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An essential part of high-energy hadronic collisions is the soft hadronic activity that underlies the
primary hard interaction. It includes soft radiation from the primary hard partons, secondary multiple
parton interactions (MPI), and factorization-violating effects. The invariant mass spectrum of the leading jet
in Z þ jet and H þ jet events is directly sensitive to these effects, and we use a QCD factorization theorem
to predict its dependence on the jet radius R, jet pT , jet rapidity, and partonic process for both the
perturbative and nonperturbative components of primary soft radiation. We prove that the nonperturbative
contributions involve only odd powers of R, and the linear R term is universal for quark and gluon jets. The
hadronization model in PYTHIA8 agrees well with these properties. The perturbative soft initial state
radiation (ISR) has a contribution that depends on the jet area in the same way as the underlying event, but
this degeneracy is broken by dependence on the jet pT . The size of this soft ISR contribution is proportional
to the color state of the initial partons, yielding the same positive contribution for gg → Hg and gq → Zq,
but a negative interference contribution for qq̄ → Zg. Hence, measuring these dependencies allows one to
separate hadronization, soft ISR, and MPI contributions in the data.
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Soft hadronic activity plays a role in practically all but
the most inclusive measurements at the LHC. It is often an
important yet hard-to-quantify source of uncertainty, so
improving its theoretical understanding is vital. One can
consider four conceptually different sources for the effects
that are experimentally associated with soft hadronic
activity and the underlying event (UE): 1. perturbative soft
radiation from the primary incoming and outgoing
hard partons within factorization, 2. nonperturbative soft
effects within factorization associated with hadronization,
3. multiple parton interactions (MPI) at lower scales in the
same proton-proton collision, and 4. factorization breaking
contributions. For any given observable, the question is
how much of each of these sources is required to describe
the data. For example, it is known that including higher-
order perturbative corrections (source 1) in parton-shower
Monte Carlo programs can give a nontrivial contribution to
traditional UE measurements [1,2].
Traditionally, the UE activity is measured in regions of

phase space away from hard jets [2–12]. These results are
used to tune the MPI models which describe the UE in
Monte Carlo programs [13–18]. These models are then
extrapolated into the jet region, where they are used to
describe various jet observables, including the jet mass
spectrum in dijet and Drell-Yan events [19,20], which is an
important benchmark jet observable at the LHC.
In this Letter, we directly consider the jet region and give a

field-theoretic description of primary soft effects (sources 1
and 2), and discuss how to distinguish sources 1, 2, and 3.

This is done using the dependence of the jet mass spectrum
and its first moment on the jet radius R, jet momentum pJ

T ,
jet rapidity yJ, and participating partons. Wewill not consider
factorization-breaking effects here (see, e.g., Ref. [21]).
We consider the jet mass spectrum in exclusive pp →

Z þ 1 jet and pp → H þ 1 jet events. The factorization
formula formJ ≪ pJ

T that includes sources 1 and 2 is given
by [22–24]

dσ
dm2

JdΦ2

¼
X
κ;a;b

HκðΦ2Þ
Z

dkSdkBðIκaaIκbb ⊗ fafbÞðkBÞ

× JκJðm2
J − 2pJ

TkSÞSκðkS; pcut − kB; yJ; RÞ:
ð1Þ

Here, Φ2 ¼ fpJ
T; yJ; Yg, Y is the rapidity of the Z=H þ jet

system, κ denotes the partonic channel, and kS and kB
account for soft contributions to the jet massm2

J and jet veto
pcut (which vetoes additional jets). The HκðΦ2Þ contains
the perturbative matrix elements for the hard process, and
IκaaIκbb ⊗ fafb describes perturbative collinear initial-
state radiation convolved with the parton distribution
functions. For the normalized jet mass spectrum, the
dependence on pcut largely drops out [24]. As a result,
the shape of the jet mass spectrum is determined by the jet
function JκJ , describing energetic final-state radiation, and
by the soft function Sκ. See also Refs. [25,26].
The soft function Sκ describes the primary initial and

final-state soft radiation. It depends on the jet through yJ
and R but not pJ

T , and can be factorized as [27–29]
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SκðkS;kB;yJ;RÞ¼
Z

dkSpertκ ðkS−k;kB;yJ;RÞ

×Fκðk;yJ;RÞ½1þOðΛQCD=kBÞ�; ð2Þ
where Spertκ contains the perturbative soft contributions. Fκ

is a normalized nonperturbative shape function which
encodes the smearing effect that the hadronization has
on the soft momentum kS. For kS ∼ ΛQCD, the full FκðkÞ is
required and shifts the peak region of the jet mass spectrum
to higher jet masses.
In the perturbative tail of the jet mass spectrum, where

