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SUMMARY

Learning to classify diverse experiences into mean-
ingful groups, like categories, is fundamental to
normal cognition. To understand its neural basis,
we simultaneously recorded from multiple elec-
trodes in lateral prefrontal cortex and dorsal striatum,
two interconnected brain structures critical for
learning. Each day, monkeys learned to associate
novel abstract, dot-based categories with a right
versus left saccade. Early on, when they could
acquire specific stimulus-response associations,
striatum activity was an earlier predictor of the corre-
sponding saccade. However, as the number of
exemplars increased and monkeys had to learn to
classify them, PFC activity began to predict the
saccade associated with each category before the
striatum. While monkeys were categorizing novel
exemplars at a high rate, PFC activity was a strong
predictor of their corresponding saccade early in
the trial before the striatal neurons. These results
suggest that striatum plays a greater role in stim-
ulus-response association and PFC in abstraction
of categories.

INTRODUCTION

Virtually all animals have evolved some innate ability to group

sensory inputs into useful categories like ‘‘food’’ and ‘‘mate.’’

Many animals can also learn new categories by abstracting

diverse experiences. Humans are particularly adept at the latter;

our brains seem predisposed to quickly learn the important

commonalities among diverse items (e.g., ‘‘tool’’ or ‘‘pub’’),

which can then be used to recognize and interpret new experi-

ences. As effortless as abstraction seems to be in neurotypical

individuals, it can be compromised in neurological conditions.

Take for example, Temple Grandin, an individual with high-

functioning autism who has difficulty learning abstractions.

She reports having no abstracted prototypes of, say, ‘‘dogs,’’

but, instead, retrieves from memory numerous individuals

(Grandin, 2006).
There are many types of categories, from simple rule-based to

very complex and abstract. Several brain areas are involved, de-

pending on the material to be categorized and the strategy to be

employed (Ashby and Maddox, 2011; Seger and Miller, 2010).

Human imaging studies have indicated activation of prefrontal

cortex (PFC) and striatum (STR) in some types of category

learning (Reber et al., 1998; Seger et al., 2000; Vogels et al.,

2002). Although PFC plays a well-documented role in executive

functions (Miller and Cohen, 2001), the role of STR in category

learning is less intuitive: it is primarily known to be important

for action selection and habit formation (Graybiel, 2005; Seger,

2008). A more detailed understanding of the roles of PFC and

striatum in category learning may come from neuronal studies

in monkeys. Several studies report that neurons in the monkey

frontal and temporal cortex and STR show selectivity for learned

stimulus groupings (Cromer et al., 2010; Everling et al., 2006;

Freedman et al., 2001; Kiani et al., 2007; Muhammad et al.,

2006; Roy et al., 2010; Sigala and Logothetis, 2002; Sripati and

Olson, 2009; Vogels, 1999). However, because category-related

neural activity in monkeys has been examined only after exten-

sive training, the respective roles of PFC and STR in the learning

of new categories are not yet understood.

We designed a task in which monkeys could rapidly learn new

abstract categories within a single experimental session, while

we recorded from multiple electrodes simultaneously in lateral

PFC and dorsal STR. It was based on a test of human category

learning, the prototype distortion paradigm (Posner et al.,

1967). It employs a large collection of constellations of dots by

distorting the positions of a prototype pattern. After experience

with enough exemplars, humans learn (without seeing the proto-

types) to abstract eachcategory andcategorize novel exemplars.

This has been used in human (Posner et al., 1967),monkey (Smith

et al., 2008), and pigeon (Blough, 1985) studies for the past 40

years, but never with neuron recordings. Subjects can learn to

distinguish between two categories (‘‘A vs. B’’) or one (‘‘A vs.

not A’’). We used the A versus B categories because amnesic

patients display impaired performance in distinguishing between

them, suggesting that this task engages more ‘‘conscious’’

memory systems (Squire and Knowlton, 1995; Zaki et al., 2003).

