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Abstract

Plasma confined in a magnetic dipole field is stabilized by the expansion of the magnetic

flux. The stability of low beta electrostatic modes in a magnetic dipole field is examined

when the distribution function is Maxwellian to lowest order. It is shown using a Nyquist

analysis that for sufficiently gentle density and temperature gradients the configuration

would be expected to be stable to both MHD and collisionless interchange modes. Fur-

thermore it is shown that when it is stable to the interchange mode it is also stable to ion

temperature gradient and collisionless trapped particle modes as well as modes driven by

parallel dynamics such as the "universal" instability.

PACS 52.35.P, 52.35.Q, 52.55, 94.30.F,G
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I. Introduction

The use of a dipole magnetic field generated by a levitated ring to confine a hot

plasma for fusion power generation was first suggested by Hasegawa'. For a magnetic

fusion confinement configuration end losses can be eliminated by levitating the current

loop and the resulting configuration possesses uniquely good properties. The coil set is

simple and axisymmetric and theory predicts both good confinement properties and a high

beta limit. Operation is inherently steady state and the large flux expansion is expected

to simplify the divertor design. Since the confining field of a levitated dipole is poloidal

there are no particle drifts off the flux surfaces (which in a tokamak leads to a "neo-

classical" degradation of confinement) and therefore in the absence of turbulent transport

confinement could be "classical". Conceptual reactor have studies have supported the

possibility of a dipole based fusion reactor 2 4 .

It has been conjectured that a plasma confined in a dipole field may be free of the low

frequency instabilities1 - that are thought to give rise to "anomalous" transport in most

laboratory plasmas. Hasegawa has pointed outl 2 that when the plasma is sufficiently col-

lisionless, the equilibrium distribution function may be described by Fo = Fo(p, J, 4), with

y the first invariant, y = v2/2B, J the second invariant, J = fids v11, and 4 the flux in-

variant. For fluctuations in the range of the curvature drift frequency, flux is not conserved

and a collisionless plasma can approach the state aF(p, J, 0)/&o -+ 0. Furthermore when

OF(p, J, 0)/,0 = 0 the plasma can be shown to be stable to drift frequency fluctuations.

In a dipole field this condition leads to the prediction that the plasma will be marginally

stable when the pressure profiles scale as p oc R 20 /3 , similar to energetic particle pres-

sure profiles observed in the planetary magnetospheres6 - '. For fusion relevant plasmas

confinement must be maintained on a collisional time scale. Therefore we would expect

the distribution function to be, to lowest order, Maxwellian, i.e. Fo(p, J) -+ Fo(e, 4) and

therefore oF/84' # 0. In this paper we will focus on the stability of drift frequency modes

that are driven by 8F/O and are thought to degrade confinement in fusion grade plasmas.

Most toroidal confinement devices with a rotational transform (such as a tokamak)
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obtain stability from a combination of "average good curvature" and magnetic shear. For

a plasma surrounding a floating ring, the pressure peak will occur at a distance from the

ring surface and beyond the pressure peak the pressure must decrease in a region of "bad"

curvature. MHD theory predicts that when a plasma is confined in a "bad" curvature

region it can be stable provided the pressure gradient does not exceed a critical value. The

stabilization derives from the plasma compressibility, i.e. the assumption made in MHD

theory that pVl is constant. In this paper we will explore the effect of compressibility on

drift frequency range modes.

Ideal MHD theory provides a simple approximation for plasma behavior and it does

not take account of important "non ideal" effects such as finite Larmor radius (FLR) effects,

the relationship of density and temperature profiles (characterized by r7) or wave particle

resonances. One suspects that these non-ideal effects may be important in a plasma that is

stabilized by compressibility. Goede, Humanic and Dawson8 have looked into this question

through the application of a particle-in-cell (PIC) code in a slab geometry. They find that

stabilization due to compressibility is observed but that non ideal corrections such as FLR

can be important.

The ideal MHD growth rate for unstable interchange modes can be obtained from

kinetic theory but the marginal stability condition cannot be simply derived. In a previ-

ous study we obtained the dispersion relation from the drift kinetic equation and solve for

the stability of several distinct modes5 . Here we obtain marginal stability by means of a

Nyquist analysis which permits us to accurately obtain the marginal stability conditions

with a minimum of simplifications. In particular it permits us to include FLR and temper-

ature/density profile effects, wave-particle resonances, collisionality and parallel dynamics.

