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Abstract

Experiments were performed on Alcator C-Mod with Electron Cyclotron resonance

plasmas to help determine their applicabilty to a fusion reactor. Strong radial in-

homogeneity of the plasma density was measured, decreasing by a factor of ten a

few centimeters inside the resonance location, but remaining approximately constant

(n, P 1016 m-3 ) outside the resonance location. Electron temperature remained mostly

constant outside the resonance location, Te ~ 10 eV; ion temperature increased outside

the resonance location from Ti ; 2eV to 10 eV. Toroidal asymmetries in ion satura-

tion current density were observed, indicating local toroidal plasma flow. The ECR

plasma was used to remove a diamond-like carbon coating from a stainless-steel sam-

ple. Removal rates peaked at 4.2 ± 0.4nm/hour with the sample a few centimeters

ouside the resonance location. Removal rates decreased inside and further outside the

resonance location. The plasma did not remove the carbon from the sample uniformly,

possibly due to plasma flow. Yields were calculated (Y ; 10- ) to be lower than other
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published results for chemical sputtering of deuterium ions on carbon, possibly due to

toroidally asymmetric plasma conditions.

1 Introduction

Experiments on magnetic fusion reactors have shown that conditioning of plasma-facing com-

ponents affects performance. Electron cyclotron resonance heating of low density plasmas

might be the only technique for conditioning the thick vessel walls of large fusion reactors

with superconducting magnets. Electron cyclotron discharge cleaning (ECDC) plasmas op-

erate in steady state, require no inductive currents, and require only small port access for

waveguides. Alcator C-Mod has demonstrated effective first-wall conditioning using ECDC

[1].

To help determine if ECDC could be made to work for a fusion reactor, measurements

were performed on ECDC plasmas on Alcator C-Mod to answer the following questions: (1)

How do the plasma conditions vary with neutral pressure, (2) what is the spatial structure

of the plasma, (3) how effectively do different radial zones of the plasma clean a test sample,

and (4) is the mechanism for surface cleaning simply understood in terms of ion-induced

chemical and physical sputtering processes?

ECDC plasmas were produced with magnetic fields with .067 < B( T) < 0.11 using the

toroidal field coils only. The location of cyclotron resonance was swept between .52-.83 m

torus major radius by varying the magnetic field. Electromagnetic waves were launched

from a horn at one toroidal location, with fixed frequency of 2.45 GHz and power of 3 kW.

Here we report the results from experiments performed with deuterium fill gas with pressure

between .04-.08 Pa.

2 Experiments

Figure 1 shows a poloidal projection of Alcator C-Mod indicating the diagnostics used for

these experiments. Langmuir probes at the top (Omegatron) and bottom (FSP) of the vessel

were used to measure plasma density and electron temperature at the same toroidal location
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as the microwave horn. Bulk plasma ion temperature was measured at the top of the torus

with a retarding field energy analyzer (Omegatron). A CCD camera view from the top of

the torus was used to give a qualitative picture of visible light emission. The probe group at

the bottom of the machine consists (FSP) of four Langmuir probes, arranged on the faces

of a pyramidal structure; see LaBombard [2] for details. Asymmetries in the ion saturation

current density to the different probes indicate local toroidal flow.

Approximately 20 nm of diamond-like carbon were deposited onto the end of a cylindrical

stainless steel sample. The coating was estimated to be axially uniform to within 5 nm, but

this was not verified before exposure to the plasma. A mask was used to expose two areas

of the coated sample to plasma facing toroidally clockwise and counterclockwise (as seen

from the top). Figure 1 shows the coated sample mounted onto a scannable assembly, 180

degrees toroidally from the microwave horn. For the carbon-removal experiments, the radial

location of the cyclotron resonance was fixed at 0.72 m and the coated sample moved into

the plasma.

