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Plasma confinement in the field of a levitated dipole offers many advantages for mag-

netic fusion. In this configuration stability is obtained from compressibility which utilizes

the large flux tube expansion of a dipole field. Such a device could attain a high beta

and possibly exhibit classical confinement properties. It would be steady state and the

large flux expansion will ease the difficulty of a divertor design. The configuration is ideal

for electron cyclotron heating and convective flow patterns may provide a mechanism for

fueling and ash removal.
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1. Introduction

The dipole magnetic field is the simplest and most common magnetic field configura-

tion in the universe. It is the magnetic far-field of a single, circular current loop, and it

represents the dominate structure of the middle magnetospheres of magnetized planets and

neutron stars. The use of a dipole magnetic field generated by a levitated ring to confine a

hot plasma for fusion power generation was first considered by Akira Hasegawa after partic-

ipating in the Voyager 2 encounter with Uranus [1]. Hasegawa recognized that the inward

diffusion and adiabatic heating that accompanied strong magnetic and electric fluctuations

in planetary magnetospheres represented a fundamental property of strongly magnetized

plasmas not yet observed in laboratory fusion experiments. For example, it is well-known

that global fluctuations excited in laboratory fusion plasmas result in rapid plasma and

energy loss. In contrast, large-scale fluctuations induced by sudden compressions of the

geomagnetic cavity (due to enhancements in solar wind pressure) or by unsteady convec-

tions occurring during magnetic substorms energize and populate the energetic electrons

trapped in the Earth's magnetosphere [2]. The fluctuations induce inward particle diffusion

from the magnetospheric boundary even when the central plasma density greatly exceeds

the density at the edge. Hasegawa postulated that if a hot plasma having pressure profiles

similar to those observed in nature could be confined by a laboratory dipole magnetic field,

this plasma might also be immune to anomalous (outward) transport of plasma energy and

particles.

The dipole reactor concept is based on the idea of generating pressure profiles near

marginal stability for low-frequency magnetic and electrostatic fluctuations. From ideal

MHD, marginal stability results when the pressure profile, p satisfies the adiabaticity con-

dition, 6(pV-') = 0, where V is the flux tube volume and y = 5/3. From gyro kinetics,

marginal stability results when OF(p, J, 0b)/O4 = 0, where F(p, J, b) is the particle dis-

tribution function, p is the adiabatic invariant, p = e±/2B, J is the parallel invariant,

J = f v11de and the flux, 4 is the third adiabatic invariant. The frequencies that cor-

respond to these invariants are respectively Q, the cyclotron frequency, wb, the bounce

frequency and wd the curvature driven precessional drift frequency. Both of these condi-
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tions lead to dipole pressure profiles that scale with radius as r- 20/ 3 while the adiabatic

distribution function, F(p, J) also implies a density dependence of ne oc r- and a tem-

perature dependence T oc r-8 3 .

By levitating the dipole magnet in order to prevent end losses, conceptual reactor

studies supported the possibility of a dipole fusion reactor [3,4]. The dipole reactor con-

cept is a radical departure from the better known toroidal-based magnetic fusion reactor

concepts. For example, the most difficult problems for a tokamak reactor are the divertor

heat dissipation, disruptions, steady state operation, and an inherently low beta limit.

Furthermore, the tokamak is subject to neoclassical effects and micro-turbulence driven

transport. The dipole concept provides a approach to fusion which solves these problems.

1. Divertor problem: The difficulty in spreading the heat load at the divertor plate is

generic to concepts in which the magnetic flux is trapped within the coil system. By

having the plasma outside of the confining coil the magnetic flux can be sufficiently

expanded to substantially reduce divertor heat loads.

2. Major disruptions: A tokamak has a large amount of energy stored in the plasma

current. The dipole plasma carries only diamagnetic current and is inherently free

of disruptions. Experiments observe relaxation oscillations, reminiscent of tokamak

ELMs, which relax the pressure gradients when they become too large.

3. Steady state: A tokamak is a pulsed device and current drive schemes that are required

for steady operation appear to be costly. The dipole plasma is inherently steady state.

