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Abstract

The edge plasma of a tokamak is affected by atomic physics processes and can have
density and temperature variations along the magnetic field which strongly modify edge
transport. We present a closed system of equations in the Pfirsch-Schlüter regime which
can be solved for the radial and poloidal variation of the plasma density, electron and ion
temperatures, and the electrostatic potential in the presence of neutrals and a poloidally
asymmetric  energy radiation sink due to inelastic electron collisions. Neutrals have a
large diffusivity so their viscosity and heat flux can become very important even when
their density is not high, in which case the neutral viscosity alters the electrostatic
potential at the edge by introducing strong radial variation. The strong parallel gradient
in the electron temperature that can arise in the presence of a localized radiation sink
drives a convective flow of particles and heat across the field. This plasma transport
mechanism can balance the neutral influx and is particularly strong if a Marfe is formed
since the electron temperature then varies substantially over the flux surface.
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I. Introduction

Tokamak performance appears to be sensitive to the edge plasma region just

inside the last closed flux surface. In the work presented here we investigate how its

behavior can be affected by interactions with neutral particles and poloidal asymmetry in

the radiation energy loss due to inelastic electron collisions. These processes are usually

unimportant in the plasma core and are therefore normally neglected in plasma transport

equations. However, because their diffusivity is large, neutrals can enhance energy and

momentum loss and be responsible for the radial variation of the electrostatic potential,

even though the neutral density is typically very much smaller than the plasma density.

In addition to directly modifying the energy balance, poloidally asymmetric radiation

loss also creates strong poloidal variation in the electron temperature and thereby drive

strong convective fluxes. Convective electron fluxes are particularly strong in the

presence of a Marfe [1]. To illustrate the effects of neutrals and radiation loss we

generalize the conventional Pfirsch-Schlüter regime treatment of tokamak transport [2] to

include charge exchange in the short mean free path limit and an electron energy sink,

both of which may involve significant poloidal asymmetries. Our model differs from the

collisional model of Hinton and Kim [3] by retaining neutrals and a radiation loss term,

by considering the weak plasma flow limit, and by neglecting anomalous effects and the

region beyond the separatrix. Moreover, it differs from the collisional model

implemented by Rognlien and Ryutov [4] which treats the magnetic field as constant,

enhances classical transport to model anomalous effects, ignores neutrals and radiation,

and, like Hinton and Kim, works in the large flow limit of Braginskii [5]. The large flow

Braginskii expressions for the ion viscosity do not reduce to the small flow form of

Hazeltine [2] because of the different orderings employed.

The interaction of neutrals with ions via charge exchange influences the electric

field by introducing a flux surface averaged neutral toroidal angular momentum flux that

can compete with or even dominate over that of the ions. In the absence of neutrals the
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radial electric field is found to be the square of the inverse aspect ratio smaller then the

radial temperature gradient [2]. As a result, neutral effects on the electric field are

expected to be more pronounced in conventional than spherical tokamaks. The neutrals

can be responsible for strong radial variation of the electric field and thereby be

responsible for large shear in the E5B, poloidal, and parallel ion flows which may have

an influence on turbulence [6]. The neutrals also introduce a heat flux that can compete

with the radial ion heat flux and thereby enhance heat transport losses.

To substantially simplify the algebra and illustrate the effects of neutrals in the

most transparent way possible, we ignore elastic ion-neutral interactions and assume the

charge exchange rate constant is speed independent. Since elastic ion-neutral collisions

are now thought to be at least as large as charge exchange collisions [7] they are expected

to quantitatively, but not qualitatively, alter our results. To account for the increased

collisionality between the ions and neutrals due to elastic collisions we will enhance the

deuterium charge exchange cross section σx by using the estimate σx = 9510-15 cm2

rather than 3510-15 cm2. The constant charge exchange rate approximation [8] does not

appreciably alter the transport coefficients [9].

To estimate the size of neutral diffusivity effects we can compare the radial

neutral and ion heat fluxes,   
r 
q n ~ (vi

2
/ Ni〈σv〉x )Nn∂Ti / ∂r  and   

r 
q i ~ (q

2ρi
2
/τi )Ni∂Ti /∂r ,

where Nn and Ni are the neutral and ion densities, vi = (Ti/M)1/2 the ion thermal speed

with Ti the ion temperature, ρi the ion gyroradius, τi the ion-ion collision frequency,

〈σv〉x  the charge exchange rate constant, q the safety factor, and r the minor radius. For

Ti = 100eV, Ni = 351014 cm-3, B = 5 T, and q = 3 we obtain

  

〈
r 
q n⋅ ∇ψ〉
〈
r 
q i⋅∇ψ〉

~
Nnvi

2/ Ni〈σv〉x

N iq
2ρi

2/ τi
~

Nn
N i

× 104 ,

with ψ the poloidal flux function and 〈...〉  denoting a flux surface average. Here σx =

9510-15 cm2 is used for the "enhanced" charge exchange cross section and the neutral

mean free path is 1/Niσx ~ 0.5 cm. The neutral heat flux is large because the neutral
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diffusivity, vi/Niσx, is extremely large, of order 45106 cm2/sec for the preceding

numbers (while q2ρi
2/ τi  ~ 400 cm2/sec). Consequently, even at neutral densities a

thousandth of the plasma density a sizeable neutral effect occurs, and the effect is larger

at lower Ni and higher B and Ti. Moreover, by comparing viscosities instead of heat

fluxes we will find that neutral densities smaller by the square of an inverse aspect ratio

than the preceding estimate can alter the electrostatic potential dramatically.

