 
noted increases in the last several decades and 
at a rate broadly similar to what may occur 
over the remainder of the twenty-first century 
according to the median climate models, the 
last thirty to forty years provide an empirical 
environment that appears to closely model the 
climate change process—a stochastic series 
of annual shocks along an upward trend. 
The capacity to draw causal inference about 
short- and medium-run effects from this 
recent historical record is a key opportunity 
for understanding the trajectory the world is 
running along. We regard this as a critically 
important direction for future work.

As they stand, the panel estimates reviewed 
in the preceding sections already raise 
important questions about current practices 
in assessing potential climatic impacts, while 
also suggesting modeling innovations. For 
example, panel estimates suggest a remark-
able breadth of effects, including agriculture, 
labor productivity, health, conflict, and more. 
The panel estimates also speak to important 
questions about functional forms of impacts, 

including level versus growth effects on 
national income and a host of nonlinear rela-
tionships. The next section reviews main-
stream integrated assessment models, the 
standard tools for making climate-economy 
predictions, in light of these recent develop-
ments and suggests avenues through which 
these models could be adapted, given the 
recent findings.

4.2	 How the New Climate–Economy 
Literature Contributes to Climate 
Change Models and Policy Prescriptions

In assessing possible policy responses 
to global climate change, the main analyti-
cal tools are integrated assessment models 
(IAMs). These models are the main source of 
well-known estimates for proposed carbon tax 
levels and other policy prescriptions. IAMs 
have been used, for example, by the Fourth 
Assessment Report of the Intergovernmental 
Panel on Climate Change (Parry et al. 2007), 
the Stern Report (Stern 2007), and the U.S. 
Interagency Working Group on Social Cost of 
Carbon (Greenstone, Kopits, and Wolverton 
forthcoming), which plays a central role in 
defining current U.S. government policies 
around carbon emissions. 

Section 4.2.1 provides a brief overview 
of these models. IAMs consist of multiple 
components, all of which are important in 
determining a carbon tax rate and other poli-
cies. Our focus is on the damage function, 
the component of IAMs that specifies how 
increased temperatures affect economic 
activity, as this is the area to which the litera-
ture discussed in this review can most con-
tribute. We examine standard IAM damage 
functions in light of the evidence reviewed 
above and suggest ways in which these dam-
age functions could be modified to better 
match recent econometric evidence.

4.2.1	 Integrated Assessment Models

Integrated assessment models combine 
information about human behavior and 
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climate systems to make predictions about 
future climatic change and its consequences. 
IAMs used for economic policy analysis typi-
cally include four broad components: 1) a 
model projecting the path for greenhouse gas 
(GHG) emissions; 2) a model mapping GHG 
emissions into climatic change; 3) a damage 
function that calculates the economic costs 
of climatic change, and; 4) a social welfare 
function for aggregating damages over time 
and potentially across space. These compo-
nents can be combined to estimate the exter-
nal cost of burning carbon, referred to as the 
social cost of carbon (SCC).52 7/18/2014

The IAM approach was pioneered with the 
development of the DICE model (Nordhaus 
1991; Nordhaus 1993). Current examples 
include the DICE/RICE models (Nordhaus 
and Yang 1996; Nordhaus and Boyer 2000;  
Nordhaus 2010a; Nordhaus 2013), the PAGE 
model (Hope, Anderson, and Wenman 1993; 
Hope 2006), and the FUND model (Tol 1999; 
Tol 2013), among others.53 All IAMs must 
make a wide variety of modeling choices, with 
large uncertainties remaining across each 
component. In practice, each component of 
an IAM can be updated as the climate sci-
ences and social sciences improve our under-
standing of the underlying mechanisms. 

Uncertainties in the first component, the 
future GHG emissions path, follow from 
uncertainty about future economic growth 

52 Note that, in the climate science literature, the term 
IAM is often used more broadly to denote any model that 
integrates existing economic and geophysical information 
to assess climate change. There are a number of such mod-
els. For example, the Global Change Assessment Model 
(GCAM) contains only the first two components. It can 
be used to simulate the impacts of different emission sce-
narios and to assess whether a given carbon tax rate is likely 
to meet a target to limit warming, but it lacks a damage 
function and thus cannot be used to solve for the optimal 
carbon tax. The MIT ITSM model is another well-known 
example of this type of model (Prinn 2013).