kS ≫ ΛQCD, Sκ can be expanded,

SκðkS; yJ; RÞ ¼ Spertκ (kS −ΩκðRÞ; yJ; R)
þOðΛ2

QCD=k
3
S; αsΛQCD=k2SÞ; ð3Þ

where ΩκðRÞ ¼
R
dk kFκðkÞ ∼ ΛQCD is a nonperturbative

parameter. In this region, factorization predicts a shift in the
jet mass spectrum, which is described by ΩκðRÞ. Below, we
use the field-theoretic definition of Ωκ to quantify its R
dependence and prove that it is independent of yJ. The above
treatment provides an excellent description of hadronization
in both B-meson decays and eþe− event shapes [30,31].
Factorization also underlies the Monte Carlo description

of the primary collision, where H corresponds to the hard
matrix element, while I , J, and S are described by parton
showers, and F corresponds to the hadronization models.
The standard parton shower paradigm does not completely
capture interference effects between wide-angle soft emis-
sions from different primary partons that appear atOðαsÞ in
Sκ. Monte Carlo programs include MPI (source 3), which
are not in Eq. (1). See Ref. [32] for a recent discussion.
For our numerical studies, we consider both PYTHIA8
[33,34] with the ATLAS underlying event tune AU2-
MSTW2008LO [16] and HERWIG++ 2.7 [35,36] with its
default underlying event tune UE-EE-5-MRST [18]. Both
give a reasonable description of the CMS jet mass spectrum
in Z þ jet events [20]. We also compare to the PYTHIA8
default tune 4C.
We consider exclusive Z=H þ jet events at Ecm ¼ 7 TeV

in both quark and gluon channels, with the leading jet

within a certain range of pJ
T and yJ, and we veto additional

jets with pJ
T > 50 GeV. The jets are defined using anti-kT

[37,38]. In Fig. 1, we show the jet mass spectrum for quark
and gluon jets with R ¼ 1 after parton showering (black
dotted line) and including both hadronization and MPI
(blue dashed line). Equation (3) predicts that for m2

J ≫
ΛQCDpJ

T the nonperturbative corrections shift the tail of the
jet mass spectrum by

m2
J ¼ ðm2

JÞpert þ 2pJ
TΩκðRÞ: ð4Þ

We can regard the partonic result from PYTHIA8 as the
baseline purely perturbative result. ChoosingΩ ¼ 2.4 GeV
for qg → Zq and Ω ¼ 2.7 GeV for qq̄ → Zg yields the
green dot-dashed curves in Fig. 1. We see that the effect of
both hadronization and MPI in the tail is well captured by
this shift. For hadronization, Eqs. (1), (2) predict a con-
volution with a nonperturbative function,

dσκ
dm2

J
¼

Z
dk

dσpartonicκ

dm2
J

ðm2
J − 2pJ

TkÞFκðkÞ: ð5Þ

With the above Ω’s, this convolution gives the red solid
curves in Fig. 1, yielding excellent agreement with the
hadronizationþMPI result over the full range of the jet
mass spectrum. [Here, FκðkÞ ¼ ð4k=Ω2

κÞe−2k=Ωκ ; the sim-
plest ansatz that satisfies the required properties: normali-
zation, vanishing at k ¼ 0, falling off exponentially for
k → ∞, and having a first moment Ωκ. Fixing the value
of Ωκ from the tail, we find similar levels of agreement
across all values of pJ

T , yJ, R, for all partonic channels, and
for different jet veto cuts (including no jet veto).] Both
hadronization and MPI populate the jet region with a
smooth background of soft particles, which can explain
why the MPI effect is reproduced alongside the hadroniza-
tion by a convolution of the form Eq. (5). This apparent
degeneracy motivates us to determine the calculable
behavior of the jet mass spectrum due to primary pertur-
bative and nonperturbative soft radiation within factoriza-
tion, study its dependence on pJ

T , yJ, and R, and compare
these results to Monte Carlo program contributions for soft
ISR, hadronization, and MPI.
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FIG. 1 (color online). For the jet mass spectrum in PYTHIA8, the change from partonic to hadronizationþMPI is described by a simple
shift in the tail, and a simple convolution everywhere, for both quark jets (left panel) and gluon jets (right panel).
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We consider the first moment in m2
J,

M1 ¼
1

σ

Z
dm2

J m
2
J
dσ
dm2

J
; ð6Þ

which tracks the shift observed in Fig. 1. Taking the first
moment of Eq. (1) combined with Eqs. (2) and (3), we can
compute the dependence of primary soft radiation on pJ