Representing the radiation losses by a sink, S, in the electron energy balance

equation is a sensible approximation since any non-Maxwellian features in the electron

distribution function due to inelastic electron collisions are negligible [10]. We illustrate

the effects of radiation loss by assuming that ion-impurity collisions are negligible to

simplify the presentation. To estimate the impurity density necessary to make a

poloidally asymmetric energy sink result in stronger poloidal electron temperature

variation than the usual Pfirsch-Schlüter terms, we note that S ~ NIEINeveσI, where Ne

and NI are the electron and impurity densities, σI is the excitation cross section for a

typical energy loss EI, and ve = (Te/m)1/2 is the electron thermal speed. The poloidal

variation of the electron temperature is estimated by balancing the sink S with the

parallel electron heat variation,    
r 
n ⋅ ∇q||e , where   q ||e ~ Neveλ

r 
n ⋅ ∇Te . Here λ is the

Coulomb mean free path and   
r 
n =

r 
B /B the unit vector in the direction of the magnetic

field   
r 
B . Normalizing the poloidal variation of the electron temperature by the poloidal

variation of the magnetic field magnitude gives

  

r 
n ⋅ ∇lnTer 
n ⋅∇ln B

~
qR

ελ
EI
Te

NIσIqR ,

where ε is the inverse aspect ratio and within a Pfirsch-Schlüter treatment this ratio must

be small compared to unity. For a cool, dense edge the poloidal variation due to radiation

losses is much larger than that due to the usual Pfirsch-Schlüter electron transport [11]

which is proportional to the electron gyroradius ρe,
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r 
n ⋅ ∇lnTer 
n ⋅∇ln B

~
qR

ελ
qρe
w

 ,

with w the characteristic edge scale length, which is of the order of the penetration depth

1/Ni(σxσz)1/2, where σz is the ionization cross section. For example, taking w = 2 cm,

Te = 100eV, Ne = 351014 cm-3, B = 5 T, q = 3, R = 100 cm, σI = 5510-16 cm2, and EI

= 25 eV,  gives qRNeσIEI/Te ~ 10 while qρe/w ~ 10-3 and qR/λ ~ 3. Consequently,

localized impurity to plasma density ratios NI/Ne ~ 10-3 to 10-2 are sufficient to give

large radiation sink effects and strong poloidal variation in the electron termperature.

Very high impurity densities would give poloidal variations comparable to that of the

magnetic field, but would complicate the analysis by requiring us to keep ion-impurity

collisions and to treat the poloidal electron temperature variation as the same order as

that of the poloidal variation of the magnetic field.

In Sec. II we consider the flux averaged description for the plasma density, ion

and electron temperatures, and electrostatic potential, and present the Pfirsch-Schlüter

fluxes with the neutral contributions to the heat and toroidal angular momentum fluxes.

The neutral viscosity is free of the aspect ratio factors that make the radial variation of

the electrostatic potential weak in the conventional Pfirsch-Schlüter treatment [2] so that

in a large aspect ratio tokamak the strongest impact of the neutrals is on the electrostatic

potential. The equations governing the poloidal variation of the plasma density, ion and

electron temperatures, and electrostatic potential are obtained in Sec. III to complete our

'four field' model. The strong poloidal variation of the electron temperature due to

poloidal variation in the radiation sink is the source of the large particle and electron heat

fluxes found in Sec. II. These sink driven convective fluxes can easily dominate the usual

Pfirsch-Schlüter particle and electron heat fluxes which are small in the electron

gyroradius. A comparison of the poloidally asymmetric sink driven convective flux to

typical gyro-Bohm transport is given in Sec. IV, along with estimates for the neutral
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density which confirm the consistency of our orderings. Section V presents a

summarizing discussion.



7

II. FLUX SURFACED AVERAGED DESCRIPTION

The plasma density Ne = Ni, electron Te and ion Ti temperatures, and

electrostatic potential Φ are determined by the flux surface averaged equations for

conservation of number, electron and ion energies, and total toroidal angular momentum,

and are flux functions to lowest order in the gyroradius. In the presence of neutrals and a

radiation sink S to account for electron energy loss due to inelastic scattering and

ionization with rate constant 〈σv〉z ; the four conservation equations involving the flux

surface averaged plasma particle flux = 
  
〈
r 
Γ e⋅ ∇ψ〉  =   〈

r 
Γ i ⋅∇ψ〉 , neutral particle flux =

  〈
r 
Γ n ⋅∇ψ 〉 , electron heat flux = 

  
〈
r 
q e ⋅∇ψ〉 , ion heat flux =   〈

r 
q i ⋅∇ψ〉 , neutral heat flux =

  〈
r 
q n ⋅∇ψ〉 , toroidal ion angular momentum flux = 

  
〈R

r 
ζ ⋅
t 
π i ⋅∇ψ〉 , and toroidal neutral

angular momentum flux =    〈R
r 
ζ ⋅
t 
π n ⋅∇ψ 〉  are modified to become

  