53 The DICE/RICE, PAGE, and FUND models were 
discussed in detail in the IPCC 4th assessment report and 
in the U.S. government review of social cost of carbon esti-
mates (Greenstone, Kopits, and Wolverton forthcoming). 

and technology developments. The second, 
climate-science component wrestles with 
several central issues that are not yet well 
understood by climatologists, including the 
relationship between GHG emissions (flows) 
and resulting atmospheric GHG concentra-
tions (stocks), the rate of heat transfer into the 
deep ocean, and the feedback loops between 
warming and atmospheric GHG concentra-
tions (Allen and Frame 2007). The possibility 
of positive feedback loops implies that mod-
eled climate change predictions are right-
skewed; in other words, there are “fat tail” 
probabilities for massive climatic change in 
the next century (Hegerl et al. 2006; Weitzman 
2009; Burke et al. 2011), which are an impor-
tant subject of ongoing climate research. 

The final two components, which together 
constitute the economic model, also face con-
siderable uncertainty. One component is the 
choice of the social welfare function, which 
is the subject of substantial debate, espe-
cially around the discount rate.54 Because 
most of the impacts of climate change will 
be realized in the future, IAMs must specify 
a social welfare function that discounts the 
future path of consumption. Since climate 
abatement policies incur costs today in order 
to prevent damages long into the future, the 
choice of discount rate leads to substantial 
variation in the implied SCC and the optimal 
level of abatement chosen.55 

54 See Litterman (2013); Weitzman (2013); Heal (2009); 
Newbold and Daigneault (2009); Mendelsohn et al. 
(2008); Nordhaus (2007); Stern (2007); Weitzman (2007) 
and Weitzman (1998), among others. 

55 For example, using the IAM specifications of the U.S. 
Working Group (2010) and Johnson and Hope (2012) but 
varying the discount rate, Weitzman (2013) calculates that 
the SCC would be $1 at a discount rate of 7 percent, $21 
at a discount rate of 3 percent, and $266 at a discount rate 
of 1 percent. Similarly, differences in the discount rate 
largely drive the well-known disparity in the social cost of 
carbon between the Stern Report (Stern 2007), which uses 
a discount rate of 1.4 percent and argues for an SCC of 
over $200, and calculations by Nordhaus (2008), who uses 
a discount rate of ≈5.5 percent and finds an SCC of around 
$20 or less.
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Another important aspect of the social 
welfare function is the concavity of the utility 
function. This property influences not only 
how one weighs future versus current gen-
erations, but also how one weighs rich versus 
poor economies at a single point in time. In 
order to separate climate policy issues from 
redistributive issues more broadly, most 
IAMs impose the Negishi (1972) principle, 
which constrains IAMs so that the exist-
ing distribution of world income remains 
unchanged over time.

While empirical evidence potentially 
provides some guidance for writing down 
the social welfare function, including esti-
mates of market discount rates and the 
diminishing marginal utility of consump-
tion, some have argued that the choice of 
the discount rate and welfare weights is a 
normative question that policymakers and 
societies more generally must decide using 
ethical and not positive reasoning (Stern 
2007; Heal 2009). Even amongst those 
who agree that the social welfare func-
tion should be calibrated using empirical 
evidence, there is considerable contro-
versy over which market discount rate to 
use (Litterman 2013; Weitzman 2013). 
Nonetheless, choices around social welfare 
functions can, in principle, be treated trans-
parently as policy parameters in IAMs, with 
a given IAM model optimized repeatedly 
with different social welfare functions and 
the motivations behind different param-
eters explained, so that policymakers can 
make informed decisions given heteroge-
neous views of these parameters and their 
political constraints.56 

The second and foundational component 
of the economic model of IAMs is the climate 

56 For example, the U.S. Interagency Working Group 
on the Social Cost of Carbon provided some transparency 
around the discount rate issue by taking a median discount 
rate of 3 percent, while also examining discount rates of 
2.5 percent and 5 percent.

“damage function,” which specifies how tem-
peratures or other aspects of climate affect 
economic activity. It is this modeling compo-
nent to which empirical research on climate-
economy relationships can most directly 
speak. It is therefore instructive to under-
stand how current IAMs typically model 
the economic damage from climate change, 
to assess whether the loss functions are, or 
are not, consistent with the findings of the 
recent empirical literature reviewed in this 
paper, and to consider ways in which dam-
age functions can be designed to incorporate 
recent findings. 

