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A novel distributed window for output radiation from a high power 110 GHz
gyrotron is made of thin slats of sapphire interleaved and brazed to hollow metal
vanes. We report the results of electromagnetic theory and cold test of this
distributed window.  We calculate the frequency dependence of the reflectivity
of a Gaussian beam from the window. The theory indicates a significant
frequency shift of the minimum reflectivity with temperature rise of the sapphire
slab. This effect is of great importance for high power operation. In cold test, the
distributed window reflectivity was measured while the window was heated. The
cold test results are in good agreement with the theory.

1. INTRODUCTION

Development of high power microwave sources for fusion applications
is limited by the availabilit y of suitable vacuum windows in the 100 to 200 GHz
frequency range. A novel distributed window for high power gyrotrons operating
at frequencies 110 and 170 GHz  has been proposed in [1]. Cooling the whole
area of the window allows operation at a very high power of the incident wave.



Fig. 1. Four sections of the distributed window.

As shown in Fig.1, the distributed window consists of arrays of thin sapphire
slats separated by tapered metal (niobium) vanes. The sapphire slats are brazed
to the metal. The electric field of the incident linear polarized wave is
perpendicular to the vanes, and the sapphire slats are resonant for the operating
frequency of 110 GHz, so that the reflectivity from the window is small . Every
vane is hollow so that water coolant can pass through it. Eff icient cooling of the
sapphire will allow high power (1MW), long pulse (10sec) operation of the
gyrotron.

  In the paper [1], a simple theory of reflection from a dielectric slab was
applied to calculate the sapphire thickness. The numerical thermal and stress
calculations as well as the electromagnetic calculations using the time-domain
code have been done in [2]. In this paper we focus on the electromagnetic
analysis of the distributed window. Specifically, we examine the effect of the
shift of resonant frequency of the window caused by the tapers contiguous to the



sapphire slats. In addition, we calculate the reflectivity of a Gaussian beam from
the window.

The experiments with the gyrotron window indicated a 100K
temperature rise of the sapphire during long pulse operation. The temperature
rise changes the dielectric constant ε of the sapphire by an amount ∆ε which
results in a resonant frequency shift ∆f/f=-∆ε/(2ε). Below we analyze this
frequency shift using dielectric constant data [3,4]. We assume that the heating
affects the sapphire dielectric constant only.  The temperature expansion of the
sapphire and metal part can be shown to be a much smaller effect.

2. REFLECTION OF A PLANE WAVE

The symmetry of the incident wave permits us to pass over from the
problem of diffraction at the periodic structure depicted in Fig. 1 to the problem
of the TEM-mode reflection and conversion by the irregular planar waveguide
with a dielectric slat. This waveguide (Fig.2) corresponds to a unit cell of the
structure. The regular waveguide dimension 2a and the sapphire height 2b
(Fig.2) are chosen to provide single-mode operation of the waveguide; that is,

2a<λ and 2b<λ/n , where λ is the free space wavelength, n= ε  is the reflective
index.

Fig. 2. Planar tapered waveguide with a dielectric slab modeling one period of
the window structure.

Since the operating frequency is well below the cut-off of the first
higher-order mode, the step-wise irregularity results in excitation of an
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evanescent higher-order mode. The amplitude of the evanescent mode can be
estimated using the theory of irregular waveguides [5]. To make this amplitude

negligible, the following condition has to be fulfill ed
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propagation constant for the first higher order mode.
For the single-mode waveguide we can use the elementary formula of

the slab theory to calculate the coeff icient of reflection at the dielectric slab [6]
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 is the wavenumber.

If the angle of tapering α is small , α<<1, and the steps δ 1 2,  <<λ , the

coeff icient of reflection r from the dielectric slat contiguous to two tapers is
slightly different from rs

  (Eq. 1). We calculate it using a modification of the
theory of slightly irregular waveguides [5].

The coeff icient rt  of the TEM-mode reflection from the taper is

given by the expression:
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where L is the taper length, ν α= tan  . Here we take into account that the
TEM-mode phase-front is cylindrical in the taper (Fig. 2). The phase-front radius
varies from (b+δ2)/ν  to (a-δ1)/ν  along the taper.

The coeff icient of reflection from the dielectric-vacuum boundary
including the taper is given by:
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Finally, the coeff icient of reflection from the waveguide including two tapers
and the slat can be expressed as
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where ∗ denotes the complex conjugate value. Using Eq. (4) we can evaluate the
sapphire slat resonant frequency shift due to the tapers contiguous to the slat:
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where k0  is the resonance value of the wavenumber calculated from the slab

theory.
The reflection coeff icient, Eq. (4), derived for the plane wave, is

equal to 0 at the resonant frequency. However, in practice a Gaussian beam of a
finite waist is utili zed. Diffraction scattering of this beam at the window results
in non-zero reflectivity at the resonance.

3. GAUSSIAN BEAM SCATTERING THEORY

We will next consider the diffraction of a linearly-polarized Gaussian
beam at the grating of the distributed window. The electric field of the incident
beam is perpendicular to the waveguide edges and has a Gaussian field
distribution:
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where w is the  waist dimension, the x-coordinate is transverse to the vanes while
the y-coordinate is along the vanes.