T ,
yJ, R, and partonic channel, giving

M1 ¼ Mpert
1κ ðpJ

T; yJ; RÞ þ 2pJ
TΩκðRÞ: ð7Þ

Here, Mpert
1κ ðpJ

T; yJ; RÞ contains all perturbative contribu-
tions, while ΩκðRÞ encodes the shift due to nonperturbative
effects.
For pp → H=Z þ jet, ΩκðRÞ is given by the vacuum

matrix element of lightlike soft Wilson lines Ya, Yb, and
YJ ≡ YJðyJ;ϕJÞ along the beam and jet directions,

ΩκðRÞ ¼
Z

1

0

dr
Z

∞

−∞
dy

Z
2π

0

dϕ fðr; y − yJ;ϕ − ϕJ; RÞ

× h0jT̄½Y†
JY

†
bY

†
a�ÊTðr; y;ϕÞT½YaYbYJ�j0i: ð8Þ

Here, the rapidity y, azimuthal angle ϕ, and transverse
velocity r ¼ pT=mT are measured with respect to the beam
axis. The color representation of the Wilson lines depends
on the partonic channel, giving the κ dependence of Ωκ.
The jet mass measurement function is fðr; y;ϕ; RÞ ¼
ðcosh y − r cosϕÞθ½bðy;ϕ; rÞ < R2�, where bðy;ϕ; rÞ
specifies the jet boundary. The matrix element involves
the energy flow operator [39–43] ÊTðr; y;ϕÞjXi ¼P

i∈XmTiδðr − riÞδðy − yiÞδðϕ − ϕiÞjXi. From Eq. (8), it
follows immediately that ΩκðRÞ is independent of pJ

T .
Using invariance under boosts and rotations, we can prove
that it is also independent of yJ and ϕJ (see the
Supplemental Material [44]).
Expanding Eq. (8) for small R, we find [44,45]

ΩκðRÞ ¼
R
2
Ωð1Þ

κ þ R3

8
Ωð3Þ

κ þ R5

32
Ωð5Þ

κ þO
��

R
2

�
7
�
; ð9Þ

where the ΩðiÞ
κ are R independent and only odd powers

of R occur. This R scaling of our nonperturbative
operator for jet mass agrees with that found in Ref. [46]
from a QCD hadronization model. Our operator definition
implies a universality for the linear R nonperturbative
parameter in Eq. (9). For R → 0, the beam Wilson lines
fuse into a Wilson line in the conjugate representation to
the jet, YaYb → YJ̄. The result is given by (see the
Supplemental Material [44])

Ωð1Þ
κ ¼

Z
1

0

dr0h0jT̄½Y†
JY

†
J̄�Ê⊥ðr0ÞT½YJ̄YJ�j0i; ð10Þ

which only depends on whether the jet is a quark or gluon
jet. For quarks, we can compare this to thrust in deep-
inelastic scattering (DIS) [47], where precisely this param-

eter Ωð1Þ
q appears [48].

Consider next Mpert
1κ in Eq. (7). Dimensional analysis

and the kinematical bound mJ ≲ pJ
TR imply that Mpert

1κ

scales like ðpJ
TRÞ2. Resummation modifies the leading

R dependence to R2−γκ , where γκ ∼ αs > 0. The soft
function contains a contribution due to interference
between ISR from the two beams (see the Supplemental
Material [44]),

Spertκ ðkSÞ ⊃
αsCκ

π
R2

1

μ

�
μ

kS

�
þ
: ð11Þ

The extra R2 for soft ISR causes it to contribute to Mpert
1κ as

ðpJ
TÞ2R4 with the color factors

Cqg→q ¼ Cgg→g ¼
CA

2
¼ 3

2
;

Cqq̄→g ¼ CF −
CA

2
¼ −

1

6
: ð12Þ

The above factorization results can be compared to
PYTHIA8 and HERWIG++, where we find that the depend-
ence of M1 on pJ

T , yJ, κ, is well described by
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FIG. 2 (color online). The R dependence of Ωhad
κ ðRÞ extracted fromM1 in PYTHIA8 (left panel) and HERWIG++ (right panel), shown as

dots, triangles, and squares for different channels. The fit using Eq. (9) (shown by lines) demonstrates the agreement with factorization.
The small-R behavior only depends on whether the jet is initiated by a quark (blue dashed line) or gluon (orange solid and green
dotted lines).
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M1 ¼ Mpartonic
1κ ðpJ

T; yJ; RÞ þ 2pJ
TΩhad

κ ðRÞ
þ 2pJ

T ½ϒMPIðyJ; RÞ þ ΩMPI
κ ðyJ; RÞ�: ð13Þ

Here, Mpartonic
1κ is the partonic contribution, Ωhad

κ is defined
by partonic → hadronic, and ϒMPI by partonic →
partonicþMPI. The small remainder from hadronization
of the MPI, ΩMPI