4. Beta limit: Tokamak stability depends on the poloidal field which is less than the

toroidal field by Bp/BT ~ 1/qA with q the edge safety factor and A the aspect ratio.

For a dipole there is a critical pressure gradient that can be supported (due to the

compressibility term in the interchange stability criterion) and for a sufficiently gentle

pressure gradient the dipole plasma resides in an absolute energy well and is stable

up to local beta values in excess of unity.

5. Transport and neoclassical effects: The trapping of particles in regions of bad curva-

ture makes the tokamak susceptible to drift frequency range trapped particle driven
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turbulent transport. A dipole could, theoretically, show classical transport. In addi-

tion a tokamak has a "neoclassical" degradation of transport that derives from the

drifts of particles off of the flux surfaces. In a dipole the drifts are toroidal and they

define the flux surfaces.

The chief drawback of the dipole approach is the need for a levitated superconducting

ring internal to the plasma. Although this provides a challenge to the engineering of the

device recent advances in high temperature superconductors coupled with an innovative

design concept of Dawson [5,6] on the maintenance of an internal superconducting ring

in the vicinity of a fusion plasma leads to the conclusion that this issue is technologically

solvable.

Utilization of electron cyclotron resonance heating (ECRH) and pellet injection in a

levitated dipole permits a unique heating approach for the creation of fusion grade plasmas.

The combination of closed field lines and high beta makes the dipole an ideal geometry for

creating a high beta, hot electron plasma by the application of ECRH. Such plasmas have

been demonstrated in open field line mirror machines as well as in levitrons and in the

non-levitated dipole (or so-called "terrella") CTX experiment [7,10]. The density of the

hot electron plasma is observed to be limited by microwave accessibility and the energy

by relativistic detuning. Unlike ECRH mirror applications, the hot electrons created in

a levitated dipole can only be lost by cross-field transport and if transport is close to

classical the resulting loss rate will be small. The energy stored in the hot electron plasma

can be transferred into a dense, thermal hydrogenic plasma by injecting pellets into the

ECR heated plasma.

We conclude that the continued advances in the understanding of magnetospheric

plasmas coupled with the development of the technology of gyrotrons and of pellet injectors

provides the the fusion community with a new and unique approach to creating fusion grade

laboratory plasmas. In addition the development of high temperature superconductors and

of new conceptual approaches to the cooling of an internal levitated superconducting coil

provide a potential path for a substantially improved approach to magnetic fusion energy

production.
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2. Dipole Configuration

Figure 1 which, shows the magnetic flux contours and the mod-B surfaces for a

laboratory-size levitated dipole facility [11]. The levitated ring has a major radius R,

and a minor radius a. The simplest vacuum chamber geometry would be a spherical tank

and the last closed flux surface will be assumed to have a radius R.. Typically R, > 5Rc

to permit a substantial reduction of plasma pressure. The plasma pressure will attain a

peak value at a midplane radius of Ro. Between the ring surface (located at R = Rc + a)

and the peak pressure location there is good curvature and since the field is relatively high

near the ring, cross-field transport is be expected to be low. Thus we expect high pressure

gradients in this region. The schematic midplane pressure profile is shown in Fig. 2.

Outside of the peak pressure region the pressure will decay in a region of "bad"

curvature and MHD stability requires a relatively gentle pressure gradient. This results in

a large volume of low field and of low density plasma. Thus a dipole confinement device

would look like a small ring surrounded by a hot plasma that is centered within a relatively

large spherical vacuum chamber. Beta, the ratio of plasma to magnetic field pressure is

a measure of the efficiency of the utilization of the magnetic field and since the field and

pressure fall off together, 6 only decays slowly with radius.

When a small uniform field is added in the direction of the dipole axis a separatrix will

form which leads to two possible geometries: (1) When the uniform field adds to the outer

dipole field the separatrix exhibits two symmetric nulls on the dipole axis as exhibited in

Fig. 3. (2) When the uniform field subtracts from the outer dipole field the separatrix

exhibits a field null on the outer midplane, as seen in Fig. 4. Within the last closed flux

surface we expect to satisfy the MHD requirement S(pV') > 1. Outside the last closed

flux surface the plasma will flow along field lines into the end wall.