The thickness of the remaining coating was measured using Rutherford backscattering

(RBS) of 1.7 MeV protons. Comparison with uncoated regions of the sample gave the

thickness of carbon removed from by the plasma. An absolute error of 2 nm for the thickness

measurements was determined by performing RBS measurements at identical locations using

proton beams of 0.5 mm and 1.0 mm diameters.

3 Results

3.1 Plasma conditions, non-uniformities

Figure 2 shows plasma density, electron temperature, and ion temperature measured as a

function of deuterium neutral pressure, for resonance location held fixed at R = 0.52m

and microwave power of 3 kW. Results were obtained similar to Sakamoto et al [3], but ion

temperatures are reported as well. A camera view from the top of the machine showed visible

light emitted in a toroidally symmetric region, with a sharp boundary on the smaller major

radius side of the resonance location. Decreasing the neutral deuterium pressure contracted
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the extent of a broader light-emitting region on the larger major radius side of the resonance

location.

Figure 3 shows effective profiles of the plasma density and electron and ion temperatures,
obtained by sweeping the location of the electron cyclotron resonance. The data presented

in Fig. 3 do not represent actual plasma profiles since the probes were not moved relative

to the plasma boundary, but the data demonstrate the lack of plasma source inside the

resonance location and suggest outward plasma flux. Electron temperatures outside the

resonance are approximately constant at T = 10 ± 3 eV; 5 cm inside the resonance electron

temperatures appear to increase to T = 20 ± 10 eV, but this may be due to non-thermal

electrons. Ion temperatures remain constant at T = 2 ± 1 eV across the resonance location;

5 cm outside the resonance location the ion temperature increases to T = 10 ± 5 eV and

remains approximately constant further out. Ion temperatures shown in Fig. 3 are measured

in a local scrape-off plasma defined by the Omegatron head; bulk plasma T is likely to be

higher.

Figure 4 shows effective radial profiles of saturation current density as measured by the

Langmuir probes at the bottom of the machine. Note that the clockwise side of the probe

receives higher ion saturation current density than the counterclockwise side by a factor of

three, suggesting counterclockwise toroidal flow at the probe location. Figure 4 also shows

effective radial profiles of saturation current density as measured by the Langmuir probes at

the top of the machine. The Omegatron head at the top faces couterclockwise and receives

approximately the same plasma flux as the counterclockwise-facing probe at the bottom,

confirming the vertical isotropy within a factor of two reported by Sharma et al [4].

3.2 Surface erosion measurements

Figure 5 shows the removal rates of diamond-like carbon by the ECDC plasma, revealing

two significant trends: the plasma does not remove the coating evenly from each side of the

sample, and the erosion rate depends on the location of the sample relative to the resonance.

Twice as much carbon is removed from the counterclockwise face of the sample as the

clockwise face. Toroidal plasma flow at the bottom of the machine is inferred by the asym-
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metric ion saturation current densities to the Langmuir probe group there. If a toroidal

plasma flow also exists at the location of the coated sample, albeit in the opposite direction,

it could explain the asymmetry of the removal rates.

The plasma removed the most carbon coating when the sample was placed within 5

cm outside of the resonant surface; the removal rate decrease both when the sample was

placed further outside the resonance than 5 cm, and when the sample was placed inside the

resonance. The effective yield of the plasma flux was calculated by Y = ned/(Ft), where

nc = pc/m represents the density of carbon deposited on the surface, d/t represents the

linear removal rate of carbon, and F = neCs/2 represents the ion flux to the surface. Using

n, = 1 x 1016 m-3, T, = 10eV, d/t = 4nm/hr, pc = 4 x 10 3 kg/m 3 for diamond, and

mc = 12 kg/kmol gives an effective yield of Y = 1 x 10-3.