In this work we will show that kinetic theory indicates unusual stability properties for

a plasma that is stabilized by compressibility. Specifically we will show that while kinetic

theory reproduces the MHD result for the stability of interchange modes, it also indicates

that both "trapped particle" modes and 77i modes will be stable when the interchange

modes are stable. Additionally the universal instability is calculated to be stable in a

dipole due to the constraints of field line length imposed by the dipole geometry. On the
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other hand an r7-driven interchange mode can become unstable (t = din T/dln n) in a

collisionless plasma when 7 : 1.

Drift wave theory, as applied to tokamaks, usually assumes an ordering w* > wd (w* is

the diamagnetic drift and wd the curvature drift as defined below in Eq. (3)). The unique

property of a dipole to be shown below is that MHD stability requires w* , 2 wd and this

"large plasma ordering" will be seen to give rise to uniquely favorable stability properties

for low frequency drift modes.

In Section II we will derive the dispersion relation for low frequency electrostatic

modes keeping drift resonant terms. In Section III we present stability results derived

from a Nyquist solution to the dispersion relation. We first derive the stability condition

for collisionless interchange modes which gives a stability criterion that requires that the

pressure gradient not exceed a critical value, similarly to the MHD condition. We consider

the stabilizing effects of ion finite Larmor radius corrections as well as destabilizing profile

effects. We then explore the stability of collisionless trapped particle, collisional electron

and of the universal instability in the large plasma ordering regime.

II. Basic Equations

To derive the stability criterion for electrostatic modes we consider a fluctuating po-

tential (0) and ignore any equilibrium electrostatic potential. From Faraday's law it is

possible for a perturbation to leave the magnetic field undisturbed if E = -VO, which is

consistent with 0 < 1. If 0 varies along a field line, there will be a finite Ell (a situation

not possible in ideal MHD theory).

We analyze the stability of such a perturbation under the assumptions that the wave

frequency w is less than the cyclotron frequency Qc and that the ion Larmor radius pi is

shorter than the perpendicular wavelength A = 27r/k± which is, in turn, short compared

to a parallel wavelength, 27r/kll. The appropriate equation for the distribution function f
is then, 10
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f = qoFo, + Jo(k- p)h (1)

and the non-adiabatic response h satisfies

(w - Wd + ivil b -V') h = -(L - w.)qFoeJo(k p) + iC(h). (2)

In Eq. (2) Jo(kip) is the Bessel function of the first kind, F(e,,O) is the equilibrium

distribution function and

Foe = ,o (3a)

b x k± -V'FO
- = f . (3b)

(Vjb -Vb + VB)
wd=mki -bx 11 (3c)

B = VO x VO, (3d)

b = B/IBI. (3e)

The frequencies w. and wd carry a sign that is taken as positive for electrons. The gradient

V' is taken at constant e = v2 /2 and p = v 2 /2B and 9 is the azimuthal angle. We also

define LZ' = kiVp/(njGc) and Wd = k±T/(Rcjc) with R-1 = b - Vb.

We consider first a perturbation whose growth time is long compared to a particle

bounce time i.e. modes that conserve both the first (y = v2/2B) and second (J = f vilde)

adiabatic invarients. This yields the result that h is a constant along a field line, h =

ho(e, p, b). We will determine the constant by taking the bounce average of Eq. (3),

-(w= -*o) qo&Fo Jo (4)
(h - d + iVq)

and the overbar indicates a time average:

-1 dlj-=_ 0 (5a)
TB | |
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TB = . (5b)

For simplicity the collision operator has been replaced by a Krook model in Eq. (4), i.e.

C(h) -+ -vh with v1 the appropriate collision frequency. To proceed further we will

assume IVBI/B ; 1/Re which is consistent with a low beta approximation.

An approximate form for the bounce average of the curvature drift wd in a dipole

magnetic field , i.e.

Od ~ I (0.35 + 0.15 sin ao) = -k (0.5v_0 + 0.35v0 ) (6a)
oR3o co 1)

with ao the pitch angle at the dipole outer midplane and the subscript "0" indicates that

quantities are evaluated at the outer midplane (i.e. on the magnetic field minimum). The

perpendicular velocity term dominates because the radius of curvature is relatively constant

in a dipole and v2/Oc is conserved during particle motion whereas v2/Qc decreases away

from the field minimum. We therefore will simplify Wd as follows:

Wd -+ 0.5 k Lo (6b)
QoRco

To obtain the dispersion relationship for electrostatic modes we integrate the perturbed

responses over velocity space and apply quasi-neutrality:

0 = qj I dv f3

= q2 /Tj -/ Jv2d J2(k pj)e-V 2/2T (7)

j 3 3

with w.j = c4..(1 -3/29 1 +r7jv 2 /2T), r = d(ln T)/d(ln n) andc.,, = k±TVn/(nR) which

is a flux function. The term Wdj cx V_ and gives rise to a resonant denominator in Eq (7).

