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Conventional wisdom dictates that to image the position of fluorescent atoms or molecules, one should
stimulate as much emission and collect as many photons as possible. That is, in this classical case, it has
always been assumed that the coherence time of the system should be made short, and that the statistical
scaling ∼1=

ffiffi
t

p
defines the resolution limit for imaging time t. However, here we show in contrast that given

the same resources, a long coherence time permits a higher resolution image. In this quantum regime, we
give a procedure for determining the position of a single two-level system and demonstrate that the standard
errors of our position estimates scale at the Heisenberg limit as ∼1=t, a quadratic, and notably optimal,
improvement over the classical case.
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Precisely imaging the location of one or more point
objects is a problem ubiquitous in science and technology.
While the resolution of an image is typically defined
through the diffraction limit as the wavelength ∼λ of
illuminating light, the final estimate of object position
instead exhibits a shot-noise limited standard deviation σ
that scales with the number of scattered photons detected—
a consequence of the law of large numbers. Thus, in the
absence of environmental noise, it is the time allowed for
accumulating statistics that appears to limit precise position
measurements.
Surprisingly, when the objects to be imaged are imbued

with quantum properties, these well-known classical limits
on resolution and standard deviation can be improved.
Impressive suboptical resolutions of ∼λ=10 [1,2] are
obtainable by advanced microscopy [2] protocols such
as STED [3], RESOLFT [4], STORM [5], and PALM [6].
Each, in its own way, exploits the coherence of a quantum
object by storing its position xi in its quantum state jψi over
an extended period of time. However, even for state of the
art, it is still the statistical scaling σ ∼ 1=

ffiffi
t

p
that limits a

position estimate taking time t.
Yet, fundamentally, coherent quantum objects allow for a

standard deviation scaling quadratically better, as σ ∼ 1=t.
This so-called Heisenberg limit [7] is a fundamental
restriction of nature that bounds the standard deviation of
a single-shot phase estimate of jψi, i.e., given a single copy
of jψi, to ∼1=t, a bound attainable in the regime of long
coherence [8–10].
How then can quantum coherence be fully exploited to

estimate a quantum object’s position? An apparent contra-
diction arises since photon scattering rates approach zero
in the limit of infinite coherence, in contrast to traditional
imaging, where maximizing scattering is desirable.
A similar problem arises in magnetic resonance imaging,
but is there resolved by a two-step process: map xi

coherently to jψi, then readout jψi using just a few photons.
However, current approaches have two flaws. First, the
mapping is typically ambiguous [Fig. 1(a)]. Because of the
periodicity of quantum phases, multiple xi can be encoded
into the same observable of jψi—often the transition
probability sðxiÞ. Second, the mapping resolution r—the
length scale over which sðxiÞ varies—cannot be improved
arbitrarily in an effective manner. Doing so, with say a long
sequence of L coherent excitations, either introduces more
ambiguity or requires time that does not perform better than
the statistical scaling [Fig. 1(b)]. Approaches that estimate
position with Heisenberg-limited scaling must overcome
these two challenges.
Such well-known difficulties are apparent when using a

spatially varying coherent drive, e.g., a Gaussian beam, that
produces excitations varying over space ∼λ. Because of
projection noise [11], sðxiÞ can only be estimated with error
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FIG. 1. (a) Map from position xi to transition probability sðxiÞ.
This is ideally unambiguous with a single narrow peak of width r
(thin; thick lines). The ambiguous map has multiple peaks
(dashed line). (b) Scaling of r with the number of coherent
drive pulses L. The optimal scaling is ∼1=L (dashed; thin lines),
but often suboptimal ∼1=

ffiffiffiffi
L

p
for unambiguous maps (thick line).

(c) Procedure outline for estimating xi with error σ scaling at the
Heisenberg limit. This combines an optimal r-scaling unambigu-
ous map with measurement in a logarithmic search.
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scaling ∼1=
ffiffi
t

p
. Thus, for any given r, a standard deviation

σ ∼ r=
ffiffi
t

p
results. Working around projection noise and

improving these resolutions is the focus of much work in
magnetic resonance as well as quantum information science
with trapped ions [12–17]. Unfortunately, state-of-the-art
[13,18,19] excitation sequences, or pulse sequences, that
produce a single unambiguous peak are suboptimal—they
offer a resolution of r ∼ λ=

