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Abstract The excitation and localized damping of electron Bernstein waves (EBW)

in toroidally con�ned plasmas presents the possibility of e�cient means for plasma

heating, current drive, and current pro�le control with external power in the electron

cyclotron range of frequencies (ECRF). Such use of EBW is particularly interesting for

high-� plasmas (e.g., START, MAST, NSTX) but is also applicable to moderate and

low-� tokamaks on which it can be tested.

In this short paper, we focus on the excitation of EBWs from the outboard side by

either mode conversion of an X-mode or its direct coupling in an NSTX-type of plasma.

Fig. 1 shows the distribution of critical frequencies in propagation across the magnetic

�eld along the equatorial plane, and Fig. 2 gives the local kinetic dispersion relation for

the same direction; both use the plasma (density and temperature) and magnetic �eld

pro�les (Fig. 3) for NSTX. From Figs. 1 and 2, we note that the triplet of R-cuto�|

upper-hybrid-resonance (UHR)|L-cuto� forms a mode conversion resonator (i.e., a

resonator containing mode conversion to EBW as an e�ective dissipation) [1]{[3]. In

such a triplet resonator, one can in principle obtain complete mode conversion of the

incident power to EBW [4].

We consider the simplest cold-plasma slab model in the equatorial plane, inhomoge-

neous in x (the radial direction), and with arbitrary x-variations for both the (toroidal)

z-directed and the (poloidal) y-directed magnetic �elds: ~B0(x) = ŷBp(x)+ ẑBT (x). The

detailed linearized �eld analysis is straightforward. For numerically integrating the �eld

equations, it is found convenient to formulate them as a set of four coupled �rst-order

di�erential equations:
d~Fc

d�
= i

$

Ac �
~Fc (1)

where ~F T
c = [Ey Ez (�cBy) cBz], we have let (!x=c) � �, and the variations in the

directions y and z (in which the equilibrium is assumed uniform) have been Fourier

analyzed with components, respectively, exp(ikyy) and exp(ikzz). The tensor (matrix)
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Ac is found to be given by
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where ny = (cky=!), nz = (ckz=!), and the susceptibility �ij and permitivity Kij =

�ij + �ij elements are as found from standard cold plasma perturbation theory for the

considered equilibrium ~B0(x) and n0(x). The solid line curve in Fig. 4 shows the mode

conversion/resonant absorption as a function of frequency, obtained from a numerical

integration of (1) for NSTX plasma and magnetic �eld pro�les, assuming ny = 0 and

nz = 0:1. We note that high mode conversion e�ciencies, > 80%, are obtained over a

broad range of frequencies of about 4 GHz around the peak in C � 0:97 at f = 16 GHz.

Accounting for kinetic e�ects in a nonzero temperature plasma removes the resonant

absorption at the UHR and replaces it with the kinetic EBW, which propagates the

energy away from the mode conversion region. An approximate description that includes

the kinetic EBW and the cold plasma modes, coupled near the UHR, follows from

general WKB analysis [5], with due attention to conservation of kinetic energy ow

density. Thus to include the EBW, we set
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is obtained from expanding the kinetic (Vlasov) susceptibility �K
xx to second-order in

(k?vTe=!ce) | appropriate for representing EBW between the �rst and second electron

cyclotron harmonics, and where damping can be neglected. The resulting set of coupled

�rst-order di�erential equations are

d~FK

d�
= i

$

AK �
~FK (5)



where ~F T
K = [Ex Ey Ez (iTE0

x) cBz (�cBy)], we have let (!x=c) � �,

$
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The dashed curve in Fig. 4 shows the results from a numerical integration of (6) for

the same NSTX parameters used in the mode-conversion/resonance absorption calcu-

lations given above. Up to about 16 GHz, the (approximate) kinetic mode-conversion

calculation veri�es very well the results from the exact mode-conversion/resonance ab-

sorption calculation. For frequencies above 16 GHz, the UHR is above 2!ce and, unless

the plasma extends su�ciently out, the power incident on the fast X-mode will only

encounter a forward travelling wave (modi�ed slow X-mode/EBW) propagating out of

the plasma.

Turning to direct coupling to EBW, we note from Figs. 1 and 2 that for plasma

parameters of interest and frequencies not too far above fce, the distances at the plasma

edge over which coupling takes place are shorter than a free-space wavelength. This

suggests that e�ective direct coupling to EBW should be possible from an external slow

wave structure that can be placed just inside of the conuence point of the EBW with

the slow X-mode. This coupling problem, which is similar to slow-wave coupling for

lower-hybrid and ion-Bernstein waves, will be presented elsewhere.
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NSTX: R = 1:05 m, a = 0:44 m; ne0 = nE + (n0 � nE)(1� x2=a2)1=2; n0 = 4� 1019=m3;

Te0 = TE + (T0 � TE)(1� x2=a2)2; T0 = 3 keV; (nE ; TE) = 0:02(n0; T0)