Beyond the separatrix heat will be conducted along the field lines and flow toward

the end plates or limiter. A strong fanning of the diverted field lines is expected to greatly

reduce the end wall power density. The plasma at the divertor plates is expected to be

1 to 10 eV and at the symmetry point (opposite the end plate) 20 to 100 eV. As with a
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tokamak divertor the scrape-off layer plasma can be lead into a baffled chamber to permit

pumping at high neutral pressure with a limited back streaming of the neutralized outflow.

One straightforward way to heat a laboratory dipole experiment would be to utilize

electron cyclotron resonance heating (ECRH). For an ECRH heated experiment the heating

will take place at both the fundamental and the second harmonic resonance field locations

and the hot electrons will be localized between the flux surfaces that are tangent to the

fundamental and the second harmonic mod-B surfaces. A typical laboratory embodiment

of a levitated dipole could utilize 2.45 to 28 GC ECR heating. The coil design used in

Fig. [1] is constrained by the current density limit for a superconductor, taken here to be

1 x 108 A/M 2 , and by the requirement that the resonant flux tube clears the coil.

The vacuum field of a circular loop provides a useful analytic approximation. The

vector potential for the field of a single loop of radius R, in cylindrical coordinates has the

form

Ae = LI(Rc 1/2[(1 - 0.5k 2 )K(k 2 ) - E(k2) (1)7rk r

with B = V x A and the magnetic flux surfaces are given by rAe. K and E are complete

elliptic integrals of the first and second kind. The ring current is I and

k 2 4Rcr
S(R+ r) 2 +z 2

For r >> R, the field has a dipole dependence

B(r,0) = mom (1 + 3 sin2 0)1/ 2 . (2)

An additional vertical field term, A8± = 0.5B1rterm must be added to the the vector

potential (Eq. 1) to produce a diverted geometry.
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3. Scrape-off Layer Constraint

Since the pressure gradient must not exceed a critical value the peak pressure, po, is

determined by the scrape-off layer pressure:

po/psol = (r. 0 I/ro)2 0/ 3 ~ 105 - 107.

Assuming that a fraction fR of power leaving the plasma is radiated we can balance the

power loss from the plasma with the flow in the scrape-off layer:

(1 - fR)poVo ; 2pso1Asoics
rE

with c, the scrape-off layer sound speed, Vo the effective volume of hot plasma defined

by poVo = f pdV, A 01 the scrape-off layer cross-section area and po(psol) the respective

core (scrape-off layer) pressures. The zero subscript denotes values at the location of the

pressure peak. Assuming that the scrape-off layer width is a finite number of ion gyro

radii, we take A. 01 ~ r-yRso0 pso with psol the scrape-off layer ion gyro radius and -y the

ratio of the scrape-off layer width to the ion gyro radius (-y > 1). Taking Vo ~ irR and

imposing the critical temperature profile T oc R-8 / 3 and -y = 1 we obtain

2BR3 R80  16/3
rit ~: 0.5(l - fR) Bo SI(3)

TRv'ioT;jo Ro

in MKS units with temperatures in eV. Consider two examples:

1. A dipole with RO=0.4 m, R, 01=3 m, Bo=0.4 T, fR = 0.5. For a hot electron plasma

with Teo = 300 KeV, and Tio=200 eV, we obtain rE - 0.1 sec. For a density of

ne = 5 x 1017 m- 3 this corresponds to Pe = 0.38 and the power requirement of 75 KW.

This estimate of power ignores the stabilization of the hot electron interchange mode

by the thermal electron component [12] which would permit a higher ratio of peak to

scrape-off layer pressure and thereby reduce the power requirements. Therefore this

heating power estimate may be considered to be an upper bound.
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2. For RO=0.4 m, R,, 1=3 m, Tio = Teo=5 KeV, Bo=0.4 T, fR = 0.5 we obtain -rE = 0.15

sec. For a density of n, = 2 x 1019 this corresponds to # = 0.5 and the power required

to sustain this plasma is 65 KW.