To account for a finite width w of the beam in the y-direction, we
modify Eq. (4) for the reflection coeff icient:
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is the Gaussian beam phase difference at the dielectric thickness. The expression
for Φb indicates that the beam phase velocity is different to that of the plane
wave. Comparing Eqs. (4) and (6), we obtain the resonance frequency shift due
to a finite width of the beam: ∆f/f=1/(2k2n2w2)  .

                       Fig. 3. Gaussian beam scattering at the metal grating.

The other, more important issue about the Gaussian beam is that a
non-uniform field distribution in the x-direction leads to excitation of higher-
order modes in the tapered waveguides between the vanes. A higher-order mode,
which has been excited in the down-tapered waveguide, reflects from the taper.

0ϕ0ϕ−



This increases the reflectivity as compared to that for a plane wave (Eq. 4), so
that the reflectivity is finite at the resonance. To examine the scattering of the
Gaussian beam at the window we consider only the first TM-mode with the
electric field distribution )exp()2/sin( 1zihaxE x −∝ π  in the waveguide

section of the window grating; h k a1
2 22= − ( / )π  is the longitudinal wave

number.
To model the excitation of the TEM-mode and TM-mode in the

waveguide sections of the distributed window, we examine scattering of the
Gaussian beam at the grating consisting of the metal planes x=(2m+1)a ,
m=0,±1, ±2,..., z>0 (Fig. 3).

We consider three plane waves at  z<0 and  with the propagation
angles 0, ϕ0 and (-ϕ0):
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The problem of scattering of a plane wave at a grating of metal
planes has been solved in [7]. According to this theory, the amplitudes T0 of the
TEM-mode and T1 of the first TM-mode excited in the  waveguide of the grating
by the plane wave with the propagation angle ϕ0 are the following:
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here η ϕ π= kasin /0  .

Using Eq. (7) for T0 0( )ϕ  of the TEM-mode excitation we find the

coeff icient of Gaussian-beam reflection from the window grating
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where r is expressed by Eq. (6), and 2M+1 is the number of the waveguides
covered by the Gaussian beam.

4. RESULTS OF CALCULATIONS AND MEASUREMENTS

In the cold test, the transmittance of the Gaussian beam at frequencies
around 110 GHz was measured. The Gaussian beam was launched from a
corrugated waveguide and had a flat phase front at the waist w=7.2 mm at the
window. The distributed window was heated during the measurements.

                                          FREQUENCY (GHz)

         108.50                 109.20                 109.90

Fig. 4. Reflectivity of distributed window vs. frequency at T=300K: sapphire dielectric
constant ε=9.40, 1 – slab theory, 2 - Gaussian beam scattering theory, 3 (squares) –

measurement.

We use Eq. (8) to calculate the distributed window reflectivity as a
function of frequency for the Gaussian beam with w=7.2 mm, and compare the
calculations to the measurements. Based on the experimental results [3,4], we
suppose that the sapphire dielectric constant varies from 9.40 to 9.47 while the
temperature rises from 300K to 370K.

The dimensions of the 110 GHz distributed window are given in Table 1.
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Table 1. Distributed window dimensions.

Sapphire thickness D (mm) 2.67

Sapphire height 2b (mm) 0.73

Distance between vanes 2a (mm) 2.39

Vane transition length L (mm) 4.10

Transition angle α (deg) 9.58

Small thickness of vane 2δ1 (mm) 0.18

Brazing material thickness δ2 (mm) 0.05

                                          FREQUENCY (GHz)

             108.50                 109.20                  109.90

Fig. 5. Reflectivity of distributed window vs. frequency at T=370K: sapphire dielectric
constant ε=9.47, 1 – slab theory, 2 - Gaussian beam scattering theory, 3 (squares) –

measurement.

Figure 4 shows the frequency dependence of the reflectivity
calculated using Eq. (1) in the simple slab model (curve 1) and using the
Gaussian beam scattering theory (curve 2), and the measured reflectivity (curve
3) for the sapphire temperature 300K (dielectric constant ε=9.40). Figures 5
plots the same for the temperature 370K (ε=9.47). Equation (8) is used to
calculate the reflectivity of the Gaussian beam, where 2πη=24o and M=3. The
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scattering theory gives a resonance frequency shifted by 0.3% with respect to the
slab theory. Both theory and measurements indicate that the resonance frequency
shift caused by the temperature rise is significant, it is 0.4% for the temperature
rise of 70K. The calculated reflectivity at 110 GHz is 2% at 300K, and increases
to 6% as the temperature increases to 370K, and higher with further temperature
rise.

CONCLUSIONS

We developed the theory of transmission and reflection of a Gaussian
beam at the grating of the distributed window. The theory adequately models the
cold test. The distributed window reflectivity is calculated, and a good
agreement between the theory and the measurements is demonstrated. We
conclude that the tapered metal sections of the distributed window lead to the
resonance frequency shift that we have to take into account for designing the
window. A temperature rise as well affects the window performance in a long
pulse operation of the gyrotron.
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