Each training session began with a single exemplar per cate-

gory. Monkeys learned them as specific stimulus-response

(S-R) associations. We added more and more novel exemplars

as learning progressed. This design (Katz and Wright, 2006)

requires animals to learn the categories (or fail), because sooner
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Figure 1. A Task of Abstract Category Learning

(A) After an initial fixation period, a randomly chosen exemplar of category A or

B was shown. After a brief delay interval, the animal had to classify the

exemplar by choosing between a saccade to the left or right target.

(B) Example stimuli: the top row of panels illustrates two example prototypes,

and the other two rows illustrate two exemplars from each category.

(C) The first block included a single exemplar per category and on every block

the number of category exemplars was doubled. All exemplars were included

in the pool of only two consecutive blocks. Familiar (blue) indicates exemplars

that were shared between each block and its previous one; novel (red) indi-

cates those first introduced in that block.
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or later they would be confronted with toomany novel exemplars

(>100; Figure 1C) to sustain above-chance performance via S-R

learning. In our task, each category was always associated with

a saccade direction. This was necessary for monkeys to learn

new categories in a single experimental session. We used the

development of saccade-related activity during training as an

index of learning, as in prior studies (Asaad et al., 1998; Cromer

et al., 2011; Pasupathy and Miller, 2005). The prime interest was

the early-trial activity, well before the animal’s ‘‘go’’ signal.

Changes in the early-trial neural activity presumably reflected

the monkeys’ improvement at classifying each exemplar into

one of the categories, as expected with learning.
RESULTS

Behavioral Evidence for Category Abstraction
Every day, twomonkeys were trained on a new pair of categories

(Figure 1A). The exemplars of each category were created by

shifting each of seven dots in a random direction and distance

from its prototypical location (Figure 1B; Posner et al., 1967;

Squire and Knowlton, 1995; Vogels et al., 2002). The distinction

between the two categories was, therefore, not based on
244 Neuron 71, 243–249, July 28, 2011 ª2011 Elsevier Inc.
a simple rule. The monkeys’ task was to learn to associate, by

trial and error, each category with a saccade to a right versus

left target. The training session began with one exemplar per

saccade direction, and once performance criterion was met

(80% correct in the last 20 trials) the two exemplars were supple-

mented with another two (Figure 1C). Thus, at least during the

first two blocks, behavior could be supported by learning

specific S-R associations between individual exemplars and

saccades. On block 3, the two exemplars that were first intro-

duced in block 2 (which we term ‘‘familiar’’) were supplemented

with another six novel exemplars to double the total number from

block 2 (the original two exemplars from block 1 were no longer

shown, thus leading to a total number of eight exemplars in block

3). The same procedure was repeated on each subsequent

block: block n included the exemplars that were novel in block

n-1 plus enough novel ones to bring the total number to 2n (Fig-

ure 1C and Supplemental Information). By block 8, the last block

in the sequence, monkeys were tested from a pool of 256 exem-

plars, 66% of which (168) were novel.

We examined the average performance for the novel exem-

plars in each block across all days (Figure 2A). Performance in

block 1 started from chance levels (50% correct), as expected,

but showed a steep learning curve consistent with S-R associa-

tion learning. On every later block, behavioral performance on

the novel exemplars tended to show a less steep learning curve

until it reached asymptote. In fact, by the fifth block and beyond,

themonkeys’ performancewas high and stable even though they

had to classify more and more novel exemplars. Indeed, the last

few blocks largely consisted of novel exemplars, with the

monkeys correctly classifying them on their first presentation:

the hallmark of categorization. It is worth noting that category

abstraction was not an inevitable consequence of experience.

On a few sessions (5/24), monkeys failed to fully learn the cate-

gories and complete the task. They stayed at a low level of perfor-

mance even though they remained motivated to try. In order to

analyze the neurophysiological basis of category learning, we

focused all our analyses on the sessions in which monkeys

showed successful category learning and completed all eight

blocks (n = 19).

