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Abstract

A general proof is given for the equality between group velocity

and energy velocity for linear wave propagation in a homogeneous

medium with arbitrary spatial and temporal dispersion.

In the series of physics “Questions” in the American Journal of Physics,

K. M. Awati and T. Howes ask for a general proof of the fact that in linear

dispersive wave propagation, energy propagates at the group velocity [1].

Several answers to this question have appeared recently [2], but a general

proof has not been provided by any of them. For a stable and nondissipative

[3] medium, such a general proof is indeed available from classical, continuum

electrodynamics of media [4]. It can be readily argued that this type of proof
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can be carried out for any other (than electrodynamic) description of a stable,

nondissipative, linear (or, more generally, linearized dynamics of a) medium.

In an electrodynamic formulation, one chooses to eliminate the “mechanical”

field variables in favor of the electromagnetic fields; one can easily visualize

doing the opposite. For exposing the simplest electrodynamic proof, I will

focus on a non-magnetic medium ( ~B = µ0
~H) which is arbitrarily (spatially

and temporally) dispersive — a plasma. The generalization to linear waves

in magnetic media is straightforward.

The continuum electrodynamics of a plasma-like medium is described

by Maxwell’s equations for the electromagnetic fields ~E and ~H, wherein the

collective “mechanical” dynamics of the medium as a function of ~E and ~H are

expressed by electric current and electric charge densities ( ~J, ρ). The latter,

expressed as functions of ~E and ~H, are what one can call the electrodynamic

response functions of the medium. For a plasma-like medium, since ~B = µ0
~H,

Faraday’s equation provides a way of eliminating ~H in favor of ~E, so that

the response functions are only functions of ~E. In addition, since ~J and ρ are

related by the continuity equation, the mechanical dynamics, regardless of

the particular model chosen for describing the dynamics, can be expressed by

a single “electrical” response (or “influence”) function; e.g., the conductivity
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tensor
↔
σ , or the susceptibility tensor

↔
χ, or the permitivity tensor

↔
K, or the

dielectric tensor
↔
ε — all of these being related to each other.

In a homogeneous medium of the type we are considering, the most gen-

eral linear response function is one which expresses both spatial and temporal

dispersion through a convolution integral in both space and time. Thus, for

example, the current density ~J(~r, t), at a point location ~r and time t, depends

upon the time-history and location-neighborhood (consistent with causality

and relativity) of the electric field ~E(~r, t) through the space-time conductivity

tensor influence function. The Fourier-Laplace transform of this convolution

relationship is expressed by the conductivity tensor function of wave vector

~k and frequency ω as

~J(~k, ω) =
↔
σ (~k, ω) · ~E(~k, ω) . (1)

The other linear response functions have similar interpretations, and are

simply related to each other:
↔
χ (~k, ω) =

↔
σ (~k, ω)/(−iωε0);

↔
K (~k, ω) =

↔
I +

↔
χ

(~k, ω);
↔
ε (~k, ω) = ε0

↔
K (~k, ω). The Fourier-Laplace transform of Maxwell’s

3



equations for the self-consistent electromagnetic fields are then

~k × ~E = ωµ0
~H (2)

and

~k × ~H = −ωε0
↔
K (~k, ω) · ~E . (3)

Taking ~k× (2) and using (3) to eliminate ~H, one finds the homogeneous set

of equations for ~E:

↔
D (~k, ω) · ~E = 0 , (4)

where the dispersion tensor
↔
D is

↔
D (~k, ω) = ~k~k − k2

↔
I +

ω2

c2

↔
K (~k, ω) . (5)

For nontrivial solutions of (4),

det[
↔
D (~k, ω)] ≡ D(~k, ω) = 0 (6)

which is the dispersion relation giving, e.g., ω(~k). These are the natural

modes of the system, with fields whose space-time dependence exp[i(~k·~r−ωt)]
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is constrained by the dispersion relation (6). Natural modes that are purely

propagating waves are those for which solutions of (6) entail real ~k = ~kr and

real ω = ωr, i.e., ωr(~kr). The group velocity for such waves is given by

~vg =
∂ωr

∂~kr
. (7)

In a dissipation-free medium, the permitivity tensor is hermitian for real ~k

and real ω,
↔
K (~kr, ωr) =

↔
Kh. In a linearly stable and dissipation-free medium,

the direction of signal propagation is given by the direction of ~vg [5].