While we focus below on the damage 
function, it is important to remember that 
the various components of IAMs are all 
related. For example, the larger climate 
change is, the greater the role that non-
linear damages could play, and the more 
caution is needed in extrapolating from one 
particular part of the temperature-damage 
function. In general, empirical estimates 
are likely to tell us more about modest tem-
perature changes—for example, those that 
will likely occur by 2050—than about mas-
sive changes, such as those that could pos-
sibly occur by 2150. 

The Climate-Damage Function

Different IAMs model the climate-dam-
age function in somewhat different ways. 
For example, the DICE/RICE models 
use a Cobb–Douglas production function 
with capital and labor as inputs, multi-
plied by TFP, which grows at a constant, 
exogenously specified rate. Output is then 
reduced by the climate-damage function. 
For example, in the DICE model, the 
damage function is 

(9)	 D(T)  = ​   1 __  
1 + ​π​1​ T + ​π​2​ ​T​ 2​

 ​ ,
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where T is this period’s temperature anomaly 
and π’s are parameters. Output is modeled 
as57

(10)	​ Y​t​  =  D​( ​T​t​ )​​A​t​ F(​K​ t​, ​L​t​),

where ​F​t​ = ​A​t​ F(​K​ t​, ​L​t​) denotes output in 
period t in the absence of warming (e.g., a 
Cobb–Douglas aggregate of capital and labor, 
augmented by TFP). The parameters of the 
loss function are calibrated in different ways, 
but to the best of our knowledge, generally 
do not incorporate the type of panel-based 
evidence reviewed here. For example, 
DICE calibrates the π parameters to match 
cross-sectional estimates of climate damages 
reviewed in Tol (2009) (see Nordhaus 2013) 
and then adjusts damages up by 25 percent 
to incorporate nonmonetized damages, such 
as impacts on biodiversity, and to account 
for potentially catastrophic scenarios, such 
as sea level rise, changes in ocean circula-
tion, and accelerated climate change. The 
DICE/RICE models use this common pro-
portional damage function for the entire 
world. The PAGE model similarly specifies 
an aggregate, nonlinear climate-damage 
function that multiplies GDP in the absence 
of climate change, but PAGE calibrates sep-
arate loss functions by region. PAGE also 
separately calculates regional-specific dam-
ages for sea level impacts and extreme cli-
matic changes (Hope 2006). 

In the FUND model, rather than spec-
ify an aggregate damage function directly, 
climate damages are calculated at the 
region-by-sector level and aggregated up; 
that is, FUND posits separate models for 
agriculture, forestry, energy consumption, 
and health (deaths from infectious, cardio-
vascular, and respiratory disease), while also 
considering water resources, extreme storm 

57 Output in DICE/RICE models is also reduced pro-
portionally by abatement costs, which we suppress here for 
ease of exposition.

damage, sea level rise, and the value for eco-
systems, with potentially separate regional 
parameters for each of these models (Tol 
2002; Anthoff, Hepburn, and Tol 2009).

An important challenge with the current 
damage functions is that, for the most part, 
they do not incorporate the type of rigor-
ous empirical evidence on climate damages 
reviewed here.58 In a recent review of IAMs, 
when discussing the calibration of the D(T) 
function, Pindyck (2013) writes “the choice 
of values for these parameters is essentially 
guesswork. The usual approach is to select 
values such that [D(T)] for T in the range of 
2°C to 4°C is consistent with common wis-
dom regarding the damages that are likely 
to occur for small to moderate increases in 
temperature. . . . The bottom line here is that 
the damage functions used in most IAMs are 
completely made up, with no theoretical or 
empirical foundation.” 

Given these critiques, there is a clear 
opportunity for the damage functions 
to be improved to better match the new 
wave of rigorous, panel-based evidence. 
The implications of the econometric evi-
dence discussed here can be thought of in 
two respects: how we model and calibrate 
the climate-damage function at a point in 
time, and how the climate-damage function 
evolves over time. Short-run panel evidence 
of the type reviewed in section 3 can help 
inform the damage function at a point in 
time; the evidence reviewed in section 4.1 
can help inform how climate damages evolve 
over time due to adaptation, intensification, 
and other effects. We examine each of these 
issues in turn.