ffiffiffiffi
L

p
(Fig. 1), no better than the

statistical scaling.
We present a new procedure that images quantum

objects with standard deviation σ ∼ 1=t, using a two-step
imaging process which unambiguously maps spatial posi-
tion to quantum state, allowing for readout with imaging
resolution that scales as the optimum achievable by the
Heisenberg limit. Like prior art, a pulse sequence is
employed to implement the unambiguous mapping. In
contrast, though, we develop new sequences with the
optimum resolution scaling r ∼ 1=L (Fig. 1). Because of
the narrowness of r, measuring the quantum state is much
more likely to tell one where the object is not, rather than
where it is located. Thus, our optimal unambiguous
mapping alone is insufficient for achieving σ ∼ 1=t. This
issue is resolved using a logarithmic search, modeled after
quantum phase estimation [8–10], that applies our mapping
several times with varying resolutions. This logical flow
[Fig. 1(c)] leads to an imaging algorithm with optimal
scaling σ ∼ 1=t. From the classical perspective that imaging
should be done with short coherence times and maximal
photon scattering, our algorithm is a complete surprise. In
fact, our results imply that the best method for imaging
quantum objects is to collect very few photons from a
source that can be coherently controlled.
We begin by defining the resources required for imaging

the position of a quantum object in one dimension. The
action of pulse sequences on this system is briefly reviewed
to demonstrate the mapping of spatial position to transition
probability. This allows us to define the unambiguity and
optimality criteria for a transition probability. We show that
our new pulse sequences have both properties. These
properties enable an efficient logarithmic search for system
position, solving the projection noise issue. We then
discuss estimates of real-world performance, generaliza-
tions to higher dimensions, and multiple objects.
Consider a quantum two-level system in state jψi at an

unknown position xi contained in a known interval I of
width ⪅λ. Measurements in the fj0i; j1ig basis are
assumed. Provided is a coherent drive, over which we
have phase ϕ and duration τ control, with a known spatially
varying Rabi frequency ΩðxÞ, where x ¼ xi − xc can be
translated by arbitrary distance xc. With this coherent
drive, a unitary rotation Uϕ½θ� ¼ e−iðθ=2Þ½cosðϕÞX̂þsinðϕÞŶ�,
where X̂, Ŷ are Pauli matrices, that traverses angle θðxÞ ¼
ΩðxÞτ can be applied. Combined with measurements, this
allows us to prepare j0i by repeated projection. Chaining
L such discrete rotations generates a pulse sequence

S ¼ UϕL
½θ�;…; Uϕ1

½θ�≡ ðϕ1; ::;ϕLÞ. When applied to j0i,
this results in the state Sj0i and the transition probability
pðθÞ ¼ jh1jSj0ij2 in θ coordinates. As θ depends on
position xi, a map from spatial coordinates to transition
probability is achieved through sðxÞ ¼ p(θðxÞ).
The criteria of unambiguity and optimality can be

expressed as four constraints on the form of sðxÞ.
Unambiguity means that sðxÞ has only a single sharp peak
of width r within interval I, so that excitation with high
probability only occurs in a small contiguous space. As
pðθÞ is periodic in θ → θ � 2π and, for odd L, necessarily
peaks at pðθ ¼ πÞ ¼ 1, one finds the following three
constraints sufficient to guarantee unambiguity: (1) θðxÞ
varies monotonically with x, (2) 0 ≤ θðxÞ < 2π, and
(3) pðθÞ is bounded by some δ2r ≪ 1 outside of the θ ¼
π peak. Optimality is defined as resolution scaling at the
Heisenberg limit. So, the last constraint is (4) r ∼ 1=L.
Constraints (1) and (2) relate to the spatial variation of

ΩðxÞ and are easily satisfied. One practical realization is a
Gaussian diffraction-limited beam with spatial profile
ΩðxÞ ¼ Ω0e−x

2=4λ2 , restricted to x > 0, so that θðxÞ is
monotonic in x. By choosing 0 < τ < 2π=Ω0, θðxÞ falls
in the desired principle range. In particular, the choice τ ¼ffiffiffi
e

p
π=Ω0 minimizes r as the necessary peak in sðxÞ occurs

at xπ ¼
ffiffiffi
2

p
λ, where θðxπÞ ¼ π and the gradient θ0 ¼

maxxjdθðxÞ=dxj is also steepest. This allows us to define
the resolution θr ¼ rθ0=2 in θ coordinates.
Constraints (3) and (4) relate to pðθÞ and are satisfied by