We can re derive the MHD growth rate by setting vj = 0 and expanding the de-

nominator (the compressibility derives from the second order term), assuming w > yd.



This expansion however cannot be made near marginal stability and we will therefore keep

the resonance denominator and express the dispersion relation in terms of integrals of the

form:

0 e-xdx 
(8)

with E1 is the exponential integral 12. Expanding the Bessel functions for small gyro radius

(JO ~ 1 - kiv2/2Q2 0 ) we obtain the dispersion relation:

fT Z **"I [(w/JT + 'j - l)T(() - [ij + (kpj)2 (w/wnj + nj - 1)](CjT(j) -1)

+?i(k-Lp)2 (CjT(- )- Cj - 1)] - 24 = 0 (9)

with j = w/Ldj p? = T/m;n2 0 , Cdj = kiv /Rcofnoj and the thermal speed, vJ = Tj/mj.

Notice that there is a coupling, between FLR and 71 terms. We will ignore electron FLR

terms and assume a two species hydrogenic plasma. The factor fT will be discussed below

in relation to trapped particle modes and fT = 1 for interchange modes.

A second approach that was utilized for the solution of the dispersion relation was

to approximate Od as Wd = v 2k±/2f2oRo and additionally to approximate Js a 1 -

k2v 2/2M2. 0 with v 2 = v2 + V2 . This leads to a more complicated dispersion relation than

Eq. (9) and it was difficult to assess the influence of the approximation that was made on

J2. However it was found that the results from this approximation were not significantly

different than those presented below.

In a previous work' we examined the stability of several individual modes and ap-

propriate assumptions were made to decouple one mode from another. In this paper we

will examine plasma stability using the Nyquist criteria "3 which will allow us to examine

stability more generally, including the interaction of different modes. As is well known a

Nyquist approach will indicate the stability boundary but it will not yield a frequency or

growth rate.
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III. Results of Nyquist Study

A. Collisionless Interchange Stability

The stability requirement from MHD is 6(pV 7 ) ;> 0 with V = f de/B and we can

therefore define a critical pressure dependence: pcrit oc 1/VY. The critical pressure gradient

at the outer midplane is therefore [Vp/p]crit = -y[VV/V]o and we observe that [VV/V]o ~

1/Re. In a dipole field V = f de/B oc R with Ro the radius on the outer midplane we

obtain Pcrit oc R20/3 and the pressure scale length rfat = p/Vp = 0.15 Ro. Since, for a

dipole the radius of curvature on the outer midplane is Ro = Ro/3 we obtain a critical

pressure gradient from MHD, namely RroVp/p = C.,/CZd = 20/9 ~ 2.2.

We consider first the stability of collisionless interchange modes i.e. modes with ~) = 4.

We will pay particular attention to the effect on stability of FLR and of profile dependence.

Consider first the case with 7 = 1. In Fig. 1 we display the normalized outer midplane crit-

ical pressure gradient C.p/.d = RcoVp/p vs the ion gyro radius kLpi. (The collisionless

interchange mode is a kinetic version of the MHD interchange mode.) The effect of FLR

is observed to be stabilizing, i.e. a larger kLpi value permits a steeper pressure gradient.

Since k1 ~ m/Ro the most unstable mode has kp ~ p/Ro < 1. The kinetic theory

prediction is comparable with the MHD prediction but not identical since it leaves out

the vil part of the curvature drive but takes proper account of the wave particle resonance

interaction.

The destabilization that results from increasing 7 > 1 is an important and new result.

Figure 1 compares the stability boundary for both the 7 = 2 and the q = 1 modes. When

2 > 1 the Nyquist analysis indicates two unstable roots when the pressure gradient exceeds

a critical value. The two modes predicted are the fast growing MHD-like mode and a drift

frequency mode-. Figure 1 demonstrates that for 7 = 2 the critical pressure gradient can

be limited to values substantially below the limit set by the 7 = 1 interchange mode. A

value for 7=5 is also shown in Fig. 1. The degradation of the stability that is observed

as 7 increases derives from the profile effects that underlie the charge separation. Notice
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also that the 27-driven degradation of stability comes from the FLR coupling terms and

disappears when kLpi = 0.