∂Ne
∂t

+ 1
′ V 

∂
∂ψ

′ V 〈
r 
Γ e ⋅∇ψ〉( )= 〈σv〉z〈Nn 〉Ne , (1)

  

∂
∂t

3

2
NeTe

 
 

 
 +

1

′ V 

∂
∂ψ

′ V 〈
r 
q e⋅∇ψ〉 +

5

2
〈
r 
Γ e ⋅∇ψ〉 

 
 
 

 
  

 
  = − 〈S〉 +

3mNe(Ti − Te)

Mτei
 , (2)

  

∂
∂t

3

2
N iTi

 
 

 
 +

1

′ V 

∂
∂ψ

{ ′ V [〈(
r 
q i+

r 
q n ) ⋅∇ψ〉 +

5

2
〈(
r 
Γ i +

r 
Γ n ) ⋅∇ψ〉]} = −

3mNe(Ti − Te)

Mτei
, (3)

and

  
MNi

∂
∂t

R
r 
ζ ⋅
r 
V i +

1

′ V 

∂
∂ψ

′ V 〈R
r 
ζ ⋅(

t 
π i+

t 
π n)⋅∇ψ〉[ ]=

1

c

r 
J ⋅∇ψ , (4)

where we assume the neutral density to be smaller than the plasma density. In the

preceding equations   
r 
V i  is the mean velocity of the ions, M denotes the ion and neutral

mass, m is the electron mass, the electron-ion collision time is τei =

  3m1/2Te
3/2 4(2π)1/2e4 NelnΛ  with   lnΛ  the Coulomb logarithm, ζ is the toroidal

angle variable with   
r 
ζ  the corresponding unit vector, the radial variable is the poloidal

flux function ψ, magnetic field is written as   
r 
B = I∇ζ + ∇ζ ×∇ψ  with I = I(ψ) = RBT and
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B =   |
v 
B | , R is the major radius and BT the toroidal magnetic field, the current density is   

r 
J ,

and the flux surface average is defined as

  
〈.. .〉 =

1

V'

dϑ(. .. )r 
B ⋅ ∇ϑ

∫

with   V' = dϑ/∫
r 
B ⋅∇ϑ  and ϑ the poloidal angle variable. Using   

r 
ζ ⋅

r 
V i ~ (qρi /εw)vi  to

estimate the Pfirsch-Schlüter flow and 
  
4π〈

r 
J ⋅∇ψ〉 = −〈(∂

r 
E /∂t)⋅∇ψ〉 ~ (RBp /ew)∂Te /∂t ,

we see that the   
r 
J ×

r 
B  force term on the right side of Eq. (4) is of order (εvA/qc)2

compared to the time derivative on the left, where vA is the Alfvén speed. Often vA/c <<

1, so the toroidal   
r 
J ×

r 
B  force on the right of Eq. (4) can be neglected.

The terms that arise from the neutrals enter Eqs. (3) and (4), while those due to

the sink S alter the plasma particle and electron heat fluxes in Eqs. (1) and (2). We

consider neutral effects first.

A. Neutral and ion contributions to Pfirsch-Schlüter fluxes

To describe the neutrals we employ the neutral kinetic equation with charge

exchange collisions and ionization retained, namely

  ∂f n/∂t +
r 
v ⋅∇fn = 〈σv〉x (Nnf i − Nif n ) − 〈σv〉z Nef n , (5)

where fn and fi are the neutral and ion distribution functions, and the moments of species

k are defined by

  
Nk = d3vf k∫ , Nk

r 
V k = d3v

r 
v fk∫ , pk = NkTk =

M

3
d3vv2f k ,∫

r 
Q n =

1

2
M d3v v2r v ∫ fn

  

r 
q k =

r 
Q k −

5

2
pk

r 
V k =

1

2
d3v(Mv2 − 5T k )

r 
v f k∫ , and

t 
π n = M d3v(

r 
v 
r 
v −

1

3
∫ v2t I )f n , (6)

with   
r 
I  the unit dyad.