For -E < r" from Eq. (3) the scrape-off layer can expand to accommodate a higher

heat flow, i.e. -y > 1. For TE > rift the heating power must be decreased, i.e. the

temperature To must decrease for the heating power to balance the scrape-off layer power

outflow with the divertor width fixed at one ion gyro radius. This behavior results from

the constraint imposed by the adiabatic profiles of pressure and temperature.

We have assumed that T8 oi/To = (Ro/R901 )8 /3 . More generally the temperature

profile is determined by the heating and thermal transport profiles. The relationship

of the temperature to the density profile is also constrained by stability considerations as

discussed below. Furthermore the scrape-off layer temperature is determined by the cooling

processes that take place within the scrape-off layer including radiation and secondary

electron emission. As the plasma flows along the scrape-off layer field lines toward the

end plates it will cool and it can become collisional. The scaling changes when the mean

free path within the scrape-off layer becomes less than the connection length and the heat

flow along the field lines becomes predominantly conductive. For a collisional plasma the

temperature will vary along the field line in the scrape-off layer (at constant pressure) due

to parallel thermal conductivity. Additionally if the neutral pressure becomes sufficiently

large (in the vicinity of the end walls) the pressure can fall due to momentum exchange

with neutral particles.

For a collisional scrape-off layer the power balance becomes

(1 - fR)PoVo I _POXI_ O_

TE SO

and we note that for classical conductivity XII oc T' . Since collisionality retards the

outflow of heat along open field lines the scrape-off layer temperature can be higher without

degrading core confinement as compared with a collisional scrape-off layer.
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4. MHD and Electrostatic Mode Stability

The dipole reactor concept is based on the idea of generating pressure profiles near

marginal stability for low-frequency MHD and electrostatic fluctuations. From ideal MHD,

marginal stability results when the pressure profile, p(O) satisfies the adiabaticity condi-

tion, 6(pV' ) = 0, where V is the specific flux tube volume and y = 5/3 [13]. Hasegawa

pointed out that when the invariants p and J are conserved, marginal stability of both

MHD and drift modes results when OF(p, J, 0)/8,0 = 0, where F is the particle distri-

bution function and 0 is the third adiabatic invariant. Both of these conditions lead to

dipole pressure profiles that scale with radius as p oc r-

At high beta MHD ballooning is expected to provide a stability limit. The stability of

ballooning modes has been studied for both magnetospheric and fusion dipole applications

[14-15] and these studies indicate a beta limit in excess of 0 > 1. For application to

planetary systems or for supported dipole experiments one must take account of anisotropic

pressure and also the boundary conditions where the field lines enter the poles. For fusion

applications one is interested in a levitated dipole which has closed field lines and therefore

we expect the pressure to be isotropic. For an isotropic pressure we can apply the standard

MHD formalism.

On the other hand, since confinement in a levitated dipole results from cross field

transport, (and not pitch-angle scatter) it may be expected that, on a transport time scale,

the distribution function will become isotropic. To lowest order the distribution function

would be approximated by Fo = Fo(e, O) with e = (v2 + v )/2, the particle energy. It still

remains true that low frequency unstable modes (w << wb, ) would lead non-linearly

to the adiabatic distribution function, aF(p, J, O)/8 = 0. The subsequent collisional

relaxation of the distribution function will preserve n, T, and r (rj = din T/din n) and this

has important consequences for micro stability.
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Interchange modes from kinetic theory

When FO = Fo(E, 0) the kinetic analysis of electrostatic drift modes proceeds from

a traditional approach [161 beginning with the drift kinetic equation. A kinetic stability

analysis of interchange modes produces similar results to the MHD interchange criterion.