58 Stern (2013) also notes a second issue, where damage 
functions do not yet incorporate many types of damages 
that could occur at very large temperature increases. 
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4.2.2	 The Climate-Damage Function at a 
	 Point in Time

Calibrating Magnitudes

The first and most obvious place in which 
the weather literature can help is in calibrat-
ing the magnitudes of the effects. That is, 
for models that specify an aggregate dam-
age function such as D​( ​T​t​ )​ in equation (10), 
the estimates reviewed here can be useful to 
help calibrate D​( ​T​t​ )​. While extrapolating to 
the long run is challenging (as we discuss in 
section 4.1), the empirical estimates we have 
reviewed in section 3 and shown in table 3 
can be a useful input for calibrating IAM 
models.59 At minimum, the weather-based 
estimates reviewed here provide a set of 
short-run moments in the data for con-
temporaneous impacts that models should 
match. 

For models that seek to construct aggre-
gate damages by aggregating up sectoral 
effects, such as the FUND model, a second, 
related issue is which sectors to include. The 
panel studies reviewed in this paper suggest 
several channels that are not currently incor-
porated in these IAMs. Among the poten-
tially most important are the direct impacts 
of temperature on labor productivity (see 
section 3.3) and industrial output (see sec-
tion 3.4). These channels can, in principle, 
be added into IAMs in a straightforward 
manner. Conflict mechanisms, which are 
also omitted and can have first-order eco-
nomic effects, may also be incorporated, 
although incorporating rare but important 
events may suggest using a stochastic dam-
age function approach, and quantifying the 

59 Currently, DICE, for example, calibrates the climate-
damage function by fitting equation (9) to the range of 
studies shown in table 1 of Tol (2009), which are largely a 
combination of estimates from other IAMs, enumerative 
approaches (starting from scientific studies of certain sec-
tors and adding up) and cross-sectional regressions. 

economic impacts is more challenging than 
with direct economic variables. 

Modeling Nonlinear Effects

A second issue is how to handle nonlinear-
ities. Most existing IAMs incorporate nonlin-
earities by postulating quadratic or another 
similar nonlinear functional form of average 
temperature. Several recent studies are able 
to much more finely disaggregate the effect 
of temperatures, examining the whole tem-
perature distribution (e.g., Schlenker and 
Roberts 2009 on agriculture, Deschênes 
and Greenstone 2011 on mortality, and 
Auffhammer and Aroonruengsawat 2011 
on energy demand). This approach allows 
one to more carefully and precisely estimate 
nonlinearities, and these studies generally 
find that it is very hot days, in particular, that 
have a strong effect. The impact of a given, 
say, 2ºC increase in mean temperatures on 
the number of very hot days depends on 
the general climate distribution (mean and 
variance) of each place. For some outcomes 
(such as GDP or conflict) that are inher-
ently more aggregated, this approach may 
not be possible, but incorporating this type 
of heterogeneity could be a useful direc-
tion in modeling these nonlinearities more 
accurately.

Heterogeneous Treatment Effects

The recent panel-based literature also 
points to substantial heterogeneity in the 
impacts of climatic variables. Most IAMs cur-
rently incorporate some degree of regional 
heterogeneity in climate damage impacts. 
One emerging possibility, however, is that 
the heterogeneity in climate damage may 
depend not just regionally, but rather explic-
itly on the level of income. For example, 
Barreca et al. (2013) show that the impact of 
hot temperatures on mortality in the United 
States in the 1920s and 1930s was six times 
larger than the impact today, which implies 
that the impact of temperatures on mortality 
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in the United States in the 1920s and 1930s is 
closer to the impact in India today than in the 
United States today. Similarly, Dell, Jones, 
and Olken (2012) find that the main factor 
distinguishing large from small tempera-
ture impacts on economic growth is a coun-
try’s level of income, rather than its region 
or whether it is hot or cold. While violence 
responds to temperature in all locations, the 
most economically costly conflicts, civil wars, 
appear to respond to higher temperatures 
only in poorer countries (Hsiang, Meng, 
and Cane 2011), and more generally conflict 
effects appear stronger in poorer locations 
(Hsiang and Burke forthcoming). Modeling 
heterogeneity as a function of income implies 
that economic growth in poor countries may 
reduce climate damages. Incorporating this 
type of heterogeneity seems an important 
future direction for IAMs.

4.2.3	 The Dynamics of Climate Damage

Given the long time horizons of IAMs, one 
needs to project climate damages not just in 
one year, but also over a long time period, 
which requires modeling assumptions about 
dynamic effects. Dynamic features of the 
damage function concern both how one 
characterizes the relationship between cli-
mate and economic output (and hence how 
climate variables affect long-run economic 
growth) and how the damage function itself 
evolves endogenously through adaptation. 
Over the long run, choices about how to 
model dynamics can have very large impacts 
on the results of IAMs. 