In the short neutral mean free path limit, the lowest order neutral distribution

function fo must be taken as fo + Nnfi/Ni, where to lowest order fi is the stationary
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Maxwellian fM. We may then use a Grad moment procedure [12] on Eq. (5) to write the

neutral moments in terms of the ion moments by adopting the ordering

  〈σv〉xNifn ~ 〈σv〉xNnf i >>
r 
v ⋅ ∇f n ~ 〈σv〉z Nef n >> ∂fn /∂t  . (7)

Neglecting the time derivative term in the   M[
r 
v 
r 
v − (v2 /3)

t 
I ]  and   M

r 
v v2 /2 moments we

find

  

t 
π n =

Nn 〈σv〉x
N i(〈σv〉x + 〈σv 〉z)

t 
π i +

2τ
3

t 
I ∇⋅

r 
Q n − τ∇⋅(M d3v

r 
v 
r 
v 
r 
v ∫ fo ) (8)

  

r 
Q n =

Nn 〈σv〉x
Ni (〈σv〉x + 〈σv〉z)

r 
Q i −

τ
2

∇⋅(M d3v v2r v 
r 
v ∫ f o ) (9)

where τ ≡1 / Ni(〈σv〉x + 〈σv〉z ) ≈ 1 / N i〈σv〉x .

Equations (8) - (9) and the number, momentum, and energy moments of Eq. (5)

provide a complete description of the neutrals provided we know the ion distribution

function. To lowest order, conservation of momentum and energy give relations between

the neutral and ion temperatures and mean velocities:

  
Tn =

〈σv〉x
〈σv〉x + 〈σv〉z

Ti −
2τ

3Nn
∇⋅

r 
Q n ≈ Ti (10)

and
  

r 
V n =

〈σv〉x
〈σv〉x + 〈σv〉z

r 
V i −

τ
MNn

∇pn ≈
r 
V i  . (11)

Using a lowest order Maxwellian (fo + NnfM/Ni) in Eq. (9) we find

  

r 
Q n =

r 
q n −

5

2
pn

r 
V n =

Nn 〈σv〉x
Ni(〈σv〉x + 〈σv〉z)

r 
Q i −

5τ
2M

∇(NnTn
2 ), (12)

or, upon using Eq. (11) and neglecting short mean free path corrections, the alternate

form

  

r 
q n = −

5τpn
2M

∇Tn +
Nn 〈σv〉x

Ni(〈σv〉x + 〈σv〉z)
r 
q i   . (13)

Next, we consider the final moment of interest. To evaluate the last term in Eq.

(8) we need the leading corrections to the Maxwellian that are odd in   
r 
v  and to simplify
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the algebra we note that we need only evaluate   R
r 
ζ ⋅

t 
π k ⋅ ∇ψ . To evaluate this quantity we

extract the required higher order terms in the ion distribution function fi from Hazeltine

[2], correct the numerical coefficients of temperature gradient terms [13], and write the

result in terms of the ion flow velocity   
r 
V i  and ion heat flux   

r 
q i  given by

  

r 
V i = V||

r 
n +

cTi
eB

1

pi

∂pi
∂ψ

+
e

Ti

∂Φ
∂ψ

 

 
  

 
 r n ×∇ψ (14a)

and

  

r 
q i = q||

r 
n +

5cpi
2eB

∂Ti
∂ψ

r 
n ×∇ψ , (14b)

where   
r 
n =

r 
B /B,   

r 
n × ∇ψ = I

r 
n − RB

r 
ζ , I = RBT,

  

V|| =
r 
n ⋅
r 
V i = −

cI Ti
eB

1

p i

∂pi
∂ψ

+
e

Ti

∂Φ
∂ψ

+
9

5〈B2 〉
+

〈(
r 
n ⋅∇lnB)2 〉

20〈(
r 
n ⋅∇B)2 〉

 

 
 

 

 
 

B2

Ti

∂Ti
∂ψ

 
 
 

 
 
 

, (15a)

and

  

q || =
r 
n ⋅

r 
q i = −

5cIp i
2eB

1 −
B2

〈B2 〉

 

 
 

 

 
 

∂Ti
∂ψ

 . (15b)

Then, the resulting expression for fi may be written conveniently as

  

f i= f M +
M

Ti

r 
V i ⋅

r 
v +

Mv2

2Ti
−

5

2

 

 
 

 

 
 

2

5pi

r 
q i ⋅

r 
v +

8q||v||
75pi

L2
(3/ 2)(Mv2/2Ti)

 

 
 

 

 
 f M+... , (16)

where f M = N i(M/2πTi )3/2 exp(− Mv2/2Ti) and L2
(3/2)

(x2 ) = [x4 − 7x2 + (35/4)] / 2 is

a Sonine or generalized Laguerre polynomial. In writing Eqs. (15) - (16) we assume that

the neutral density is small enough not to affect the usual Pfirsch-Schlüter results.