In Ref. [16] it is shown that, interchange modes become stable when the following criterion

is satisfied:

d3vFo(, - OdW.) > 0 (4)

where w, = b x k1 - V'Fo/mQFo is the diamagnetic drift frequency, wd = k1 - b x

(mVb -Vb + pVB)/mc is the precessional drift frequency, and b = B/IBI. In this

analysis we have assumed w << Ob with Wb the bounce frequency defined by Wb = vjjd/ds

and we have bounce averaged the drift kinetic equation. The bounce averaged quantities

appear with an overline, U = f a de/v. This yields the approximate stability criterion

Od > (1 + r7)w. which indicates that (at low 3) stability requires that the local pressure

scale length exceeds the radius of curvature.

Universal Instability

The "universal" instability is an electrostatic mode that is present in an inhomoge-

neous plasma and propagates nearly perpendicular to B. Reference [17] treats several cases

of interest to levitated dipole stability. They consider a slab model with gravity simulated

magnetic curvature. In the region between the levitated coil and the pressure peak there is

cusp-like "good" curvature and Ref. [17] finds that stability requires R, < 2L,(1 +Ti/Te),,

with R, the effective radius of curvature and L = n/Vn. For example, for Ti ~ T in

a small dipole experiment, Rc ~ 30 cm, this criterion would yield L. >7.5 cm. This

requirement may set the scale for the density to rise in the vicinity of the ring. In the

outer region between the pressure peak and the wall Ref. [17] shows stability relates the

largest wavelength that fits into the machine to the density scale length. For a dipole we
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would take the machine scale length to be ~ 27rR,. Stability is then shown to require

L, > 0.3 R,. This requirement is less restrictive than the interchange stability criterion.

Trapped particle Modes

Trapped particle modes are low frequency electrostatic modes (W << W << c) that

can localize in the outer part of the torus. For a tokamak wd/w. ~ 1/A << 1 and as a

result we can ignore resonances with the precessional drift, Od, and obtain drift frequency

fluctuations of order w ~ w. With a dipole we have the opposite ordering, i.e. wd/w. > 1

and stability of interchange modes require Wd > (1 + r)w*. The dipole ordering leads to

the result that instability may be driven by a resonance of the wave with the precessional

drift motion, i.e. W Wd. An analysis of the dissipative trapped ion mode that assumes

collisional electrons and collisionless ions indicates a stability criterion wd > 'qw*/2 [16].

Likewise an analysis of a collisionless trapped particle mode indicates a stability criterion

Wd > ?W. [16]. Therefore we can conclude that, in a levitated dipole, a pressure profile

that is stable to interchange modes may also be stable to trapped particle modes.

7i Modes

In a tokamak the so-called 77 or "mixing" modes are electrostatic modes that couple

ion acoustic and drift fluctuations. They are low frequency modes w << ncj but include

the dynamics of the bounce frequency time scale. A dipole does not have magnetic shear

and so we will refer to the early derivations of the ?7i mode which do not include magnetic

shear. Antonsen et al. [18-19] derives stability criteria from both a fluid and a collisionless

kinetic theory. The simplest fluid theory indicates that instability occurs when 7i > 2/3.

The adiabatic distribution is characterized iji = Vln T/Vln n = 2/3. The more detailed

fluid derivation and the collisionless kinetic approach indicate that instability occurs when

7i > 1. Thus adiabatic profiles which are characterized by 7i = 2/3 are expected to be

stable to these modes.
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Drift Cyclotron Modes

Drift cyclotron modes are high frequency unstable modes (w ~ nei) modes that are

driven by temperature and density gradients. Pastukhov and Sokolov have evaluated the

transport from these modes in the good curvature region near the surface of the levitated

dipole [20,21]. They show that the resulting transport would be severely limited by particle

recycling at the surface of the internal coil. Because the surface of dipole is completely

surrounded by a dense plasma, the net particle flux to the ring must vanish. A cool,

high-density sheath forms at the dipole surface which transforms the thermal flux into

bremsstrahlung radiation.