We examined the extent to which the animal’s saccade choice

could be attributed to the individual exemplar versus the cate-

gory via an information-theoretic approach (Figure 2B; Shannon,

1948). We computed the shuffle-corrected mutual information

between saccade choice and the exemplars tested in each

block, as well as between saccade choice and the categories

(see Supplemental Information). Mutual information between

two variables (e.g., saccade choice and exemplar) quantifies

the dependence between the two variables and reflects the

fact that if, for example, the left saccade is dependent on exem-

plar A, there is a higher probability to observe the left saccade

and exemplar A as a joint event than it is to observe each of these

two events independently. The information that saccade choice

carried about individual exemplars showed a transient rise in the

first few blocks, but quickly decayed to a very low asymptote

(�0.08 ± 0.01 bit [SEM]; Figure 2B). Indeed, on the last few

blocks each exemplar was rarely repeated and thus information

to be gained from its identity was diminished (Figure S1, avail-

able online). In contrast, although category information started
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Figure 2. Behavioral Indices of Category Abstraction

(A) Across-trial performance on novel exemplars is averaged across all sessions (n = 19) for each block separately (first 16 trials per block; red lines indicate SEM).

(B) Average mutual information (bits) across blocks between saccade choice and either exemplar identity (left) or category membership (right).

(C) Left: the average number of exemplars performed in each block gradually increased until it reached asymptote in the last three blocks when the animals were

reaching criterion before all exemplars could be tested. Right: percentage of trials that tested novel exemplars (red line) versus familiar exemplars (green line).

Except for block 2, where both were at �50%, the novel outnumbered the familiar exemplars. All error bars are SEM (see also Figure S1).
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from the same levels as exemplar information (0.135 ± 0.058 bit;

because category and exemplar were the same in the first two

blocks), it quickly rose to significantly higher levels (Figure 2B;

asymptoting at �0.5 bit). A two-way ANOVA (block number

versus variable) revealed significant interaction between block

number and variable (i.e., exemplar versus category; p < 2 3

10�4). This means that as the number of exemplars was

increasing, saccade choice became better predicted by cate-

gory than the individual exemplars.

The number of different exemplars showed a progressive

increase across blocks and its average saturated after block 6

(at 23.53 ± 2.41), indicating that the animals were reaching

criterion even before all exemplars had been encountered in

each block (Figure 2C, left). Similar patterns across blocks

were also observed in the probability of exemplar repetition

and in the number of trials to criterion (i.e., both decreased

across blocks; see Supplemental Information). We focused

subsequent analyses on the novel exemplars of each block

because we were interested in category learning per se and

because familiar exemplars constituted only a small percentage

of the trials, insufficient for reliable neurophysiological analysis

(see Figure 2C, right). Because of the variability in block length,

we analyzed neural information across a 16-trial segment of

novel exemplars from the start of each block.

The first two blocks involved learning single specific exemplar-

saccade associations.We pooled them as the ‘‘S-R association’’

phase. During S-R association, saccadic choice of novel exem-

plars on the first presentation was at chance (median of 50%,

interquartile range [IQR]: 50%). Category learning presumably

took place from block 3 on, once the animals were exposed to

multiple exemplars from each category. However, we also had

to distinguish between ‘‘learning’’ and ‘‘performance’’ of the

categories. To determine the first block in which performance

relied on the newly learned categories, we set an operational

criterion: a minimum of 75% success on the trials in which
monkeys saw each novel exemplar for the very first time (for

each category separately). The median block number that first

met this criterion was five. We pooled the first two blocks after

criterion as the ‘‘category performance’’ phase. During category

performance, a median of 94% (IQR: 13%) of novel exemplars

was classified correctly on their first presentation. The pooled

blocks between these phases (median number of two blocks)

we classified as the ‘‘category acquisition’’ phase. A median of

83% (IQR: 29%) of novel exemplars was classified correctly on

their first presentation during category acquisition. This separa-

tion of experimental phases allowed us to collapse the block

dimension and pool data from multiple blocks, as done previ-

ously (Cromer et al., 2011; Pasupathy and Miller, 2005).