We may then use Eq. (16) to evaluate the last term of Eq. (8) by first noting that

upon using   ∇vfM = −(M/Ti )
r 
v f M  to integrate by parts

  

d3∫ v
r 
v 
r 
v 
r 
v 
r 
v 

Mv2

2Ti
−

5

2

 

 
 

 

 
 f M = d3∫ v

r 
v 
r 
v 
r 
v 
r 
v fM  ,

d3∫ v vαvβvσvγ f M = Ni
Ti
M

 
 

 
 

2
[δαβδσγ + δαγδσβ + δασδβγ ] ,
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and

  

d
3∫ v

r 
v 
r 
v 
r 
v 
r 
v L2

(3/ 2)
(Mv

2
/2Ti)f M = d

3∫ v
r 
v 
r 
v 
r 
v 
r 
v 

Mv
2

2Ti
− 7

2

 

 
 

 

 
 f M = 0  ,

where the δij are Kronecker delta functions and we have used the orthogonality of L2
(3/2)

to L1
(3/2)  and L0

(3/2) . As a result, the last term shown in Eq. (16) does not contribute and

we obtain

  R
r 
ζ ⋅[∇⋅(M d3v

r 
v 
r 
v 
r 
v ∫ fo )]⋅∇ψ = ∇ψ ⋅∇

r 
W ⋅

r 
ζ R + R

r 
ζ ⋅∇

r 
W ⋅∇ψ

  = ∇ψ ⋅∇(
r 
W ⋅

r 
ζ R) −

r 
W ⋅∇∇ψ ⋅

r 
ζ R −R

r 
ζ ⋅∇∇ψ ⋅

r 
W ≈ ∇ψ ⋅∇(

r 
W ⋅

r 
ζ R) ,

where   
r 

W ≡ NnTi[
r 
V i + (2/ 5pi )

r 
q i] and   ∇(R

r 
ζ ) = (∇R)

r 
ζ −

r 
ζ ∇R . Fortunately, all terms

involving ��ψ may be neglected as small since the radial and/or poloidal variation of

Nn, Ti, Φ,   

r 
ζ ⋅
r 
V i , and   

r 
ζ ⋅
r 
q i  in the plasma edge is much stronger than that associated with

the poloidal flux function. As a result, when we gather up the preceding expressions and

neglect the Nn/Ni correction to the   
t 
π i  term, we find we may write

  

〈R
r 
ζ ⋅

t 
π n⋅ ∇ψ 〉 ≈ − τ ∇ψ ⋅ ∇ NnTiR

r 
ζ ⋅

r 
V i +

2Nn
5N i

R
r 
ζ ⋅

r 
q i

 

 
  

 
 = −τ ∇ψ ⋅ ∇

2Nn
5Ni

R
r 
ζ ⋅

r 
Q i

 

 
  

 
  ,

  (17)
with   

r 
Q i  the energy flux defined in Eq. (6),

  

r 
ζ ⋅

r 
V i =

r 
ζ ⋅

r 
V n = − cRTi

e

1

pi

∂pi
∂ψ

+ e

Ti

∂Φ
∂ψ

+ 9

5〈B2 〉
+

〈(
r 
n ⋅ ∇lnB)2 〉

20〈(
r 
n ⋅ ∇B)2 〉

 

 
 

 

 
 

BT
2

Ti

∂Ti
∂ψ

 
 
 

 
 
 

, (18)

and

  

r 
ζ ⋅

r 
q i = − 5cRpi

2e
1 − BT

2

〈B2 〉

 

 
 

 

 
 

∂Ti
∂ψ

  . (19)

In expressions (17) - (19) we may use Ti = Tn and the definitions of moments are as in

Eqs. (6). Recall, also that BT is the toroidal magnetic field.

If we also neglect the Nn/Ni correction to   
r 
q i , then Eq. (13) gives the neutral heat

flux to be
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〈
r 
q n ⋅∇ψ〉 ≈ −

5τpn
2M

∇ψ ⋅∇Tn   . (20)

To complete the neutral description we use Eq. (11) and neglect the Nn/Ni correction to

  

r 
Γ i  to obtain the neutral particle flux

  
〈
r 
Γ n⋅∇ψ 〉 ≈ −

τ
M

∇ψ ⋅∇(NnTn )   . (21)

The ion fluxes in Eqs. (3) and (4) are the standard Pfirsch-Schlüter results [2, 11,

13]:

  

〈
r 
q i ⋅∇ψ〉 = − 8Mc2I2p i

5e2τi

1

B2 − 1

〈B2 〉

 

 
 

 

 
 ∂Ti

∂ψ
(22)

and

  〈R
r 
ζ ⋅

t 
π i ⋅∇ψ〉 ≈ (23)

−
16M2c3I4pi

25e3τi

∂Ti
∂ψ

e

Ti

∂Φ
∂ψ

1

B4 −
〈B−2 〉

〈B2 〉

 

 
 

 

 
 +

47

50Ti

∂Ti
∂ψ

1

B4 − 3
〈B−2 〉

〈B2 〉
+

1

〈B2 〉2
 

 
 

 

 
 

 

 
 

 

 
 ,

where 
  τi = 3M1/2Ti

3/2 4π1/2e4 NelnΛ . For aspect ratios of order unity, the classical

contributions [5], which we have neglected for simplicity, should be added to Eqs. (22)

and (23).