our new family of pulse sequences SL, which realize

pLðθ; δrÞ ¼ jTL½βLðδrÞ sin ðθ=2Þ�=TL½βLðδrÞ�j2;
θrðLÞ ¼ 2sech−1ðδrÞ=LþOð1=L3Þ;

r ¼ 2θrðLÞ=θ0; ð1Þ

plotted in Fig. 2, where TL½x� ¼ cos ½Lcos−1ðxÞ� is the Lth
Chebyshev polynomial and βLðxÞ ¼ TL−1 ½x−1�. Primary
features of pLðθ; δrÞ include an optimally narrow, like
θr ∼ 1=L, central peak given a uniform bound δ2r on
sidelobes [20]. We find it useful to define the half-width
θa at arbitrary heights δ2a > δ2r (Fig. 2):

FIG. 2. Transition probability pðθÞ of the sequence SL (solid
line) plotted for L ¼ 9 in comparison to a single rotation U0½θ�
(dotted line). The range of the envelope pðθ; θr; θaÞ is shaded.
Primary features of SL are sidelobes of uniform bounded error δ2r
and a central peak with width parameters θr; θa that scale as
∼1=L. The inset plots the same on a linear scale.
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θaðLÞ¼θrðLÞR;
R¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ½sech−1ðδr=δaÞ=sech−1ðδrÞ�2

q
þOð1=L2Þ:

ð2Þ

The phases that implement arbitrarily long SL are
elegantly described in closed form. We first consider the
broadband variant SB

L ¼ ðχ1;…; χLÞ, which realizes
pB
Lðθ; δrÞ ¼ 1 − pLðθ − π; δrÞ and is related to SL via ϕk ¼

ð−1Þkχk þ 2
P

k−1
h¼1ð−1Þhχh [21]. It is easily verified that

SB
3 ¼ ðχ; 0; χÞ has χ ¼ 2tan−1½tan ðπ=3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β−23 ðδrÞ

p
�. As

ðχ; 0; χÞ is symmetric [18,19], SB
3 implements an effective

rotation of angle θe, defined through 1 − pB
Lðθ; δrÞ ¼

cos2ðθe=2Þ, about some axis in the x̂-ŷ plane. Thus,
replacing each base pulse in SB

L2¼3½δr� with a different
sequence SB

L1¼3½1=βL2
ðδrÞ� produces the transition profile

pB
L1L2

ðθ; δrÞ by repeatedly applying the semigroup property
Tn½Tm½x�� ¼ Tnm½x� of Chebyshev polynomials. ForL2 ¼ 3
and any odd L1, this corresponds exactly to the transition
profile of SB

3L1
½δr�¼ðχ;0;χÞ∘SB

L1
½1=β3ðδrÞ�, where ∘ defines

a nesting operator ða1;a2;…Þ∘ðb1;b2;…Þ¼ða1þb1;
a1þb2;…;a2þb1;a2þb2;…Þ. As we provide L1 ¼ 3, by
induction the phases of SB

3n ½δr� and S3n ½δr� can be obtained
in closed form as a function of δr for all n ∈ Zþ.
After SL is applied to j0i for some choice of beam

position xc, measuring the state of the system extracts
encoded positional information. As visualized with the
envelope in Fig. 2:

pðθ; θr; θaÞ ¼
8<
:

≥ δ2a jθ − πj ≤ θa

∈ ½0; 1� θa < jθ − πj < θr

≤ δ2r otherwise;

ð3Þ

if j1i is obtained after a measurement, the object is located
with high probability in the central peak. Thus, we assign
the estimated object position xe to a spatial interval Δr of
width r ¼ 2θrðLÞ=θ0 centered on xc þ xπ . Conversely, if
j0i is obtained, the xe is located outside, in InΔa, with high
probability, where Δa is centered on xc þ xπ with width
2θa=θ0. However, projection noise means that false pos-
itives or negatives can occur. Fortunately, these can be
made exponentially improbable by taking l repeats.
The probability P of an incorrect classification, that is,

assigning xe to an interval that does not contain xi, is
straightforward. Over l repetitions, we measure j1i k times.
Note that k is drawn from a binomial distribution of l trials
with mean k̄. If k=l ≥ p̄ ¼ ðδ2a þ δ2rÞ=2, we assign xe ∈ Δr.
Otherwise, we assign xe ∈ InΔa. Thus,