The Level of Output or the Growth Rate 
of Output

A key modeling choice for the dam-
age function is whether climate affects the 
level of output or the growth path of output 
(Pindyck 2011; Dell, Jones, and Olken 2012; 
Pindyck 2012). The main IAMs assume that 
the impact of climate is on the level of out-
put only, as in equation (10) above, with the 

growth of total-factor productivity (A) con-
tinuing exogenously. In some models, such 
as DICE, a contemporaneous temperature 
shock can affect future output by affecting 
the growth rate of the capital stock, which 
evolves endogenously, but effects of climate 
on the evolution of A, which here incorpo-
rates human capital, technology, and institu-
tions, is not allowed. Because growth effects, 
even small ones, will ultimately dominate 
even large-level effects, ruling out growth 
effects substantially limits the possible eco-
nomic damages these models allow.

An alternative way of specifying the dam-
age function is to allow climate to affect the 
long-run growth rate (i.e., the growth of A) 
directly. That is, the evolution of productivity 
can be written

(11)	 log ​A​t​  =  log ​A​t−1​  +  Δ(T),

where Δ(T) is a damage function of tem-
perature. While in any given year there is no 
econometric difference between equations 
(10) and (11) (that is, equation (10) can be 
represented by a version of equation (11) 
with an appropriate choice of Δ(T)), over 
many years the data-generating processes 
evolve quite differently. 

For example, consider the impact of a 
permanent increase in temperature that has 
a contemporaneous effect of lowering eco-
nomic output by 1 percent in a given year. 
If the growth of technology A is exogenous 
and the loss function is a level effect, as in 
equation (10), then extrapolated out over 
100 years, the impact of that increase in tem-
perature would be to lower GDP by about 
1 percent.60 Alternatively, if the impact was 
modeled through equation (11), so that the 
growth rate of technology A was 1 percent-
age point lower per year, then after 100 years 
GDP would be lower by about 63 percent. 

60 This is approximate, since capital accumulation will 
also respond.
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This simple example suggests that under-
standing the functional form through 
which climate affects economic output is 
critical. Using distributed lag models, the 
weather-based evidence from Dell, Jones, 
and Olken (2012) suggests that, for poor 
countries, temperature shocks appear to 
have long-lasting effects; i.e., the damage 
function is consistent with (11). Hsiang and 
Jina (2013) find similar long-lasting effects 
for windstorms. Long-difference estimates, 
as discussed in section 4.1.2, show similar 
patterns; that is, the effects of high tempera-
tures in poor countries appear to reduce the 
rate of economic growth as in (11), rather 
than a one-time output level effect as in 
(10). Many of the channels discussed in this 
review, such as civil conflict or labor pro-
ductivity, could plausibly affect productivity 
growth. While it is hard to know definitively 
the correct functional form for the loss func-
tion, even small impacts on productivity 
growth could, over time, swamp effects on 
the level of output (Pindyck 2013).61 

Adaptation

Different IAMs currently treat adaptation 
differently. The loss function in equation (9) 
does not model the adaptation process specif-
ically. Other models incorporate adaptation 
explicitly and in different ways. For example, 
the PAGE model allows the economy to buy 
units of adaptation separately for sea-level 
rise, economic, and noneconomic costs (that 
is, one can pay a given economic cost to 
purchase an adaptation policy that reduces 
the climate impact up to a certain number 
of degrees). FUND includes adaptation in 
its sector-specific contexts. For example, 
FUND posits that the agricultural damage 

61 Recent innovations in the IAM literature, such as 
work in progress by Krusell and Smith (2013), have tried 
to incorporate this possibility, calibrating damages to allow 
for both long-run growth effects (impacts on A) as well as 
level effects. 

function depends on the rate of change in 
temperature (more rapid changes cause 
larger damage) and that adaptation causes 
climate damages to decay by a constant fac-
tor each year, with the adaptation parame-
ters chosen by the modeler. The challenge 
is that many of the adaptation assumptions 
currently used in these models are not based 
on rigorous empirical evidence. For exam-
ple, the FUND documentation describes 
the source of these adaptation parameters as 
expert guesses (Anthoff and Tol 2012). 