Stability is also degraded when 7 < 1 see (Table I) i.e for a too strongly peaked density

profiles. Thus there is an optimum density and temperature profile for which the charge

separation that accompanies an interchange of flux tubes is minimized and a deviation

from this profile is destabilizing. This comes about because, whereas for a marginally

stable MHD pressure profile an interchange of -flux tubes does not change the pressure

profile or the internal plasma energy, for a critical 77 value the same exchange of flux tubes

leaves the density and temperature profiles unchanged.

For comparison we recall that when w. > w an interchange mode is unstable for all

w.4 when Wd > 0, i.e. in "bad curvature". The toroidal 7i mode discussed in the 7i section

below is closely related to the 27-driven-interchange-mode just discussed.

B. Trapped Particle Mode

From Eq (6b) we observe that the curvature drift is largest for the most deeply trapped

particles, i.e. particles trapped at the outer midplane where the magnetic field has its

minimum value. Therefore one may expect a tendency for curvature driven modes to

localize in the vicinity of the outer midplane, which would give rise to "trapped particle"

modes. To evaluate the tendency of modes to localize at the outer midplane we will

assume that the wave is localized near the outer midplane so that a fraction fT of deeply

trapped particles feel the full wave potential, i.e. o= 4o, while the shallowly trapped and

circulating particles only feel a small bounce averaged potential, i.e. /Oo < 1. Nyquist

studies reveal that trapped particle modes, i.e. modes with fT < 1 are always more stable

than interchange modes. For example, for 7 = 1, kip = 0.2, fT = 0.8, we find that there is

instability when w., > 2.54 Wd whereas for the same case but with fT=1 we find instability

when w., > 2.03 Lad (Table I). This result is peculiar to stabilization by compressibility

and indicates that since the deeply trapped particles provide the compressibility, a mode

that is felt by more deeply trapped particles is more stable.
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C. Collisional Electron Modes, the Dipole i, Mode

Electrons are more collisional than ions at the same temperature and the difference

in the electron and ion responses deriving from the difference in collisionality can drive

instability. When the electrons are sufficiently collisional they have an adiabatic response

to fluctuating electric fields. Modes that result from collisional (adiabatic) electrons and

collisionless ions can be viewed as a limiting case of the dissipative trapped ion mode. This

mode is destabilized as 77 increases and is analogous to the tokamak toroidal 7i mode'.

To obtain a estimate of this instability we assume that the electron response is adia-

batic, i.e. f = qqFo,. Then the sum over species in Eq (9) is reduced to the ion term. In

Fig. 2 we plot the marginal stability boundary G.,/C' vs kipi with 77 = 2 for both the

collisional electron mode and for the collisionless interchange mode. We observe that the

collisional electron mode does not become unstable unless the pressure gradient is about

a factor 2 larger than the critical gradient for the interchange mode (which is the FLR

corrected fast MHD mode). For general values of 77 we find that the collisional electron

mode is stable at 7i, = 1 and becomes unstable for sufficiently large L.p/d when 7i > 1

but is always stable when the collisionless interchange mode is stable. Unlike the r1-driven

collisionless interchange mode discussed above this mode is only unstable for 77i > 1.

The 7i modes are widely discussed in tokamak literature. The slab-772 mode 5 has a

finite k1l and is driven by coupling to sound waves whereas we are dealing here with a

k1i - 0 mode. On the other hand the toroidal 7i mode"has a ballooning character and is

driven by the bad curvature curvature that is located on the outside of a tokamak. We

have shown that in a dipole this mode appears with an interchange character.

D. Modes that depend on parallel dynamics

Drift modes can depend on parallel dynamics as is the case with the so-called "univer-

sal instability" and the slab "7i mode". These modes have finite kl and do not conserve

the second invariant, J, and it is therefore not appropriate to bounce-average the drift

kinetic equation for the ion response.