Hazeltine [2] considered the case without neutrals and noted that for small inverse

aspect ratio
1

B4 −
〈B−2 〉

〈B2 〉
~

ε2

B4  ,

while
1

B4 − 3
〈B−2 〉

〈B2 〉
+

1

〈B2 〉2
~

ε4

B4  ,

so that in the steady state   〈R
r 
ζ ⋅

t 
π i⋅∇ψ〉 = 0 gave the variation of the electrostatic

potential to be weak (order ε2) compared to that of the ion temperature. However, the

neutral viscosity, of course, is free of these aspect ratio factors so that in a large aspect

ratio tokamak the strongest impact of the neutrals is on the electrostatic potential! In the
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steady state when the neutrals dominate over the ions the radial variation of the

electrostatic potential is simply given by   〈R
r 
ζ ⋅

t 
π n⋅ ∇ψ 〉 = 0 , so that

e∂Φ/∂ψ ~ ∂Ti /∂ψ ~ N i
−1∂pi /∂ψ .

B. Sink and electron contributions to Pfirsch-Schlüter fluxes

The usual Pfirsch-Schlüter treatment of the electron particle and heat flows is

modified by the presence of an energy sink S due to radiation losses. Hinton [14] has

previously retained a sink in the ion heat balance equation when considering losses to the

divertor plates. Here we consider the edge region inside the separatrix so the only sink

appears in the electron heat balance equation.

When the diamagnetic electron heat flux,

   
r 
q ⊥e = (5cpe /2eB2)

r 
B ×∇Te  , (24)

is inserted into the lowest order electron heat balance equation,

    ∇ ⋅
r 
q e = − S , (25)

the resulting equation for the poloidal variation is

  

r 
B ⋅∇

q||e
B

−
5cIpe

2eB2
∂Te
∂ψ

 
 
  

 
= − (S − 〈S〉) ,

where, as usual, poloidal derivatives of density and temperature are neglected compared

to derivatives of magnetic field. Integrating from a convenient angle χ to ϑ gives

  

q ||e
B

=
5cIpe

2eB2
∂Te
∂ψ

−
dϑ(S − 〈S〉)r 

B ⋅ ∇ϑχ

ϑ
∫ + L(ψ)  ,

where the flux function L is determined by employing the parallel heat conduction

expression

  
q ||e = − peTeτei

m
κ21(

r 
n ⋅∇ln pe + eE||/Te) + κ22

r 
n ⋅ ∇ln Te[ ] , (26)

where, for Z=1, κ21 = 1.4 and κ22 = 4.1 [see Ref. 5 or 13, for example]. Using the

constraint

〈q||eB〉 = −(peTeτei / m)κ 21e〈E||B〉
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to determine L gives

  

q ||e = −B
dϑ (S− 〈S〉)r 

B ⋅∇ϑχ

ϑ
∫ +

B

〈B2 〉
B2 dϑ (S − 〈S〉)r 

B ⋅∇ϑχ

ϑ
∫

−
5cIpe

2e

B

〈B2 〉
−

1

B

 

 
 

 

 
 ∂Te

∂ψ
−

peτeiκ21eB〈BE||〉

m〈B2 〉
. (27)

For large, poloidally varying radiation losses, the new terms involving the sink S can be

much larger than the usual Pfirsch-Schlüter terms.

To find expressions for the radial electron particle and heat fluxes, we also need

the usual forms for the parallel current [11, 13]:

  
J|| =

epeτei
m

κ11(
r 
n ⋅∇ln pe + eE|| /Te) + κ12

r 
n ⋅∇ln Te[ ]

= cI
B

〈B2 〉
−

1

B

 

 
 

 

 
 ∂p

∂ψ
+

peτeiκ11e2B〈BE||〉

mTe〈B2 〉
  , (28)

where the only novelty is that the total pressure p = pe + pi + pn contains the neutral

pressure pn which for our purposes is negligible. In Eq. (28), κ11 = 1.9 and κ12 = κ21 for

Z = 1 [5, 13]. From Eqs. (26) - (28) we can obtain   
r 
n ⋅∇Te  and   

r 
n ⋅∇pe + eNeE|| , which

allow us to determine the radial electron fluxes:

  

〈
r 
q e ⋅∇ψ〉 =

5cIpe
2e

r 
B ⋅∇Te

B2 = −
5cmκ11I

2eκτei

dϑ (S − 〈S〉)r 
B ⋅∇ϑχ

ϑ
∫ −

1

〈B2 〉
B2 dϑ (S − 〈S〉)r 

B ⋅∇ϑχ

ϑ
∫

 

 
 

 

 
 

−
5c2mI2Te

2e2κτei

1

B2 −
1

〈B2 〉

 

 
 

 

 
 5κ11Ne

2

∂Te
∂ψ

− κ21
∂p

∂ψ

 
 
  

 
(29)

and

  
〈
r 
Γ e⋅∇ψ〉 = 〈

r 
Γ i⋅∇ψ〉 =

cI

e

1

B2

r 
B ⋅∇pe + eNeBE||( ) − cNe〈R

r 
ζ ⋅

r 
E 〉

  

= − cmκ12I

eκτeiTe

dϑ (S − 〈S〉)r 
B ⋅∇ϑχ

ϑ
∫ − 1

〈B2 〉
B2 dϑ (S − 〈S〉)r 

B ⋅∇ϑχ

ϑ
∫

 

 
 

 

 
 + cINe

〈BE||〉

〈B2 〉
−

r 
ζ ⋅

r 
E 

BT

 

 
 

 

 
 

−
c2mI2

e2κτei

1

B2 −
1

〈B2 〉

 

 
 

 

 
 κ22

∂p

∂ψ
−

5κ12Ne
2

∂Te
∂ψ

 
 
  

 
 , (30)

with κ = κ11κ22- κ12κ21 = 5.8.
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The convective contributions due to the radiation sink S in the particle and

electron heat fluxes of Eqs. (29) and (30) vanish if S is a flux function. Consequently,

poloidal variation in S is necessary to drive convective fluxes and, as we shall see in the

next section, is responsible for the strong poloidal variation of the electron temperature

that results in the convection.