P ¼ maxðP1; P2Þ ≤ exp ½−lðδ2a − δ2rÞ2=2�;
P1 ¼ Pr½xe ∈ InΔajxi ∈ Δa� ≤ Pr½k < lp̄jk̄ ¼ lδ2a�;
P2 ¼ Pr½xe ∈ Δrjxi ∈ InΔr� ≤ Pr½k ≥ lp̄jk̄ ¼ lδ2r �; ð4Þ

where P bounded by Hoeffding’s inequality applied to
binomial distributions [22] illustrates its exponential decay
with l—an exact evaluation of the cumulative probability
improves this significantly. Thus, xe can be reliably
classified to either inside or outside a region of width
∼1=L in ∼1 measurements with P ≪ 1.
A key insight allows us to sidestep the σ ∼ 1=

ffiffi
t

p
scaling of projection noise. Once the object has been
classified to Δr by SL, subintervals of width K times
narrower than Δr can be queried by SKL. As the width of
these subintervals scales optimally like ∼1=L, it is never
profitable, in the coherent regime, to accumulate statistics
indefinitely. Rather, L should be increased in geometric
progression as far as coherence times allow. In other
words, imaging proceeds by logarithmic search, illustrated
in Fig. 3, where in the nth iteration, xe has been classified
to the region In of width rn ¼ 2θrðLnÞ=θ0 with a length
Ln ¼ L0Kn sequence. Although conceptually similar
to a binary search, we must account for two key
differences: (1) queries are corrupted by projection noise
and (2) the classification intervals are asymmetric, i.e.,
Δr ≠ Δa.
The search is initialized by choosing the largest L0 such

that r0 exceeds the initial width of I. This is then followed
by n ¼ 1;…;M iterations of a recursive process. The nth
iteration involves three steps. First, In−1 is split into ⌈K=R⌉
smaller subintervals of equal width, each centered on xd,
where d ¼ 1;…; ⌈K=R⌉, K ∈ Zþ, and the choice of δ2a
determines R in Eq. (2). Second, the classification pro-
cedure involving l applications of SLn

is then applied for
each dwith shifted beam center xc ¼ xd − xπ until for some
d a classification into Δr occurs. Third, we update In ¼ Δr,
which is of width rn ¼ rn−1=K. By induction over M
iterations, xe lies in an interval width rM ¼ r0=KM. Since
K > 1, exponential precision is achieved in only a linear
number of ∼M state initializations and measurements. Any
misclassification of xe ∈ Δr such that xi∉Δr will be
detected in the next iteration as the probability of mis-
classifying xe ∈ Δr again becomes vanishingly small like
OðP2Þ. In that case, the previous iteration is repeated.

(arb. units)

FIG. 3. The logarithmic search illustrated for an object located
at xi. At the nth iteration, the estimate has been assigned to the
interval xe ∈ In. In is split into ⌈K=R⌉ subintervals, and the
classification procedure with SL0Knþ1 is applied to each sub-
interval. The first positive classification to Δr further narrows the
estimate to xe ∈ Δr ¼ Inþ1. In this example, K ¼ 3, R ≈ 1=3,
δ2a ¼ 1=2, δ2r ¼ 10−4.
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Assuming xi ∈ IM is uniformly distributed, the standard
deviation is σ ≈ ðrM=

ffiffiffiffiffi
12

p Þ½1þOðPÞ�.
The run time t ¼ τE

P
M
n¼1 Ln of this logarithmic search

is a geometric sum over M iterations, each involving an
expected number E ¼ ⌈K=R⌉l=2þOðPÞ applications of
SLn

. Letting Ω0 ¼ jdΩðxÞ=dxjx¼xπ , we have

t ¼ E
τL0ðKM − 1Þ

K − 1
≈
2Esech−1ðδrÞffiffiffi

3
p ðK − 1Þ

1

Ω0σ
; ð5Þ

where we have used KM ≫ 1, KM ¼ r0=rM, r0τ ≈
2θrðL0Þ=Ω0, and rM ≈

ffiffiffiffiffi
12

p
σ. We arrive at our final result:

an estimate of object position xe with standard deviation
σ ∼ 1=Ω0t exhibiting a Heisenberg-limited scaling with
time, and requiring M ∼ logð1=σÞ measurements.
Inserting K ¼ 3, l ¼ 5, δ2r ¼ 7