Understanding adaptation is of first-
order importance for writing down a plau-
sible damage function. It also remains an 
area of substantial uncertainty. Although 
panel-based evidence on adaptation is cur-
rently limited and somewhat mixed, and it 
is hard to forecast long into the future; the 
evidence reviewed in section 4.1.2 does not 
provide substantial evidence in favor of the 
idea that large-scale climate damages will be 
mostly undone by adaptation over the sorts 
of horizons that have been measured thus 
far. 

Several pieces of evidence point in this 
direction. First, the evidence based on 
medium-term fluctuations (i.e., long differ-
ences) suggests that, whether looking at the 
impacts on agriculture in the United States 
(Burke and Emerick 2013) or GDP growth 
in poor countries (Dell, Jones, and Olken 
2012), the estimated impacts are more or less 
similar when looking at changes over one or 
two decades or more, as compared to annual 
temperature fluctuations.62 Second, several 
studies have examined whether the marginal 
impacts of temperature are smaller in areas 
that frequently experience that range of tem-
perature (e.g., Schlenker and Roberts 2009 

62 A notable exception is Olmstead and Rhode (2011), 
in their study of agriculture in the United States and 
Canada historically, who do find evidence of adaptation 
in agriculture to substantially colder temperatures—i.e., 
wheat seeds were developed that could grow in Canada. 
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for agriculture) and not found substantial 
differences. For longer periods, technologi-
cal innovations, government policy innova-
tions, or other adaptive mechanisms may 
play stronger roles, creating lower damages 
globally (Acemoglu et al. 2012; Miao and 
Popp 2013). Heat-related mortality is one 
dimension where such adaptations, in this 
case through air-conditioning, appear to 
have substantially altered the effect of heat 
(Barreca et al. 2013). Over the very long 
run, in aggregate, Dell, Jones, and Olken 
(2009) present a calibration exercise com-
paring panel and cross-sectional results, 
estimating that approximately half of the 
large short-run GDP effects of tempera-
ture increases are adapted away. We regard 
further empirical research on the extent 
of adaptation using the various empirical 
approaches outlined in section 4.1.2 as a key 
area for future work.63

Reallocation

A final long-run issue concerns factor 
reallocation, including migration. In gen-
eral, IAMs treat the population distribu-
tion as exogenous. Yet, as discussed above, 
over the longer run, migration may be an 
important macroeconomic channel through 
which people respond, and there are several 
studies that document out-migration from 
areas that were negatively affected by cli-
mate shocks (see section 3.2.2). A key issue 
for IAMs is the degree to which migration 
is allowed to occur only within countries 
or cross-nationally. In a calibrated model, 
Desmet and Rossi-Hansberg (2012), for 
example, argue that economic damages 
of climate change would be limited if full 

63 The importance of more research on adaptation 
appears throughout the climate literature. For example, 
while the IPCC fourth assessment report (Metz et al. 
2007) acknowledges a large number of examples of adap-
tation, they note that they have largely been focused on 
sea-level rise, rather than other channels, and that consid-
erable more work is needed in this area.

international migration was available, but 
substantial if migration was restricted so 
people could not move from southern to 
northern areas. Migration may also create 
security issues (U.S. Department of Defense 
2010). Incorporating migration is an impor-
tant area for future work.

4.2.4	 Concluding Comments

There is no doubt that building IAMs is 
a challenging exercise with enormous uncer-
tainty. One may thus be pessimistic about 
the opportunity to pinpoint estimates of the 
social cost of carbon to guide policy making 
today. Nonetheless, if global climate change 
poses potentially first-order consequences for 
economic systems, then it demands attempts 
to inform the costs. We are optimistic that 
the damage function can be substantially 
informed by the recent wave of new empiri-
cal research, which has begun to provide key 
insights. As discussed in section 4.1.2, there 
are numerous opportunities to continue to 
make progress on functional forms, includ-
ing heterogeneous and nonlinear effects, as 
well as to make progress on more difficult 
issues, including adaptation, through panel 
approaches. While the estimates will never 
be perfect, the damage functions in IAMs 
can be substantially improved, and decision 
making under the remaining uncertainty is 
a subject that economic methods are well 
suited to consider.

5.  Conclusions and Future Directions 

This paper has considered recent panel 
studies that examine the effect of tem-
perature, precipitation, and windstorms on 
economic outcomes. We have provided an 
overview of this rapidly growing literature’s 
methodologies, datasets, and findings. Core 
implications, limitations, and opportuni-
ties of the weather-fluctuation approach 
have also been discussed. Overall, this lit-
erature is providing many new insights about 
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climate–economy linkages, while important 
open directions remain.