Equations (17), (20) - (23), (29), and (30) are the fluxes to be inserted in Eqs. (1)

- (4) with   

r 
ζ ⋅

r 
V i =

r 
ζ ⋅

r 
V n  and   

r 
ζ ⋅

r 
q i  given by Eqs. (18) and (19).

III. POLOIDAL VARIATION

In the edge region just inside the separatrix, strong poloidal variation is observed

and expected because of the presence of neutrals and radiation. Within the framework of

a Pfirsch-Schlüter treatment the poloidal variation of the plasma density, ion temperature,

and potential must be assumed weak compared to that of the magnetic field. As can be

verified a posteriori, for a high aspect ratio (ε = r/R << 1) tokamak this assumption

requires

qρi /w << ελ /qR  , (31)

where again w and R are the radial scale length of the edge region and the major radius,

and λ = viτi is the Coulomb mean free path. Inequality (31) follows because the

poloidally varying portion of the ion temperature is small compared to its flux surface

averaged value by (qρi /w)(qR / λ) << 1 while the poloidal variation of B is of order ε.

Not surprisingly, inequality (31) is more restrictive by only aspect ratio factors than the

requirement that the radial ion heat diffusion time w2τi /q2ρi
2  be larger than the parallel

ion heat conduction time (qR)2/λvi. If this later condition is not satisfied, the transport

along and across the fiield occurs on similar time scales, making the problem two-

dimensional. In the absence of a sink, the poloidal variation of the electron temperature
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would be smaller than that of the ion temperature (and plasma density and electrostatic

potential) by ρe/ρi.

The poloidal variation of the ion temperature is found by equating the usual

expressions for the parallel ion heat conduction and its Pfirsch-Schlüter counterpart

  

q ||i = −
125piTiτi

32M

r 
n ⋅ ∇ln Ti =

5cIpi
2e

B

〈B2 〉
−

1

B

 

 
 

 

 
 ∂Ti

∂ψ
(32)

to obtain

  

r 
n ⋅∇Ti =

16McI

25eBτi
1−

B2

〈B2 〉

 

 
 

 

 
 

∂Ti
∂ψ

 , (33)

where   
r 
n ⋅ ∇lnTi ~ qρi /λw as remarked earlier.

Total parallel pressure balance and the requirement that the total pressure be a

lowest order flux function then gives an equation for the poloidal variation of the plasma

density

  
r 
n ⋅∇p =

r 
n ⋅∇[Ne(Ti + Te )] = 0 , (34)

where the neutral pressure contribution is neglected as small.

The poloidal variations of the electrostatic potential and the electron temperature

follow from Eqs. (26) - (28) which can be combined to obtain   
r 
n ⋅∇pe + eNeE||  and

  
r 
n ⋅∇Te , or

  

e

Te

r 
n ⋅∇Φ − r 

n ⋅∇ln pe = mκ12B
κpeTeτei

dϑ(S − 〈S〉)r 
B ⋅∇ϑχ

ϑ
∫ − 1

〈B2 〉
B2 dϑ (S − 〈S〉)r 

B ⋅∇ϑχ

ϑ
∫

 

 
 

 

 
 

+
e

Te
[BE||

I − 〈BE ||
I 〉] −

mcI

eBκτei
1−

B2

〈B2〉

 

 
 

 

 
 

κ 22
pe

∂p

∂ψ
−

5κ12
2Te

∂Te
∂ψ

 

 
  

 
 (35)

and

  

r 
n ⋅∇Te = mκ11B

κpeτei

dϑ (S− 〈S〉)r 
B ⋅∇ϑχ

ϑ
∫ − 1

〈B2 〉
B2 dϑ (S − 〈S〉)r 

B ⋅∇ϑχ

ϑ
∫

 

 
 

 

 
 

+
mcI

eBκTeτei
1−

B2

〈B2 〉

 

 
 

 

 
 

κ21
pe

∂p

∂ψ
−

5κ11
2Te

∂Te
∂ψ

 

 
  

 
  , (36)
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where the superscript I on E|| denotes that only the induced electric field enters on the

right side of Eq. (35). Notice that in the absence of a poloidally varying energy sink S

that the poloidal variation of the electron temperature is weak and poloidal variation of

the electrostatic potential is therefore a Maxwell-Bolzmann response to lowest order.