Neural Activity during Category Learning
We report neurophysiological results from analyses of all simul-

taneously recorded neurons in the lateral PFC (344 neurons) and

dorsal STR (256 neurons; Figure S2). Neural activity in STR was

recorded from the head and body of the caudate nucleus, aswas

done previously (Muhammad et al., 2006; Pasupathy and Miller,

2005). To avoid biasing neuron selection, we pooled analyses

across all randomly recorded, well-isolated neurons. This

allowed us to simultaneously track learning-related changes in

activity across the two neural populations under identical condi-

tions. We estimated category and/or saccade information for

every neuron by using the d0 sensitivity index (Dayan and Abbott,

2001) in a sliding two-dimensional window (across trials and

time) similar to that used in previous studies (Cromer et al.,

2011; Pasupathy and Miller, 2005). The population averages

were transformed into Z scores based on the respective

randomization distributions. Unless otherwise noted, all reported

p values are based on permutation tests.

Figure 3 shows different measures of the temporal dynamics

of neural information about category and/or saccade direction

as a function of time during the correctly performed trials of the
Neuron 71, 243–249, July 28, 2011 ª2011 Elsevier Inc. 245
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Figure 3. Dynamics of Information Process-

ing in Prefrontal Cortex and Striatum during

Category Abstraction

(A) The left column of panels illustrates average

behavioral performance (± SEM) across trials. The

other two columns illustrate neural information

for the PFC (middle) and STR (right) neural pop-

ulations, across trials (y axis) and time (x axis). The

fixation, cue, delay, and saccade epochs (also

seen in Figure 1A) are delimited by vertical lines.

Information was computed in the same trial

segment as behavioral performance, but in

a sliding trial x time window. The bottom row of

panels illustrates the S-R association phase, the

middle row illustrates the category acquisition

phase, and the top row illustrates the category

performance phase.

(B) Average (± SEM) rise time across trials for PFC

(black) and STR (red) in each of the three experi-

mental phases shown in (A).

(C) Average (± SEM) information in the PFC and

STR neural populations in the early (left) and the

late (right) epochs of the trial (see also Figure S3).
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novel exemplars. Figure 3A shows an overall picture of the

dynamics of neural information and behavior, while Figures 3B

and 3C show more specific measures (i.e., average information

and rise time). In general, category-learning-related (saccade-

direction predicting) signals were stronger in PFC than STR.

During S-R association, STR predicted the behavioral response

earlier in the trial than PFC (shortly after the exemplar onset; see

below). During category acquisition though, early-trial category

and/or saccade-predictive signals weakened in STR, while in

PFC they strengthened and appeared earlier than in STR.

During category performance, after the categories had been

abstracted, early-trial signals in PFC appeared earlier and

remainedstronger than inSTR.Toquantify the temporaldynamics

of information, we measured the amount of saccade-direction

information early versus late in the trial. We also used rise time

(Pasupathy and Miller, 2005) to measure when saccade-direc-

tion information first reached considerable strength on each trial

(half-maximum). Two-way ANOVA (three experimental phases3

two neural populations) revealed significant interaction (p < 10�6)

for each of these three measures (i.e., early-trial information,

late-trial information, and rise time). Details on the post hoc

comparisons are provided below. Single neuron examples and

population averages are in Figure S3.