Stability of Convective Cells

Experiments in multipoles have indicated that convective cells [22] can provide the

dominant source of cross-field transport in shear-free systems. It is understood theoretically

[25] that zero frequency convective cells are closely related to interchange modes and they

will grow in regions of bad magnetic well, i.e. where b(pV 7 ) < 0. In addition it has been

shown that convective cells will exist in regions of good curvature when the the heating is

non-uniform [26]. In the Wisconsin octupole experiments convective cells were observed in

regions of both good and bad curvature [23] regions and the convective cells were observed

to decay. In these experiments the initial plasma was non-uniformly distributed within the

chamber. These experiments also indicated that a small amount of shear caused a rapid

decay of the convective cells. Additionally it was observed that small field errors can cause

convective flow patterns in a shear-free configuration [24].

These results lead one to suspect that uniform heating will be required in a levitated

dipole in order to avoid the excitation of convective cells. Alternatively one can consider

the addition of a small current on the dipole axis (or appropriate current drive) to create

some shear and thereby eliminate these modes.

On the other hand, convective cells can be useful in a reactor to purge the ash. At

marginal stability, pV7 = const, the exchange of flux tubes will transport particles but
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not energy. Additionally when ne oc 1/V (71 = 2/3) the exchange of flux tubes will not

change the density profiles. Therefore for an adiabatic profile the controlled application of

assymetric heating can provide a means for the adiabatic convection of the fusion products.

One might then consider the possibility that, in a reactor, a fraction of the synchrotron

radiation that is emitted from the plasma can be reflected back so as to be non-uniformly

reabsorbed and therefore drive convective cells that fuel and cleanse the plasma.

Conclusions on Stability

In general the radial profiles of heating and fueling determine the respective tem-

perature and density profiles. We can imagine heating and fueling profiles that generate

marginally stable pressure profiles (p oc V-) while maintaining 77 < 2/3. If we exceed the

critical pressure gradient we would expect the plasma to expand unstably so as to broaden

the pressure profile. If we exceed a critical value of 27 we would expect an onset of micro-

turbulence drive transport. This is in direct analogy to the operation of a tokamak. With

pressure gradients and 7i appropriately bounded a levitated dipole may exhibit classical

transport.

5. ECR heating and Pellet Injection

Electron cyclotron resonance heating provides a straight forward method to build up

a substantial stored energy in a hot electron plasma. This capability results from the pre-

dicted stability at high beta and the closed field line geometry of a levitated dipole. The

energy stored in the hot electron plasma can be transferred into a high density, thermal hy-

drogenic plasma by injecting pellets into the ECR heated hot electron plasma. The energy

transfer into the hydrogenic and the thermal electron species depends on a competition

between rethermalization and radial thermal transport. If transport is classical or near

classical essentially all of the stored energy can be transferred into the hydrogenic and the

thermal electron species. In this optimistic scenario D3 He ignition could be obtained in

an inexpensive manner in a relatively small reactor.
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If we consider, for example, a dipole plasma heated by a 28 GC gyrotron at the 1 T

resonance surface (about 100-200 KW of power) we may expect to produce a hot electron

plasma with n, ~ 2 - 5 x 1018 m- 3 at 200-500 KeV (0.2 <,3 < 1). The ability to transfer

the energy depends on the competition of cross field transport and thermalization of the

hot electron energy. For classical confinement, a large fraction of the energy could be

transferred and a ne ~ 2 x 1018 m-3, 200 KeV electron plasma would yield a 10 KeV

hydrogenic plasma at ne ~ 2 X 10 19 m-3 .

To study this process we utilize a zero dimensional model assuming classical rether-

malization between the suprathermal and the thermal species. Thermal plasma losses due

to cross field transport characterized by TE and i-p. We solve the following simultaneous

rate equations for hot electrons, Teh, thermal electrons, Te, thermal ions, Ti, and density,

ne (assuming ne =ni):

dTeh Te--Teh Ti-Teh
dt Tei Tih

dT Teh ~ Te T - T, Te
dt "ei iTei TEe

dT Teh - Ti T - Te T

dt Tih -e i TEi

dn, _ i
dt T

with Tei the classical rethermalization time, Tih the hot electron-ion rethermalization time,