As noted in the Introduction, only poloidal asymmetry in the radiation sink S and

the condition qRNIσIEI/Te >> qρe/w is required to make the radiation sink driven

poloidal variation stronger than the usual Pfirsch-Schlüter poloidal variation of the

electron temperature.

Equations (33) - (36) are the four equations for the poloidal variation of the four

unknowns Ti, Ne, Φ, and Te. Notice that the neutrals do not influence the poloidal

variation since their density is assumed low compared to that of the plasma.

IV. SINK DRIVEN AND NEUTRAL FLUX ESTIMATES

To get a feel for the size of the fluxes driven by a poloidally asymmetric radiation

sink, S ~ NIEINeveσI, we can compare it with gyro-Bohm heat transport in the following

way. We use our estimate from the Introduction to define F as

  
F ≡

r 
n ⋅ ∇ln Ter 
n ⋅ ∇lnB

~
qR

ελ
EI
Te

NIσIqR

and then note from Eq. (29) that poloidal variation in B is needed to generate a radial

heat flux so that   〈B−2r B ⋅ ∇Te〉 ~ εTeF/qRB . As a result, the radial electron heat flux

driven by a poloidally asymmetric radiation sink, qs, is of order

qs ~ DBF
pe
R

 ,

where DB ≡ cTe /eB  denotes the Bohm diffusion coefficient. A gyro-Bohm heat flux qg

in the edge is of order

qg ~ DB
ρipe

w2  ,

giving
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qs
qg

~
w2F

ρiR
 .

For the parameters listed in the Introduction, ρiR/w2 ~ 1, while our results require F <<

1. However, for stronger radiation losses than our treatment allows, F > 1 is permissible

and sink driven fluxes larger than gyro-Bohm fluxes can occur. In particular, the sink

driven transport should be particularly strong if a Marfe is formed since the electron

temperature then varies substantially over the flux surface, making F >> 1.

We can also estimate the size of the neutral heat flux. To do so, we first estimate

the neutral density by assuming that the plasma edge inside the separatrix is fully

recycling. The convective, poloidally asymmetric radiation sink driven outward particle

flux,

Γs ~ DBF
Ne
R

 ,

must equal the inward neutral flux

Γn ~
v i

2Nn
Ni 〈σv〉xw

,

for a fully recycling edge. Equating these two fluxes gives the following estimate for the

neutral to plasma density ratio:
Nn
Ne

~
Ni 〈σv〉xwDBF

v i
2R

 .

If this estimate is used to eliminate the neutral density in the ratio of neutral to ion heat

flux given in the Introduction we obtain

  

〈
r 
q n⋅ ∇ψ〉
〈
r 
q i⋅∇ψ〉

~ F
w

R

τiDB

q2ρi
2 ~ F

λ
qR

w

qρi
>>

F

ε
 ,

where the Pfirsch-Schlüter validity inequality (31) is used to demonstrate the consistency

of our orderings. Consequently, a poloidal radiation sink asymmetry resulting in a

poloidal variation of the electron temperature of F ~ ε can (i) cause a sink driven outward

convective plasma particle flux that balances the incoming neutral particle flux; (ii) result
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in diffusive neutral and convective sink driven heat fluxes that are larger than the

Pfirsch-Schlüter ion heat flux, and (iii) cause the neutrals to determine the radial

behavior of the electrostatic potential.
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V. DISCUSSION

We have derived a complete system of equations for the radial and poloidal

variation of the plasma density Ne = Ni, electrostatic potential Φ, ion temperature Ti, and

electron temperature Te in the presence of neutrals and a poloidally asymmetric radiation

sink. Equations (17), (20) - (23), (29), and (30) are the radial fluxes to be inserted in Eqs.

(1) - (4), with toroidal velocity and heat flows given by Eqs. (18) and (19). Equations

(33) - (36) are the four equations for the poloidal variation of the four unknowns Ti, Ne,

Φ, and Te. The neutral density can either be assumed to be specified or can be found

from the neutral continuity equation,

  

∂Nn
∂t

+ ∇ ⋅ (Nn
r 
V n ) = −〈σv〉zNnNi ,

with the neutral velocity given by Eq. (11) with pn = NnTi.

As noted in the Introduction and at the end of subsection II.A, rather small neutral

densities can result in large effects on the radial variation of the electrostatic potential

and introduce neutral heat and angular momentum fluxes as large as, or larger than, those

associated with the usual Pfirsch-Schlüter ion fluxes. Since the neutrals are localized to

the edge, strong shear in the E5B, poloidal, and parallel flows can result, which may

have an influence on the level of the turbulence [6].

The effects of a poloidally asymmetric radiation sink are also retained in our

system of equations. For a collisional edge, the poloidal variation in the electron

temperature due to radiation losses can easily be much larger than that due to the usual

Pfirsch-Schlüter electron transport and the resulting convective electron heat and particle

fluxes can be comparable to gyro-Bohm fluxes. Consequently, edge transport

descriptions retaining only diffusive fluxes are expected to be incomplete for many of the

situations of experimental interest.
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