During S-R Association-Based Performance, Striatum
Predicts the Behavioral Response before PFC
The bottom row of Figure 3A shows changes in neural informa-

tion during the initial two blocks when there was a small number
246 Neuron 71, 243–249, July 28, 2011 ª2011 Elsevier Inc.
of exemplars and monkeys learned

specific S-R associations. While the PFC

showed strong information about the

saccade around its execution at the end

of the trial, STR activity was a stronger

predictor of the forthcoming saccade

direction early in the trial (during and
shortly after the exemplar). This is when monkeys, based on

learning a few S-R associations, could first start to predict the

saccade that would lead to reward. Rise time in STR averaged

130.7 ± 12.9 ms (SEM) across trials of the S-R association

phase. This is in contrast to PFC, where average rise time was

significantly later, at 822.1 ± 128.2 ms (p < 5 3 10�4, Figure 3B).

Likewise, during the early-trial epoch (exemplar display and the

first half of the delay), information about the forthcoming

saccade was significantly higher in STR (1.90 ± 0.04) than PFC

(1.0 ± 0.04, p < 10�4, Figure 3C, left). In contrast, late in the trial

(second half of the delay and during saccade execution),

saccade information was stronger in PFC (2.44 ± 0.05) than

STR (0.83 ± 0.05, p < 10�4, Figure 3C, right). These results

indicate that STR played a more leading role than PFC when

performance relied on specific S-R associations.

A comparison of correct and error trials during the S-R phase

is shown in Figure 4. In both cases, monkeys execute a right or

left saccade. If activity reflects a motor signal per se, information

should be equal on both. Yet, early-trial information in STR

was greatly reduced on error versus correct trials (0.02 ± 0.04,

p < 10�4, Figures 4A and 4B). It was lower when correct and

error trials were pooled together and classified according to

exemplar (1.38 ± 0.04, p < 10�4, Figure 4C), or saccade

(0.70 ± 0.03, p < 10�4, Figure 4D). There was also a decrease

in PFC saccade information late in error trials (error trials alone:

0.85 ± 0.04, p < 10�4; correct and error trials by exemplar: 0.70 ±

0.05, p < 10�4; correct and error trials by saccade: 1.68 ± 0.06,

p < 10�4). The lower information on error trials indicate that the
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Figure 4. Error-Trial Analyses of S-RAssoci-

ation Phase

(A and B) Same as the bottom row of Figure 3A:

neural information across trials and time in PFC

(left) and STR (right) on correct trials only (A) and

error trials only (B). On both correct trials and error

trials, monkeys execute a right or left saccade; the

only differences are the exemplars.

(C) Same analysis, but on pooled correct and error

trials. The trials are grouped according to the

tested exemplar.

(D) Same as in (C), but grouped according to

saccade choice.
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STR and PFC are not reflecting a saccade motor plan per se

(including ‘‘guesses’’), but rather are involved in learning the

correct saccade. The saccadic motor plan might have been

generated and maintained elsewhere.

During Category Acquisition, PFC Starts Predicting the
Behavioral Response Earlier Than STR
During the category acquisition phase, monkeys were con-

frontedwith increasingly larger numbers of novel exemplars (Fig-

ure 1C) and had to move beyond simple S-R association and

associate the right and left saccades with each category rather

than individual exemplars. Performance was maintained at

a high level and improved, even though with each block an

increasing proportion of novel exemplars was introduced (Fig-

ure 3A, middle row). During this phase, strong early-trial,

saccade-predicting activity in PFC first appeared. This was re-

flected in the sharp reduction in rise time (Figure 3B) and

increase in saccade-direction information in the early-trial PFC

activity, relative to S-R association (p < 0.005 for rise time and

p < 10�4 for information magnitude, Figure 3C). In contrast, early

saccade-predicting signals becameweaker in STR, although still

apparent, especially for the first half of category acquisition trials

(Figure 3A). There was significant increase in STR rise time (p <

0.005; Figure 3B) and a sharp decrease in early-trial, saccade-

direction information (p < 10�4, Figure 3C). The average rise

time in PFC (253.6 ± 24.2 ms) was significantly shorter than

that in STR (476.4 ± 62.7 ms, p < 0.01) and early-trial information
Neuron 71, 243–
was significantly stronger in PFC (1.96 ±

0.04) than that in STR (1.16 ± 0.04, p <

10�4). Late in the trial, around saccade

execution, saccade-related information

was also significantly stronger in PFC

(2.04 ± 0.05) than in STR (1.67 ± 0.04,

p < 10�4, Figure 3C).