TEi (TEe) the ion (electron) energy confinement and -r, the particle confinement time. The

energy confinement time is related to a mean transport coefficient by TE 2

For classical confinement essentially all of the energy can be transferred into the

thermal plasma. One example would be to consider classical confinement with TE = a2

for a = 0.1 m and initial values of neh = 5 x 1018 m- 3, nio = 5 x 1019 m-3. As shown in

Fig. 5 T rises up to 12 KeV and Ti reaches 8 KeV. A second example, shown in Fig. 6
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shows the solution to rate equations for with TE= 20 ms Tr=200 ms and a = 0.1 m. Even

for substantially reduced ion confinement significant plasma parameters would be attained

due to energy transfer from the relativistic electrons. Thus, by combining ECRH and pellet

injection a modest dipole experiment might be capable of investigating the properties of

high temperature, high density, and high beta plasmas.

6. Thermal Equilibria of an Ignited D3 He Plasma

An estimate of the equilibrium profiles in an ignited D3 He plasma requires a solution

of a heat transport equation. This is a two-dimensional problem since the magnetic field

strength varies along a field line (the density and temperature are flux functions). In a

levitated dipole geometry a major portion of the volume of confined plasma is located near

the outer midplane. We can therefore estimate confinement using a one dimensional model

that uses fields evaluated at the outer midplane of the dipole. We assume D3 He power

production with a 20% D, 80% 3He mixture and furthermore assume that the dominant

loss channels are Bremsstrahlung radiation and classical transport. The magnetic field

also enters the Jacobian to describe the flux tube expansion and for classical transport

n cC 1/B 2 . We can write the thermal transport equation in flux coordinates using the

magnetic scalar potential, X, as the angular coordinate, i.e. B = VX. The flux tube

average of the transport equation then gives:

n() [ xR2 n] = [nDnHe(OV)D3HeEf.a(T) - Pbrem(T)] J L. (5)

On the right hand side (UV)D3He is the D 3He rate coefficient, Ef,, = 18.3 MeV and Pbrem

is the Bremsstrahlung radiation power given in Ref. [27]:

Pb rem = 5 x 1O~3/Tnfl[Zeff(1+1.55 x10-3 Te+7.15 x10- 6T2)+.071(2Zi~ni/ne)Tj- 2 +.00414Te]

in W/m 3 with T in KeV and n, in m- 3. On the dipole midplane R = Ro and Eq (4)

becomes:
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R 0B 0 &R BR2] d =[DHe(c7)DHe3Eftt(T)-Pbrem(T)] j (6)

We have used Nj oc 1/B 2 i.e. we have assumed classical transport.

The flux average integrals, can be approximated by f(de/B)R2 oc RS and f(d/B) oc

Ro. The scaling of Eq. (5) indicates that the temperature half-width, AT scales as

AT oc gn±/H(T) with H(T) the sum of the heating terms from the right hand side of

Eq. (5). Therefore a larger thermal transport leads to a broader temperature profile. If

we compare the total heat flux toward the ring vs toward the scrape-off-layer we can show

that when AT << ROT with ROT the location of the temperature peak. The ratio of heat

to the ring vs heat to the scrape-off-layer is HR/H 0 1 ~ 1 + 6AT/RoT.

To solve Eq. (6) a density dependence must be assigned but since all terms go as n2

this dependence only has a weak effect on the solution. (The pressure gradient, however,

enters into the stability criteria and the pressure gradient broadens when the density

profile broadens.) The solution of Eq. (5) is a strong function the amplitude and radial

dependence of N which we have taken to be classical. Thus at a fixed beta, as the magnetic

field increases the peak fusion power density rises as B 2 but additionally the hot plasma

region narrows due to reduced transport.