This calculated yield is lower than yields given in recent literature for chemical sputter-

ing of deuterium on carbon, but higher than yields for physical sputtering. Davis[5] reports

Y = 2 x 10-2 for CD4 /D+ yields of 50 eV deuterium incident energy on carbon at 500 K sur-

face temperature. Here we assume 50 eV incident energy based on ions having 3kT sheath

potential energy plus 10 eV thermal energy. Davis reports approximately 33 eV threshold

energy for physical sputtering of deuterium on carbon. The plasma conditions reported here

were not measured at the same toroidal location as the carbon-coated sample, yet toroidal

symmetry was assumed in the calculation of the sputtering yield. The discrepancy of our

calculated yields with published results might be due to toroidal asymmetry of plasma condi-

tions. No significant deposit of carbon on the stainless steel mask was observed, eliminating

redeposition processes as a possible explaination for the discrepancy. Significant redeposition

is not expected, as neutral mean free paths of carbon and hydrocarbons exceed one meter

in the plasma conditions investigated here.

4 Conclusions

Experiments were performed on electron-cyclotron resonance plasmas on Alcator C-Mod.

Camera views of the plasma showed toroidally symmetric visible light emission which de-

creased abruptly at a major radius near the cyclotron resonance, yet remained mostly uniform
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from the resonance location radially outward to the wall. Electron density measurements

confirmed this radial structure: density decreased inside the resonant major radius by an

order of magnitude over 10 cm while outside the resonance we recorded a uniform value of

n, z 2 x 1016 m-3 . Typical electron temperatures were Te a 10 eV outside the resonance,

increasing by a factor of two slightly inside the resonance; ion temperatures of Ti ~ 2 ev were

measured inside and at the resonance, increasing to Ti ~ 10 eV, 5 cm outside the resonance.

Toroidally asymmetric ion saturation current density measured at the bottom of the machine

suggested toroidal plasma flow at that location.

The removal rate was measured of a diamond-like carbon coating on a stainless steel

sample which was inserted into the ECDC plasma. By moving the exposed part of the

sample relative to the resonance location, a coarse radial profile of the carbon removal rate

was obtained. Results indicated maximum carbon removal rates (4.2 ± 0.4 nm/hour) a few

centimeters outside the resonance location. Removal rates decreased inside the resonance

location and further outside the resonance location, indicating localized effective cleaning.

Twice as much carbon was removed the side of the sample facing toroidally counterclockwise

as the side facing clockwise. This asymmetry might have been due to toroidal plasma

flow. Plasma conditions and carbon removal rates gave effective sputtering yield of Y <

1 x 10-3, less than yields reported in the literature for chemical sputtering of carbon by

similar deuterium plasmas.
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Figure 1: Poloidal projection of Alcator C-
Mod tokamak. ECH plasmas (gray region)
are swept in major radius. The Omega-
tron and FSP probe systems record local
plasma conditions at th the etoroidal lo-
cation. A sample, coated with diamond-
like carbon, is mounted on an assembly
near the midplane and is inserted radially
into the plasma for erosion experiments.
The sample assembly is located 180 de-
grees toroidally away from the Omegatron
and FSP.
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Figure 2: ECDC plasma density, electron
and ion temperatures measured by multi-
ple sensors on the Omegatron probe head,
as functions of neutral deuterium pressure;
resonance location is held fixed at R. =
0.52m.
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Figure 3: Effective radial profiles of ECDC
plasma density, electron temperature, and
ion temperature, measured by sensors on
the Omegatron probe head. Major radius
of measuring probe is held fixed, plasma
electron cyclotron resonance moved. Ion
temperature obtained from retarding field
energy analysis; electron density and tem-
peratures obtained from Langmuir probes.
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Figure 4: Effective radial profiles of ion
saturation current density, measured by a
Langmuir probe on Omegatron probe head
and the four Langmuir probes on the Fast
Scanning Probe. Note the plasma flow
indicated by the toroidal asymmetry in
saturation current density. "East" points
toroidally clockwise, viewed from top.
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Figure 5: Removal rate of diamond-like
carbon coating on stainless steel sample,
as a function of the distance from cyclotron
resonance location of the ECDC plasma.
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