After the monkeys reached the cate-

gory learning criterion (category perfor-

mance phase), they were able to correctly

categorize novel exemplars the first

time they saw them. Early in the trial,

saccade-predicting information remained

relatively strong in PFC (rise time: 352.1 ±

24.1 ms), significantly earlier than in STR

(729.3 ± 140.6 ms, p < 0.01, Figure 3B).
Early-trial category information in PFC (1.81 ± 0.04) was also

significantly stronger than in STR (1.34 ± 0.04, p < 10�4, Fig-

ure 3C). In contrast, saccade-related activity late in the trial,

around saccade execution, was similar in PFC (2.03 ± 0.05)

and STR (2.05 ± 0.05, p = 0.72). Within PFC, there was a small

but significant decrease in early-trial information (p < 0.01) and

an increase in rise time (p < 0.05) compared to the category

acquisition phase. Within STR, in turn, there was no significant

change in rise time (p = 0.12) but a significant increase in early-

trial information (p < 0.005) when compared to the category

acquisition phase. These results suggest that, in contrast to

the S-R phase of the session, PFC played a more leading role

in learning and performing the categories than did STR, which

only showed category and/or saccade information with longer

latency.

DISCUSSION

Monkeys learned to categorize novel exemplars from two new

categories over a single experimental session by associating

the exemplar category with a right versus leftward saccade.

We structured the animals’ experience to enforce a transition

from an S-R association strategy to an abstract categorization

strategy. Early in learning, when there were few exemplars,

they could memorize specific S-R associations. Increasing the

number of novel exemplars with learning encouraged them to

abstract the ‘‘essence’’ of each category as the number of
249, July 28, 2011 ª2011 Elsevier Inc. 247



Neuron

Abstract Category Learning in PFC and Striatum
possible S-R associations became overwhelming. By the end of

learning, monkeys were categorizing novel exemplars at a high

level, even when seeing them for the very first time and never

seeing the prototypes.

In the S-R association phase, early-trial activity in STR more

strongly predicted the behavioral response (saccade direction)

for each exemplar than did PFC activity. Information in the PFC

was stronger than in the STR late in the trial, around the time

monkeys executed the corresponding response. However,

robust changes were observed as soon as the animals were

exposed to the diversity of the exemplars and started abstract-

ing the categories: early-trial saccade-predicting activity

became stronger in PFC and weaker in STR. By the time the

categories were learned, PFC activity predicted the correct

behavioral response both stronger and earlier than STR activity,

which instead showed increased information during the delay

interval and late in the trial, around the time of motor planning

and execution. Thus, with category learning, PFC signals shifted

earlier in the trial (around the time monkeys could extract the

exemplar’s category and predict the behavioral response),

whereas STR signals shifted later in the trial (around the time of

saccade planning and execution). The apparent increase of

category information in STR along with the observed increase

in rise time and decrease of information in PFC during the cate-

gory performance phase may indicate that steady-state catego-

rization was becoming habitual, as the animals were becoming

more familiar with the categories.