In order to determine the velocity with which energy is transported, one

needs to first determine the appropriate formulation of energy and energy

flow in a space-time dispersive medium. For the purely propagating wave

modes in a plasma-like medium, one can show that the average (in space or

time) energy density is given by [6]

〈w〉 =
µ0

4
| ~H|2 +

ε0

4
~E ∗ ·

∂(ωr
↔
Kh)

∂ωr
· ~E (8)

where the first term is clearly the average magnetic energy density and the

second term is the average energy density in the electric field and in all of

5



the collective “mechanical” fields. One can also show that the average energy

flow density is given by [6]

〈~s 〉 = Re
(

1

2
~E × ~H ∗

)
−
ε0
4
ωr ~E

∗ ·
∂
↔
Kh

∂~kr
· ~E (9)

where the first term is the average electromagnetic (Poynting) energy flow

density and the second term is the average collective “mechanical” energy

flow density. Using (8) and (9), one can define an energy flow velocity for a

natural wave ωr(~kr):

~ve =
~sk
wk

, (10)

where ~sk = 〈~s 〉|ωr(~kr) and wk = 〈w〉|ωr(~kr) are the average wave energy flow

density and wave energy density, respectively.

The proof that (7) and (10) are equal to each other proceeds as follows.

Consider Maxwell’s equations (2) and (3), for ~k = ~kr, ω = ωr, and
↔
K (~k, ω) =

↔
Kh (~kr, ωr),

~kr × ~E = ωrµ0
~H (11)

~kr × ~H = −ωrε0
↔
Kh (~kr, ωr) · ~E . (12)
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As followed from (2) and (3), these entail the dispersion relation

det

[
~kr~kr − k

2
r

↔
I +

ω2
r

c2

↔
Kh (~kr, ωr)

]
≡ Dh(~kr, ωr)

= 0 (13)

giving ωr(~kr), and thence the group velocity,

~vg =
∂ωr

∂kr

=
(−∂Dh/∂~kr)ωr(~kr)

(∂Dh/∂ωr)ωr(~kr)

. (14)

In addition, consider the variation of (11) and (12) with respect to ~kr and

ωr:

(δ~kr)× ~E + ~kr × (δ ~E) = (δωr)µ0
~H + ωrµ0(δ ~H) (15)

(δ~kr)× ~H + ~kr × (δ ~H) = −ε0δ(ωr
↔
Kh) ·

~E − ωrε0
↔
Kh · (δ

~E) . (16)

Dot-multiplying (15) by ~H ∗, (16) by −~E ∗, the complex conjugate of (11) by

−(δ ~H), the complex conjugate of (12) by (δ ~E), and adding these equations,

one obtains

(δ~kr) · 〈~s 〉 = (δωr)〈w〉 (17)
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from which one immediately finds

∂ωr

∂~kr
=
~sk
wk

. (18)

This proves the equality of the group velocity and energy velocity, ~vg = ~ve, for

purely propagating waves in a linear, generally dispersive, and nondissipative

“electric” medium, like a plasma. Note that, in the above proof, no specific

model of the linear, loss-free, dispersive dynamics had to be specified; the

result (18) is thus valid for any linear, dispersive dynamics of a loss-free

medium.

Two remarks are in order. First, in relation to the assumption of a nondis-

sipative medium, the Kramers-Krönig relations for a dispersive medium re-

quire that the permitivity tensor,
↔
K (~kr, ωr), have both a hermitian and

an anti-hermitian part. The relative magnitudes of these parts can, how-

ever, vary from region to region in (~kr, ωr) space. Weakly damped waves

[|ωi(kr)| � |ωr(kr)|], for which (18) holds, exist in regions of (~kr, ωr) where

the anti-hermitian part of
↔
K is small compared to its hermitian part so that

ωr(~kr) is essentially determined by (13). Second, group velocity (as its name

is intended to remind us) applies to the velocity of a group of waves — a
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wavepacket — and by (18) this must also be true for energy velocity in a loss-

free, dispersive medium [7]. Allowing for the wave fields [exp(i~kr · ~r − iωrt)]

to have amplitudes that vary slowly in space and time (slowly compared to

the fast scales of, respectively, ~kr and ωr), their velocity is also found to be

given by (14). In addition, averaged (on the fast scales of either ~kr or ωr)

energy and energy flow densities are again found to be given by (8) and (9),

respectively, and one can show that (17) and (18) also hold for such wave

fields with slow space-time amplitude modulations. A detailed proof of the

above, including the account of weak dissipation, is given in the first reference

in [8].

Several concluding remarks are also in order. The above derivation carries

through for a weakly inhomogeneous and/or weakly time-varying medium as

long as geometrical optics is applicable to describe the wave propagation

[8]. The proof of (18) can also be carried out for a weakly dissipative or

weakly unstable medium [8]. However, in a linearly unstable medium [i.e.,

in which for some ~kr, ω(~kr) = ωr(~kr) + iωi(~kr) has ωi(~kr) > 0], the group

velocity direction for purely propagating wave modes having ω(~kr) = ωr(~kr),

for some other ~kr, may not be the same as the direction of signal propagation

[9].
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