7. Discussion

A dipole fusion reactor would consist of a single levitated circular magnet within

a large vacuum chamber. The hot plasma core would encircle the levitated dipole coil

forming a toroidal annulus. A large expansion region of cooler plasma extends outward

from the dipole where the plasma pressure decreases with radius, R, approximately as

R20/ 3 characteristic of the marginally stable profiles found in magnetospheres. Although

the overall dimensions of the dipole fusion reactor may be large, the size of superconducting

dipole magnet is small. Indeed, in the dipole reactor conceptual designs [3-5] the volume of

the hot plasma core (40 m3 ) exceeds the volume of the levitated ring (20 M 3 ). This feature
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of the dipole reactor (i.e. a larger plasma volume than the volume of the high-technology

superconducting magnets, shield and structure) is in sharp contrast to the tokamak where

the volume of the plasma is usually less than the volume of the surrounding fusion island.

(For example, in ITER, the plasma volume is 2500 m 3 and the volume of the magnets,

shield and structure exceeds 5000 m3 .) The dipole reactor concept also differs from the

spherator [28] since the plasma profiles of the spherator are steep (i.e. they cannot be made

stationary) and low-frequency fluctuations or convection cells may significantly degrade

confinement.

Conceptual dipole reactor designs have been reported [3-4], and the use a dipole fusion

reactor for space propulsion has been proposed [5]. In each of these designs, D-3He fuel

was used instead of the more highly reactive D-T fuel in order to reduce the neutron

flux to the levitated coil. Also reflectors were used to reduce synchrotron losses from

the high-pressure and lower 3 plasma on the inside of the levitated dipole. The high #
capability of the dipole reactor makes possible the use of advanced and possibly aneutronic

fuels, but the high temperatures required to burn these fuels necessitate steps to reduce

synchrotron emission losses. The designs reported in Refs. [3] and [4] described compact

and relatively low-power dipole reactors with large plasma expansion regions. A 20 MA

dipole coil of radius of 1.8 m confined a plasma with peak # ~ 3 and generated 100 MW

of fusion power. A higher field, 40 MA dipole with a denser plasma at the same ,3 could

generate 1000 MW. The plasma is heated to ignition with direct heating of the plasma

core (using, for example, neutral beam injection). In Ref. [5], a much larger dipole reactor

containing a 54 MA dipole having a radius of 6 m and producing 2000 MW of fusion power

was considered for rocket propulsion. The plasma expansion region was not as large and a

relatively hot plasma was diverted to an annular gas-neutralizer to generate thrust. In both

Refs. [4] and [5], thermoelectric converters were located within the levitated dipole, and

they provided the power to drive refrigerators for the superconducting magnets. Designs

of the superconducting magnets and shields in Refs. [3] and [5] illustrate the feasibility of

reactor-sized dipole magnets using present-day multi-filamentary Nb3 Sn conductors.

Closely related studies of plasma confinement in multipole fields have been a subject
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of significant research efforts [23,29]. Recent theoretical work includes the study of the

equilibrium of two dimensional internal coil configurations [29-31].

Finally, a supported dipole laboratory experiment at Columbia University has studied

the detailed phase-space evolution of dipole-trapped energetic plasma in the presence of

intense drift-resonant fluctuations [9-10]. In this experiment, an "artificial radiation belt"

(a population of 5-50 KeV energetic electrons) is produced with microwave heating which

excites hot-electron interchange instabilities when the pressure gradient sufficiently exceeds

the marginally stable profiles envisioned for the dipole reactor. Fluctuations leading to

global chaotic transport as well as thin, localized regions of stochastic drifts are observed,

and these observations have been used to verify models of collisionless radial transport in

dipole magnetic fields.
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Figure Captions:

FIG. 1. Magnetic field and flux surfaces for a levitated dipole experiment.

FIG. 2. Midplane pressure profile shown schematically.

FIG. 3. Configuration with separatrix null points in dipole axis.

FIG. 4. Configuration with separatrix null on outer midplane.

FIG. 5. Solution to rate equations for electron and ion temperatures with -rE = a 2 /X± for

a = 0.1 m, and initial values of neh = 5 X 1018 m- 3, nio = 5 x 1019 m- 3 .

FIG. 6. Solution to rate equations for electron and ion temperatures with TE=20 ms

-r=200 ms and a = 0.1 m.
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