We previously examined the same PFC and STR regions in

monkeys performing noncategory, pure S-R learning tasks

(Asaad et al., 1998; Cromer et al., 2011; Pasupathy and Miller,

2005). Like the current study, there was rapid development of

learning-related signals in STR, but in contrast to the current

study, they also developed in PFC, albeit lagging several trials

behind those in STR (Pasupathy and Miller, 2005). In this study,

we only saw learning-related short latency signals in the PFC

after S-R association learning, during category acquisition,

even though we previously found that during novel S-R learning,

this activity can develop in PFC in as little as five correct trials

(Cromer et al., 2011). PFC activity does not simply reflect a corre-

lation with the animal’s level of performance per se. Our

monkeys reached a high level of performance during the S-R

phase with little apparent early-trial saccade-predicting PFC

activity; they also showed an improvement in behavior during

the category performance phasewhen there was actually a small

decrease in PFC information (perhaps because of increasing

familiarity with the categories). The differences between studies,

as well as the functional relationship between the PFC and STR,

could be related to the dependence of PFC activity on task

demands. The monkeys had experience with each learning

task and thus could have adopted different long-term strategies,

depending on whether the task involved single S-R associations

(Cromer et al., 2011), learning and reversal of S-Rs (Pasupathy

and Miller, 2005), or category learning (this study).

One clue to the PFC-STR functional relationship may lie in the

anatomical loops connecting frontal cortex, striatum, and basal

ganglia. Our study targeted the PFC-dorsal striatum associative

loop. We hypothesized that the faster plasticity in STR first

acquires associations and then ‘‘trains’’ slower learning mecha-
248 Neuron 71, 243–249, July 28, 2011 ª2011 Elsevier Inc.
nisms in the PFC (Pasupathy and Miller, 2005). During learning

of abstractions like categories, STR could first acquire specific

associations. Category acquisition could occur as the output of

the basal ganglia trains cortical networks, which by virtue of

their slower plasticity can pick up on the common features

across specific exemplars and form abstract representations

of the category (Miller and Buschman, 2008; Seger and Miller,

2010). This is consistent with observations that familiar abstract

rules are represented more strongly and with a shorter latency

in the frontal cortex than in the STR of monkeys (Muhammad

et al., 2006) and thus were more likely to be stored in the

PFC. Our finding that the strongest learning-related signals in

STR appeared early in S-R learning, followed by stronger

engagement by the PFC during and after category acquisition,

is consistent with this hypothesis. In short, although our results

do not preclude an important role for STR in the acquisition of

abstractions by the PFC, they suggest greater engagement of

PFC than STR neural mechanisms during category learning

per se.
EXPERIMENTAL PROCEDURES

Animals

Data were collected from two macaque monkeys that were taken care of in

accordance with the National Institutes of Health guidelines and the policies

of the Massachusetts Institute of Technology Committee for Animal Care.

Task

Trials began when the animal maintained fixation on a central target for 0.7 s.

After fixation, a randomly chosen exemplar from either category was pre-

sented for 0.6 s (cue). Trials from both categories were randomly interleaved

throughout the session. After the cue offset, there was a 1 s delay interval,

followed by the saccade epoch, during which the fixation target was extin-

guished and two saccade targets appeared left and right of the center of fixa-

tion. The animal had to make a single direct saccade to the correct target

within 1 s for reward. Exemplars comprised static constellations of seven

randomly located dots, generated as intermediate-level distortions of the cor-

responding prototype (see Supplemental Information).

Neurophysiology

Simultaneous recordings from PFC and STR were performed by using two

multielectrode (8–16) arrays, which were lowered at different sites every day.

Spikes were sorted offline by using principal component analysis. All compu-

tations were done on MATLAB (MathWorks, Natick, MA). Neural information

was computed by using the d0 sensitivity index (i.e., the absolute difference

in average firing rate between two conditions normalized to their pooled

standard deviation) and was calculated along a trial 3 time sliding window

(10 trials 3 100 ms). Unless otherwise noted, only correct trials were used

for neurophysiological analyses. To correct for sampling bias, we randomly

shuffled the trials between the two categories 1000 times and calculated the

population average information for the corresponding trial-time bin for each

permutation. The observed population average was subsequently trans-

formed into a z score, based on the 1,001 permutations (including the

observed one). For permutation tests, we randomly shuffled the data between

two conditions (i.e., experimental phases or neural populations) 10,000 times

and quantified the probability of observing the given difference by chance.
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