κ , is defined to ensure the sum of terms
yields the full partonic → hadronicþMPI. Note that
hadronization and MPI contributions are each individually
described by shifts to M1. Also, the independence of Ωκ to
yJ and ϕJ is observed in both PYTHIA8 and HERWIG++ (see
the Supplemental Material [44]). Equation (13) contains
MPI contributions with no analog in Eq. (7).
The hadronization Ωhad

κ ðRÞ=ðR=2Þ from PYTHIA8 and
HERWIG++ is shown in Fig. 2 for different channels. For
R ≪ 1, Ωhad

κ ðRÞ is linear in R and has the same slope for
the two channels involving gluon jets, as predicted by
factorization. For PYTHIA8, all channels differ for large R
and can be fit to the factorization form in Eq. (9). For the

quark jet, we extract Ωð1Þ
q ¼ 1.2 GeV and for gluon jets

Ωð1Þ
g ¼ 2.2 GeV. For qg → Zq and gg → Hg the R depend-

ence is strong enough that an additional R2 contribution is
disfavored in the fit. For HERWIG++, the dependence

on higher powers of R is much weaker, and Ωð1Þ
g ≈Ωð1Þ

q .
The full set of fit coefficients is in the Supplemental
Material [44].
In Fig. 3, we compare our perturbative next-to-leading

logarithmic (NLL) and next-to-next-to-leading logarithmic
(NNLL) factorization predictions [24] for Mpert

1κ to the
corresponding Mpartonic

1κ from PYTHIA8 and HERWIG++ as
a function of R, dividing by the leading R2 dependence.
The R4 contribution from soft ISR only enters at NNLL and
is seen in the rise at large R for qg → Zq (left panel). This
effect is partially modeled by soft emissions in the parton
shower, which explains the similar R4 contribution for
qg → Zq in PYTHIA8 and HERWIG++. For qq̄ → Zg (right

panel), Eqs. (11) and (12) predict the R4 contribution from
soft ISR to be negative, which we observe at NNLL. This
negative interference effect is not captured by these
Monte Carlo programs.
The apparent ambiguity between R4 contributions from

soft ISR and MPI can be resolved through their pJ
T

dependence. In Fig. 4, we show the R4 component cκ4 of
the partonic moment, obtained by fitting

Mpart
1κ

2pJ
TR

2
¼ cκ2R

−γκ þ cκ4R
2; ð14Þ

and also the MPI contribution to the moment,
ϒMPI=R2 ∼ R2. The differences between various tunes
for cκ4 and ϒMPI reflects their apparent ambiguity, whereas
their sum agrees much better. The pJ

T dependence clearly
resolves the ambiguity: cκ4 ∼ pJ

T as predicted by factoriza-
tion, whereas ϒMPI is independent of pJ

T . As shown in the
Supplemental Material [44], the channel dependence could
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FIG. 3 (color online). R dependence of the perturbative jet mass moment Mpert
1κ at NLL and NNLL accuracy and the partonic jet mass

moment Mpartonic
1κ in PYTHIA8 (tune AU2 and 4C) and HERWIG++ for qg → Zq (left panel) and qq̄ → Zg (right panel). The soft ISR

contribution ∼R4 is well modeled by Monte Carlo programs for qg → Zq, but not for the destructive interference in qq̄ → Zg.
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FIG. 4 (color online). pJ
T dependence of the ∼R4 contributions

to the jet mass moment in PYTHIA8 and HERWIG++ from MPI
(solid lines from ϒMPI), and soft ISR [dashed lines from cκ4 in
Eq. (14)] for qg → Zq. They can be distinguished by their pJ

T
dependence.
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also be used to separate soft ISR from MPI: cκ4 depends on
the color channel as in Eq. (12), whereas ϒMPI is channel
independent. Also, the yJ dependence of soft ISR is quite
different between HERWIG++ and PYTHIA8.
To conclude, we have used QCD factorization to predict

the properties of the perturbative and nonperturbative
components of primary soft radiation for jet mass in
pp → H=Z þ jet. We have shown that the nonperturbative
soft effects involve odd powers of R and are universal for
quark and gluon jets for R ≪ 1. Hadronization models in
Monte Carlo programs agree with these predictions. The
perturbative soft radiation has a contribution that scales like
R4, just like the contribution from MPI. These components
depend differently on pJ

T and on the partonic process.
Hence, separately measuring quark and gluon channels in
Drell-Yan events and in different bins of pJ

T provides the
possibility to clearly distinguish between MPI and primary
soft radiation.
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