10



To analyse the stability of modes with finite kl we apply Eq. (2) for the ion response

and keep the v11 velocity dependence in the ion curvature drift frequency. Using Eq (3c)

and averaging the perpendicular ion drift we obtain the estimate

Wd; ~ Wdi(Vj/Ti + 1). (10)

For electrons we assume an adiabatic response since kive > w. Substituting Eq (10) into

(2) and replacing vj1 b -V by ikjj vj1 in the ion term we obtain the follow dispersion relation:

- F Y(C+) - Y(C-)
0 = 2 - fT *- (1 - (k pi)2 ) (+ C ( ) (w/w.n + 1- 77/2)

(+Y(C+) - 2 Y((_) (k± p,) 2  Y(C+) -Y(C)
+77i C - 77 1 (kpi) C (-C-)

+r; - r; Lp~ ((1

with
vkj ± [v k W + 1di

a+ =11 (12)
2 3/2 ; 8 2 W(1

The thermal speed v? = T/mi, Wdi = k±Ti/(mRoQcio) and

00* e-E d2
Y( = - .X-C

For Im(C) > 0, Y is equal to the plasma dispersion function 1 Z((), and for Im(C) <

0, Y(C) = -Z(-C).

The Nyquist analysis of Eq (11) varying 77j, k± pi, and ./d always indicates stability.

This is not surprising because it is known that Landau damping will be strongly stabilizing

unless vi < w/kj < ve. In a levitated dipole the field lines are closed and we can

impose the condition kil - m/R, with Rc the radius of curvature and m > 1. Since

w ~ wd = v;(kipj)/Rc the first inequality vi < w/kj can be written as kjpi > 1. This

indicates that the mode will be strongly Landau damped when kjpi < 1. The observed

stability of these modes is a result of the field line length being insufficient in a dipole field

to support the relatively long parallel wavelength of these modes.
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III. Conclusions

In a previous study5 we have shown that a number of electrostatic drift frequency

modes become stable when the pressure gradient in the plasma satisfies the MHD inter-

change stability criterion. In this work we have followed a more general approach to this

problem that utilizes the Nyquist criterion to track stability boundaries obtained from a

general dispersion relation with a minimum of simplifying assumptions. MHD stability

requires that the pressure gradient not exceed a critical value ReoVp/p < -y and we find

that while the kinetic theory predicts a similar result for interchange modes the profile and

FLR effects can significantly alter stability.

We have shown that a confinement scheme that is marginally stable due to the balance

of compressibility and curvature drive possesses unusually good stability properties. We

find that when 7=1 and Wp < 2wd all of the studied interchange modes, 7-driven modes,

localized (trapped particle) modes, 77 (i.e. collisional electron modes) and modes that

depend on parallel dynamics were observed to be stable. In the regime that is relevant to

present-day experiments the dipole 7i mode is destabilized when 7i > 1 but it is seen to

be stable when the MHD stability criterion is satisfied. In the collisionless reactor regime,

when 77 0 1 (77i = tle = 17) 77 driven interchange mode can be unstable and therefore one

must either maintain 7 ~ 1 or accept the consequences of the instability. The non-linear

consequence of this instability may be the development of convective cells which could

serve to maintain a critical density profile.

For the collisionless curvature driven modes we have seen that extended, i.e. inter-

change modes are more unstable than modes that are localized in the low field region.

This result is opposite to the standard trapped particle result and may be understood as

an indication that the deeply trapped particles are localized to the region with the largest

field gradient and therefore have the largest compressibility driven stabilization.

It is believed that the 77i mode plays an important role in thermal transport for a

tokamak, The ry mode is driven by the temperature gradient and there is an associated

pressure gradient. For a tokamak the this mode can be unstable while the plasma maintains
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MHD stability due to the good curvature in the outer torus. For a dipole the pressure

gradient associated with the temperature gradient will destabilize interchange modes before

it will destabilize r7 modes. Stabilization from compressibility requires that ReoVp/p < -y

(- = 5/3). For a tokamak (R,) Vp/p ~ A, with A the aspect ratio and since a tokamak

will typically have A > 2 compressibility will not normally be important. A low aspect

ratio tokamak on the other hand can gain substantial stabilization from compressibility.
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Table I - c4,/C.d (= RcoVp/p) for collisionless interchange and localized modes.

71 k-Lpi fT Vp /Cd

.5 0.2 1 0.39

1 0.2 1 2.03

2 0.2 1 1.68

1 0.2 0.8 2.54
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Figure Captions:

FIG. 1. Critical pressure gradient vs kpi for r7 = 1 and 2. The r7 = 5 prediction is also

shown.

FIG. 2. The marginal stability boundary t)p/Cd vs kjpi with 77 = 2 for both the collisional

electron (r7j) mode and for the MHD-like collisionless interchange mode (dashed).
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