20
, δ2a ¼ 13

20
into Eq. (5),

evaluating E to OðP2Þ, and Eq. (4) exactly gives
t ≈ 26=Ω0σ. This compares favorably to the ultimate lower
bound of t ≥ π=Ω0σ, which we obtain by combining the
identity θ ¼ Ωτ with optimal schemes of phase estimation
for θ in related systems [9] wherein entanglement between
trials and nonlocal measurements are allowed—resources
which are extreme experimental challenges.
Notably, our imaging procedure gracefully degrades

in the presence of noise found in real systems. Noise
replaces S and j0i with an implementation-dependent
quantum channel EðρÞ and an imperfect initial state ρi,
respectively, to produce ρnoise ¼ EðρiÞ, in comparison to the
ideal case of ρideal ¼ Sj0ih0jS†. As trace distance [8]
TrDðρideal; ρnoiseÞ ¼ γ bounds the difference in measure-
ment probabilities using any measurement basis, noise
shifts the envelope in Eq. (3) by δ2r → δ2r þ γ, δ2a → δ2a − γ
and modifies Eq. (4):

P ≤ exp ½−lðδ2a − δ2r − 2γÞ2=2� ≪ 1;

0 < δ2a − δ2r − 2γ: ð6Þ

As long as γ < 1
2
, classification succeeds independent of the

noise model, as we can always satisfy Eq. (6) by some
choice of δr, δa, and lðγÞ ∝ ðδ2a − δ2r − 2γÞ−2. Success for
γ ≥ 1

2
depends on details of the noise model. Using the

triangle inequality, we can also separate the contributions
from EðρÞ and ρi to obtain γ ≤ γi þ γn, where γi ¼
TrDðj0ih0j; ρiÞ and γn ¼ TrD½ρideal; Eðj0ih0jÞ�. Other
errors, e.g., nonideal measurement bases, can be similarly
included. Of course, in any system with finite coherence
time τc, γ increases with sequence length. To illustrate,
consider a completely depolarizing channel where γn ¼
1
2
ð1 − e−tLn=τcÞ and ignore initial state errors so γi ¼ 0.

For fixed δa, δr, the run time in Eq. (5) becomes t ∝P
M
n¼1 lðγnÞKn. As the final standard deviation σ ∝

1=KM, the instantaneous scaling in the presence of noise,

dt
dðσ−1Þ ∝ 1þ 2

δ2a − δ2r

τLM

τc
þO½ðτLM=τcÞ2�; ð7Þ

degrades continuously from the noiseless Heisenberg-
limited scaling limτc→∞½dt=dðσ−1Þ� ∝ 1 to the statistical
scaling ½dt=dðσ−1Þ� ∝ ffiffi

t
p

. In the regime of strong
decoherence at τLM ∼ τc, accumulating statistics with
SLM

and applying the law of large numbers becomes more
time efficient than a logarithmic search.
Generalizations of our imaging procedure are possible.

For example, finding the ðxi; yi; ziÞ coordinates of an object
in three dimensions is reducible to three separate one-
dimensional problems by using three cylindrical Gaussian
beams oriented about orthogonal axes with spatial profiles
θðx; y; zÞ ¼ ffiffiffi

e
p

πe−s
2=4λ2 , s ∈ fx; y; zg. More sophisticated

methods include the use of radial Gaussian beams θðx; yÞ ¼ffiffiffi
e

p
πe−ðx2þy2Þ=4λ2 to triangulate the object position in two

dimensions. Additionally, with multiple objects, cross talk
can be suppressed by decreasing δ2r by a factor linearly
proportional to the number of objects. This allows sub-
intervals of width σ that contain objects to still be found
in t ∼ 1=σ.
Many avenues of further inquiry arise from this work.

For example, our pulse sequences mimic Dolph-Chebyshev
window functions [20,23] studied in digital signal filtering
[24,25]. This suggests a connection for applying the
extensive machinery developed for signal processing to
pulse sequences, interpreted as quantum filters [26]. In
particular, variants or even generalizations of standard
quantum phase estimation [8–10] can be found as done
here: the sequence UL

ϕ used in the standard scheme is a
special case of our sequences limδr→1SL ¼ UL

ϕ. One could
also imbue the quantum object with additional levels or
qubits, possibly leading to more robust schemes [27] that
could even exploit entanglement [28]. Finally, the tech-
niques presented apply to the entire electromagnetic spec-
trum. Thus, exciting possibilities include using microwaves
of λ ∼ 1 cm to efficiently measure nanoscale ∼10 nm
features, or novel forms of magnetic resonance imaging
where instead of using magnetic field gradients, a spatially
varying radio-frequency drive strength provides nuclei or
quantum dots with high-resolution positional information.
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