Integrating across the many studies 
reviewed, several broad themes emerge. 
First, there is a wide range of channels 
through which weather shocks affect eco-
nomic outcomes. Shocks, especially temper-
ature, affect agricultural output, industrial 
output, energy demand, labor productivity, 
health, conflict, political stability, and eco-
nomic growth. Labor productivity effects 
alone may suggest potentially economywide 
mechanisms. Moreover, the magnitudes of 
the effects are often substantive. An inter-
esting linkage appears across studies of labor 
productivity, industrial output, and economic 
growth, where estimates converge around a 
1–2 percent loss per 1°C in poor countries.

Second, the panel studies provide an 
emerging set of key insights about functional 
forms. While the specific dimensions depend 
on the economic outcome of interest, a gen-
eral theme emerges where effects are often 
not simple linear functions independent of 
context. Heterogeneous treatment effects are 
common features. One repeated form of het-
erogeneity—whether for economic growth 
or mortality—is that poor countries appear 
much more sensitive to temperature shocks 
for many outcomes. Nonlinearities also 
appear in the weather variables themselves, 
where extreme weather is often the primary 
source of effects. For example, studies of 
agricultural output, energy demand, and out-
door labor productivity in rich countries show 
high sensitivity to extreme temperatures, but 
little or no sensitivity to temperature changes 
within moderate temperature ranges. A final 
functional-form insight, which suggests com-
pounding effects over time with large impli-
cations for the overall scope of damages, is 
the appearance of potential growth effects, 
rather than level effects, on income per capita 
in poor countries.

This emerging body of work also has 
ample room for additional progress, and on 

numerous dimensions. We close by consid-
ering opportunities along three broad tra-
jectories. First, despite the broad range of 
outcomes already studied, there are plau-
sibly important channels that have, to date, 
received comparatively little study. One 
dimension is cross-border effects. For exam-
ple, additional analysis of cross-border labor 
migration would speak to both the capac-
ity for factor reallocations and the potential 
for political economy problems and conflict. 
International and internal trade effects, 
including studies of how integrated mar-
kets both mute and transmit shocks, and for 
whom, are also a rich potential area for fur-
ther study. 

Second, where reduced-form effects 
have been established, open questions 
often remain about specific mechanisms. 
Especially in cases where there are sub-
stantial heterogeneities—i.e., where effects 
in some places are effectively “turned 
off  ”—carefully understanding the specific 
mechanism would help target potential 
interventions. The more we grow to under-
stand mechanisms, the more accurately 
responses can be devised. Narrowly identify-
ing mechanisms is thus an important area for 
future research.

Third, and perhaps most importantly, 
bridging from the well-identified results 
from short-run shocks to longer-run out-
comes is an important dimension for future 
work. Recent empirical advances outlined in 
section 4 have begun to show how the same 
types of panel techniques used to identify 
short-run impacts of weather shocks can 
be used to credibly provide evidence about 
likely impacts in the medium term as well. 
Since different locations in the world experi-
ence extremely different climates, to which 
they have had time to adapt, the capacity 
to study shocks in very different climate 
contexts provides important inroads. Panel 
methodologies can also study medium-run 
and longer-run changes directly. Keeping in 
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mind that countries have warmed substan-
tially on average in the last several decades, 
with substantial variance within and across 
countries, there is ample capacity to study 
medium-run changes. The recent warm-
ing rate is also very similar to that predicted 
by many climate models through at least 
the middle of the current century. Noting 
that climate change is not about a perma-
nent climate shock, but rather about a sto-
chastic warming process along an upward 
trend, recent historical experience, which 
has occurred on such a stochastic warming 
trajectory, provides a highly relevant set-
ting to understand warming effects. Thus, 
while attention and beliefs about warming 
may change, causing changes in responses, 
and while nonlinear global effects (like sea-
level rise) continue to sit outside recent 
historical experience, recent “long differ-
ences” provide an important opportunity to 
maintain the strength of identification from 
panel methodologies while studying time 
scales that bear more directly on longer-run 
responses. So far, research using longer time 
scales does not suggest substantial adapta-
tion compared to shorter-run estimates over 
this type of time scale, but these analyses are 
still relatively few and much work remains 
ahead.
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